
WS Choreography Model Overview 

 1 

2 WS Choreography Model Overview, Version 0-1 
Editor's Draft, 4 December 2003 3 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

14 

This version: 
TBD 

Latest version: 
TBD 

Previous Version: 
Not Applicable 

Editors (alphabetically): 
David Burdett, Commerce One, mailto:david.Burdett@commerceone.com   
Nickolaos Kavantzas, Oracle, Oracle mailto:nickolas.kavantzas@oracle.com 

This document is available in other format(s): 

Copyright 
Copyright © 2003 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, 15 

16 trademark, document use and software licensing rules apply. 

Abstract 17 

18 
19 
20 
21 

22 

23 
24 
25 

It's purpose is to provide an information model that describes the data and the relationships 
between them that is needed to define a choreography that describes the sequence and 
conditions in which the data exchanged between two or more participants in order to meet 
some useful purpose. 

Status of this Document 
This is the first version of the WS Choreography Model Overview paper. It has no official 
status within the W3C. 
This document may be updated, replaced or obsoleted by other documents at any time. 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 1 

mailto:david.Burdett@commerceone.com
mailto:nickolas.kavantzas@oracle.com
http://www.w3.org/Consortium/Legal/ipr-notice
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice
http://www.w3.org/Consortium/Legal/ipr-notice
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/copyright-software


WS Choreography Model Overview 

Table of Contents 26 

27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 

1 Introduction ...................................................................................................................... 3 
1.1 Purpose .................................................................................................................... 3 
1.2 Goals ........................................................................................................................ 3 
1.3 Document Scope ...................................................................................................... 4 

2 Abstract, Portable and Concrete Choreographies............................................................ 5 
2.1 Abstract Choreography ............................................................................................. 5 
2.2 Portable Choreography............................................................................................. 5 
2.3 Concrete Choreographies ......................................................................................... 6 
2.4 Relationship between Choreography Types ............................................................. 6 

3 Model Description ............................................................................................................ 8 
3.1 Roles, Participants and Relationships....................................................................... 9 

3.1.1 Roles................................................................................................................ 10 
3.1.2 Participants ...................................................................................................... 10 
3.1.3 Relationship ..................................................................................................... 10 

3.2 Choreography Structure.......................................................................................... 11 
3.3 Choreography Composition and Import .................................................................. 12 

3.3.1 Choreography Composition ............................................................................. 13 
3.3.2 Import Statements ........................................................................................... 13 

3.4 Types, Variables and Tokens.................................................................................. 14 
3.4.1 Types............................................................................................................... 14 
3.4.2 Variables.......................................................................................................... 16 
3.4.3 Tokens ............................................................................................................. 18 

3.5 Interactions ............................................................................................................. 19 
3.5.1 Interaction Roles.............................................................................................. 20 
3.5.2 Interaction Message Content ........................................................................... 20 
3.5.3 Interaction Channel Variables.......................................................................... 21 
3.5.4 Interaction Operations...................................................................................... 22 
3.5.5 Interaction State Changes ............................................................................... 22 
3.5.6 Interaction Based Alignment ............................................................................ 23 
3.5.7 Protocol Based Information Exchanges ........................................................... 24 

3.6 Activities and Control Structures ............................................................................. 25 
3.6.1 Work Units ....................................................................................................... 27 
3.6.2 Performed Choreography ................................................................................ 28 
3.6.3 Assign .............................................................................................................. 28 
3.6.4 NoAction .......................................................................................................... 28 
3.6.5 Sequence Control Structure............................................................................. 29 
3.6.6 Choice Control Structure.................................................................................. 29 
3.6.7 Parallel Control Structure................................................................................. 29 

3.7 Choreography Exceptions and Transactions .......................................................... 30 
3.7.1 Exception Block ............................................................................................... 31 
3.7.2 Transaction Block ............................................................................................ 32 

3.8 Semantics ............................................................................................................... 32 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 2 



WS Choreography Model Overview 

1 Introduction 69 

1.1 Purpose 70 

71 Business or other activities that involve multiple different organizations or independent 
processes that use Web service technology to exchange information can only be 
successful if they are properly coordinated. This means that the sender and receiver of a 
message know and agree in advance: 

72 
73 
74 

75 

76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 

• The format and structure of the (SOAP) messages that are exchanged, and 

• The sequence and conditions in which the messages are exchanged. 
WSDL and its extensions provide a mechanism by which the first objective is realized, 
however, it does not define the sequence and conditions, or choreography, in which 
messages are exchanged. 
To solve this problem, a shared common or “global” definition of the sequence and 
conditions in which messages are exchanged is produced that describes the observable 
complementary behavior of all the participants involved. Each participant  can then use the 
definition to build and test solutions that conform to the global definition. 
The main advantage of a global definition approach is that it separates the process being 
followed by an individual business or system within a “domain of control” from the definition 
of the sequence in which each business or system exchanges information with others. This 
means that, as long as the “observable” sequence does not change, the rules and logic 
followed within the domain of control can change at will. 
The purpose of this paper is to describe an information model or “meta model” for a 
Choreography Definition Language that identifies the information and structures required to 
build a “global” definition. 

1.2 Goals 92 

93 

94 
95 
96 

97 
98 
99 

100 
101 

102 
103 

Some additional goals of this model of a choreography definition language are to permit:  

• Reusability. The same choreography definition is usable by different participants 
operating in different contexts (industry, locale, etc) with different software (e.g. 
application software) and different message formats and standards 

• Cooperative. Choreographies define the sequence of exchanging messages 
between two (or more) independent participants or processes by describing how 
they should cooperate 

• Multi-Party. Choreographies can be defined involving any number of participants or 
processes 

• Semantics. Choreographies can include human-readable documentation and 
semantics for all the components in the choreography.  

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 3 



WS Choreography Model Overview 

• Composability. Existing choreographies can be combined to form new 
choreographies that may be reused in different contexts 

104 
105 

106 
107 
108 

109 
110 
111 

112 
113 
114 

115 
116 
117 

118 
119 

120 
121 
122 
123 
124 
125 
126 

127 
128 
129 

130 
131 
132 
133 

• Modular. Choreographies can be defined using an "import" facility that allows a 
choreography to be created from components contained in several different 
choreographies 

• Information Driven. Choreographies describe how participants that take part in 
choreographies maintain where they are in the choreography by recording the state 
changes caused by exchanges of information and their reactions to them 

• Information Alignment. Choreographies allow the participants that take part in 
choreographies to communicate and synchronize their states and the information 
they share 

• Transactionality. The processes or participants that take part in a choreography can 
work in a “transactional” way with the ability to specify how transactions are 
compensated 

• Exception Handling. Choreographies can define how exceptional or unusual 
conditions that occur whilst the choreography is performed are handled 

• Design Time Verification. A developer of a business process can use the 
Choreography Definition, on their own to: 
o Generate a behavioral interface that conforms to a BPEL definition that 

describes the sequence and conditions in which one of the participants in a 
choreography sends and receives messages 

o Verify that a BPEL definition conforms to behavior defined by in a 
Choreography Definition 

• Run Time Verification. The performance of a choreography can be verified at run 
time against the Choreography Definition to ensure that it is being followed correctly. 
If errors are found then the choreography can specify the action that should be taken 

• Compatibility with other Specifications. The specifications will work alongside and 
complement other specifications such as the WS Reliability, WS WS Composite 
Application Framework (WSCAF), WS Security (WSS), WS Business Process 
Execution Language (WSBPEL) etc. 

1.3 Document Scope 134 

135 
136 
137 
138 

This model focuses on describing the different types of information required to define a 
Choreography. It does not provide an XML representation of that information nor does it 
describe in any detail the operational semantics of how such a representation could or 
should be used. 
This paper identifies several open issues highlighted like this. These are a non-exhaustive 
list of topics, ideas or problems where the authors think that more thought is needed. 

139 
140 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 4 



WS Choreography Model Overview 

2 Abstract, Portable and Concrete Choreographies 141 

142 
143 
144 
145 

One of the key goals of this model is to enable Choreography reuse. Global definitions of a 
choreography facilitate this especially if choreographies are defined with varying degrees of 
abstraction. Although more could be defined, this model identifies and supports three 
different levels of abstraction in which choreographies can usefully be defined and used. 

2.1 Abstract Choreography 146 

147 

148 
149 

150 
151 

152 
153 
154 

155 
156 

157 

158 
159 
160 
161 
162 
163 

The first is a highly abstract choreography that defines: 

• The types of information that is exchanged, for example an order sent between a 
buyer and a seller 

• The sequence and conditions under which the information is sent. 
However, it does not define: 

• The physical structure of the information that is exchanged, for example there are no 
definitions of the XML documents, SOAP messages, WSDL port types and 
operations, URLs etc that are to be used 

• How the different conditions that are used to control the sequence of exchanging 
information are determined 

• Where the messages in the choreography should be sent e.g. to a URL 

• How the messages are to be secured (if at all) and whether or not the messages are 
to be sent reliably. 

Although abstract, this approach will be useful for defining generally accepted or 
“canonical” definitions for very common processes, such as placing an order. Definitions of 
theses types of choreography would best be carried out by international standards 
organizations that have a cross-industry, multi-geographic responsibility. 

2.2 Portable Choreography 164 

165 
166 
167 

168 
169 

170 
171 

172 
173 
174 

Clearly, the development of these abstract choreographies will take some time to complete, 
so the second type of choreography to define is a “portable” choreography. In this type of 
choreography definition the definitions in an Abstract Choreography are extended with: 

• Detailed definitions of the physical structure of the information that is exchanged 
including the WSDL port types and operations 

• Details of the technology to be used, for example, how to secure the messages and 
send them reliably 

• Rules that express, as far as possible, the conditions that are used to control the 
sequence of exchange of information, in terms of, for example XPath expressions 
that reference data in the messages 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 5 



WS Choreography Model Overview 

175 
176 
177 
178 
179 
180 
181 
182 

However they do not specify the URLs to which the messages are sent nor, for example, 
the digital certificates used to secure them. This means that an organization should be able 
to design and build a solution that conforms, in detail, to the rules of the choreography, and 
only require limited additional information at run time to determine where messages should 
be sent. As a result realizing interoperability should be much easier. 
This “portable” type of choreography is targeted more at vertical industry organizations, 
such as RosettaNet, that want to define rules for collaboration between the members of 
their industry and simplify, as far as possible, the implementation and integration process. 

2.3 Concrete Choreographies 183 

184 
185 
186 
187 

188 

189 
190 
191 
192 
193 

The final type of choreography, is a Concrete Choreography, where all the details are 
specified that are required to send a message. This extends the definition in a Portable 
Choreography to include information about the “endpoints”. This can include information 
such as: 

• The URLs that are the destinations of the messages that are sent, and 

• Other “endpoint” specific rules such as digital certificates to be used for securing 
messages. 

These types of choreographies are probably most applicable where two or more 
participants want to specify how they will cooperate and there is little or no need for other 
organizations to follow the same process. 

2.4 Relationship between Choreography Types 194 

195 
196 

The table below summarizes the three different types of choreographies. 
 

 Abstract Portable Concrete 

Types of Messages Identified Identified Identified 

Message Structure Not Defined Defined Defined 

Conditions Identified Identified Identified 

Condition evaluation 
rules 

Not defined Defined as far as 
possible 

Defined as far as 
possible 

Technology used Not defined Defined Defined 

Message Endpoint 
Data 

Not defined Not Defined Defined 

The model described in this paper allows an Abstract Choreography to be extended to 
become a Portable Choreography and a Portable Choreography to be extended to become 
a Concrete Choreography. 

197 
198 
199 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 6 



WS Choreography Model Overview 

200 
201 

202 
203 

204 
205 

The model also allows each different type of Choreography to be defined directly. This 
means that: 

• A Portable Choreography can be defined without first defining the Abstract 
Choreography 

• A Concrete Choreography can be defined without defining an Abstract or Portable 
Choreography. 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 7 



WS Choreography Model Overview 

3 Model Description  206 

207 The following diagram is the full model of all the entities (without attributes). 
Choreography

Definition Block

contains

1

Base Choreo

contains

1
Recovery Block

contains
0..1

Participant

Relationship

SubChoreo Definition

contains
definition for

* *

Role

FromTo
**

Participant Role

takes

taken by*

*

ExceptionBlock

contains0..1

TransactionBlock

contains0..1

Work Unit
contains

contains

contains
1..*

1

1..*

Import

containsreferences
* *

Activity contains
1

Performed Choreo

performed by

*

Interaction

is from for is to for

*

*

One Way Request Response

StateChange causes
*

Assign NoActionSequence Parallel Choice

SequencePart

has part

is performed by

* *

Parallel Part

has part

is performed by

*
*

Select Part
has part

is performed by

*

*

Select Other

has part

is performed by

0..1

*
*

Assigned To

has
*

Variable

contains

*

Token

contains

referenced by

*

*

Variable

assigned by

assigned to

*

*

Information Exchange Variable

VariableUsage

source var for

dest var for request source for
request dest for

response source for

response dest for

** *** *

*

State Variable

is from state foris to state for

**

Channel Variable

channel for

request channel for

response channel for

*
*

*

Other Variable

Message Content Type

content for

request content for
response content for

defines type of

*

*

**

Channel Type

defines type of

*

Variable Type

defines type of

defines type of

defines type of

*

*

*

has

*

Variable Type

208 
209 

210 

 

Figure 1: Full Model 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 8 



WS Choreography Model Overview 

211 
212 

213 
214 
215 
216 

217 
218 

219 
220 
221 

222 
223 
224 
225 
226 

227 
228 
229 

230 
231 
232 
233 

234 
235 
236 
237 
238 

239 
240 

The rest of this Model Description section describes the following subsets of the model 
(including attributes). 

• Participants, Roles and Relationships. In a Choreography information is always 
exchanged between Participants, such as a Business or Organization acting in one 
or more Roles, for example Buyer or Seller as part of a Relationship, for example 
purchasing goods. 

• Choreography Structure. This section describes the major components of a 
Choreography at a high level 

• Choreography Composition and Import. This explains how one Choreography can 
be created by performing other, pre-existing choreographies and importing content 
from other choreographies. 

• Types, Variables and Tokens. Variables contain information about objects in the 
choreography such as the messages exchanged or the state of the Roles involved. 
Tokens are aliases that can be used to reference parts of a Variable. Both Variables 
and Tokens have Types that define the structure of what the Variable or Token 
contains. 

• Interactions. These are the basic building blocks of the Choreography which result in 
the sending of messages between Roles in either a “one-way” or “request-response” 
message pattern 

• Activities and Control Structures. Activities are the lowest level components of the 
Choreography that do the actual work. Control Structures combine activities with 
other Control Structures in a nested structure to express the sequence and 
conditions in which the messages in the choreography are exchanged 

• Choreography Exceptions and Transactions.  Choreography Exceptions describe 
how to specify what additional Interactions should occur when a Choreography 
behaves in an abnormal way. Choreography Transactions describes how to specify 
what additional Interactions should occur to reverse the effect of an earlier 
completed choreography 

• Semantics. Semantics allow the creation of descriptions that can record the 
semantic definitions of almost every single component in the model. 

3.1 Roles, Participants and Relationships 241 

242 
243 
244 

In a Choreography information is always exchanged between Participants, such as a 
Business or Organization acting in one or more Roles, for example Buyer or Seller as part 
of a Relationship, for example purchasing goods. 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 9 



WS Choreography Model Overview 

245 The diagram below shows the model for Participants, Roles and Relationships. 

Participant

PK ParticipantName

Role

PK RoleName

RoleUri

Participant Role

PK,FK1 ParticipantName
PK,FK2 RoleName

takes

taken by Relationship

PK,FK1 FromRoleName
PK,FK2 ToRoleName
PK RelationshipReason

From

To*

*

**

 246 

247 Figure 2: Model for Participants, Roles and Relationships 

3.1.1 Roles 248 

249 
250 
251 

A Role identifies a set of related behaviors, for example the Buyer role is associated with 
purchasing of goods or services and the Supplier role is associated with providing those 
goods or services for a fee. 

3.1.2 Participants 252 

253 
254 

A Participant identifies a set of related Roles, for example a Commercial Organization could 
take both a Buyer Role when purchasing goods and a Seller role when selling them. 

3.1.3 Relationship 255 

256 
257 
258 

259 

260 
261 
262 
263 
264 
265 
266 

267 

268 

A Relationship is the association of two Roles for a purpose. A relationship represents the 
possible ways in which two roles can interact.  For example the Relationships between a 
Buyer and a Seller could include: 

• A “Purchasing” Relationship, for the initial procurement of goods or services, and 

• A “Customer Management” Relationship to allow the Supplier to provide service and 
support after the goods have been purchased or the service provided. 

Although Relationships are always between two Roles, Choreographies involving more 
than two Roles are possible. For example if the purchase of goods involved a third-party 
Shipper contracted by the Supplier to deliver the Supplier’s goods, then, in addition to the 
Purchasing and Customer Management relationships described above, the following 
relationships might exist: 

• A “Logistics Provider” relationship between the Supplier and the Shipper, and 

• A “Goods Delivery” relationship between the Buyer and the Shipper. 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 10 



WS Choreography Model Overview 

3.2 Choreography Structure 269 

270 The diagram below shows the model for a Choreography Definition: 

Choreography

PK ChoreoId

Definition Block

PK,FK1 ChoreoId

SubChoreo Definition

PK,FK2 ChoreoId

FK1 ContainedInChoreoId BaseChoreo

PK,FK1 ChoreoId

Recovery Block

PK,FK1 ChoreoId

ExceptionBlock

PK,FK1 ChoreoId

TransactionBlock

PK,FK1 ChoreoId

contains

1

contains*

contains
1

contains

0..1

contains

0..1

contains

0..1

definition for

*

Work Unit

PK,FK1,FK2,FK3 ChoreoId
PK WorkUnitName

EnablingCondition
RepeatCondition

contains

1..* contains
1..*

contains
1

 271 

272 
273 
274 

275 
276 

277 
278 

279 
280 
281 

Figure 3: Model for Choreography Structure 
A Choreography Definition defines the information required by the choreography and 
sequence in which it is exchanged. It contains the following: 

• Zero or More ”sub” Choreography Definitions which define Choreographies that can 
be performed by the Choreography being defined 

• A Definition Block that contains set of Variable Definitions and Token Definitions that 
define information about objects used by the choreography  

• The actual Choreography that in turn contains: 
o A required Base Choreography part, that defines the normal sequence of 

information exchanges that should occur 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 11 



WS Choreography Model Overview 

o An optional Exception Block, that contains the sequence of information 
exchanges that are followed when some exceptional or unusual circumstance 
has occurred while the Choreography was being performed, and 

282 
283 
284 
285 
286 
287 

288 
289 
290 
291 
292 

o An optional Transaction Block which, if present can make the Choreography 
“transactional” in that it contains information exchanges that are followed when 
the effects of the choreography need to be Compensated 

• One or more Work Units, within the Base Choreography, Exception Block or 
Transaction Block that do the actual useful work within the Choreography in terms of 
exchanging messages and other information between the Participants. Each Work 
Unit contains a single Activity that is performed whenever an optional enabling 
condition on the Work Unit, called a Guard, is true. 

Issue CS-01. For the XML need to work out how Namespaces, etc are handled. 293 

3.3 Choreography Composition and Import 294 

295 
296 

Choreographies can be combined and built from other Choreographies as illustrated by the 
diagram below. 

Choreography

PK ChoreoId

Base Choreo

PK,FK1 ChoreoId

contains
1

Work Unit

PK,FK1,FK2,FK3 ChoreoId
PK WorkUnitName

EnablingCondition
RepeatCondition

contains
1..*

Activity

PK,FK1 ChoreoId
PK,FK1 WorkUnitName
PK ActivityId contains

1

Performed Choreo

PK,FK1 ChoreoId
PK,FK1 WorkUnitName
PK,FK1 ActivityId

FK2 PerformedChoreoId

performed by

*

Interaction

PK,FK1 ChoreoId
PK,FK1 WorkUnitName
PK,FK1 ActivityId

FK2 FromRoleName
FK3 ToRoleName

Operation

Import

PK,FK1 ChoreoId
PK Seq

ReferencedChoreoId
ReferencedChoreoPart

contains

*

references

*

 297 

298 Figure 4: Model for Choreography Composition and Import 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 12 



WS Choreography Model Overview 

3.3.1 Choreography Composition 299 

300 
301 
302 

303 
304 
305 

306 
307 
308 
309 
310 
311 
312 

313 
314 

315 
316 
317 
318 
319 

Choreography Composition is the creation of new Choreographies by reusing existing 
choreography definitions. For example if two separate Choreographies were defined as 
follows: 

• A Request for Quote (RFQ) Choreography that involved a Buyer role sending a 
request for a quotation for goods and services to a Supplier to which the Supplier 
responding with either a “Quotation” or a “Decline to Quote” message, and 

• An Order Placement Choreography where the Buyer placed and order for goods or 
services and the Supplier either accepted the order or rejected it.  

You could then create a new “Quote and Order” Choreography by reusing the two where 
the RFQ choreography was executed first, and then, depending on the outcome of the RFQ 
Choreography, the order was placed using the Order Placement Choreography. 
In this case the new choreography is “composed” out of the two previously defined 
choreographies. These choreographies may be specified either: 

• Locally, i.e. they are included, as a Sub Choreography, in the same choreography 
definition as the choreography that performed them, or 

• Globally, i.e. they are specified in a separate choreography definition that is defined 
elsewhere. 

Using this approach, Choreographies can be recursively combined to support 
choreographies of any required complexity allowing more flexibility as Choreographies 
defined elsewhere can be reused. 

3.3.2 Import Statements 320 

321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 

An Import statement can contain references to a complete Choreography or part of a 
Choreography. 
Import statements must be interpreted in the sequence they occur. 
When the Import statement contains references to variables or other data that have the 
same identity, then the content of the later Import statement replaces the same content 
referenced by the earlier Import statement. 
This means, for example, that if an initial Choreography definition referenced by an Import 
statement contained variables, etc, that were defined in an Abstract way, then the 
replacement definition could either be Portable or Concrete. 
It also enables one Choreography definition to effectively be “cloned” by replacing the 
definitions for some or all of its variables. 
Issue CCI-01. How are definitions identified as being the same and therefore should be 332 
overridden? 333 
Issue CCI-02.Import statements need to apply at potentially other points within the 334 
choreography apart from the top level? 335 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 13 



WS Choreography Model Overview 

3.4 Types, Variables and Tokens 336 

337 
338 
339 
340 
341 

Variables contain information about objects in the choreography such as the messages 
exchanged or the state of the Roles involved. Tokens are aliases that can be used to 
reference parts of a Variable. Both Variables and Tokens have Types that define the 
structure of what the Variable or Token contains. 
The diagram below shows the model for Types, Variables and Tokens: 

Definition Block

PK,FK1 ChoreoId

Variable

PK,FK1 ChoreoId
PK,FK3 RoleName
PK VariableName

AbstractionLevel
VariableUsage

FK2 Type

contains
*

VariableUsage

Information Exchange Variable

PK,FK1 ChoreoId
PK,FK1 RoleName
PK,FK1 VariableName

FK2 MessageContentType

State Variable

PK,FK1 ChoreoId
PK,FK1 RoleName
PK,FK1 VariableName

Channel Variable

PK,FK1 ChoreoId
PK,FK1 RoleName
PK,FK1 VariableName

FK2 ChannelType

Variable Type

PK Type

defines type of
*

Role

PK RoleName

RoleUri

uses
*

Channel Type

PK,FK1 ChannelType

Message Content Type

PK,FK1 MessageContentTypedefines type of

*
defines type of*

Token

PK,FK1,FK4 ChoreoId
PK,FK2,FK4 RoleName
PK TokenName

FK3 Type
FK4 RererencedVariable

ReferencedPath

contains
*

uses
*

defines type of
*

referenced by
*

Other Variable

PK,FK1 ChoreoId
PK,FK1 VariableName
PK,FK1 RoleName

 342 

343 Figure 5: Model for Types, Variables and Tokens 

3.4.1 Types 344 

345 
346 
347 
348 
349 

3.4.1.1 Variable Types 
Variable Types describe the type of information that is being captured within a Variable at a 
Role. The type of information that is referenced will vary depending on the type of the 
Choreography and the type of information that the variable contains. 
 

Choreography 
Type 

Variable Type 

Abstract In an Abstract Choreography, the Variable Type is described by: 

� A unique identifier, e.g. a URI, that identifies the variable 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 14 



WS Choreography Model Overview 

Choreography 
Type 

Variable Type 

type and 
� A semantic definition that explains the purpose of the 

variable type and outlines its content. 

No detail is provided of the actual type, e.g. XSD definitions 

Portable In a Portable Choreography the Variable Type extends the 
Abstract Variable Type by defining its XML Schema Type. Note 
that this may be simple or complex depending on the need. 

Concrete In a Concrete Choreography, Variable Type is defined in the 
same way as for a Portable Choreography 

Issue TVT-01 should this be extended to include other items such as SOAP headers, 350 
security, etc when the Variable is describing a Message? 351 

352 
353 
354 
355 
356 
357 

3.4.1.2 Channel Types 
A Channel identifies where and how to send information to the To Role. Additionally, it 
identifies what is the allowed Channel information that can be passed to the To Role and 
the usage of a Channel within a participant. 
The content varies depending on the type of the choreography: 
 

Choreography 
Type 

Channel 

Abstract In an Abstract Choreography, the Channel Type is described by: 

� A unique identifier, e.g. a URI that identifies the Channel 
Type within the Role 

� A semantic definition, that describes the type of channel 
information that the Channel can accept. Including: 
o What channel information can be passed using this 

channel type 
o How a channel should be used 

Portable In a Portable Choreography, the abstract Channel Type is 
extended by identifying: 

� One or more WSDL Service Interfaces that collectively 
implement the channel type. 

� How Correlation of the messages sent using the Channel 
Type is to be done 

Concrete Channel Types in a Concrete Choreography are defined in the 
same way as for a Portable Choreography. 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 15 



WS Choreography Model Overview 

3.4.2 Variables 358 

359 
360 

361 
362 
363 
364 

365 
366 
367 
368 
369 
370 
371 
372 
373 
374 
375 
376 
377 
378 
379 

380 
381 
382 
383 
384 

385 
386 
387 
388 
389 
390 
391 
392 
393 
394 
395 

Variables capture information about objects in a Choreography. They have the following 
usages as defined by the Variable Usage: 

• Information Exchange Variables that contain information such as an Order that is 
used to: 
o Populate the content of a message to be sent, or 
o Populated as a result of a message received 

• State Variables that contain information about the State of a Role as a result of 
information exchanged. For example: 
o When a Buyer sends an order to a Seller, the Buyer could have a State 

Variable called “OrderState” set to a value of “OrderSent” and once the 
message was received by the Seller, the Seller could have an State Variable  
called “OrderState” set to a value of “OrderReceived”. Note that the variable 
“OrderState” at the Buyer is a different variable to the “OrderState” at the Seller 

o Once an order is received, then it might be validated and checked for 
acceptability in other ways that affect how the choreography is performed. This 
could require additional states to be defined for “Order State”, such as: 
“OrderError”, which means an error was detected that stops processing of the 
message, “OrderAccepted”, which means that there were no problems with the 
Order and it can be processed, and “OrderRejected”, which means, although 
there were no errors, it cannot be processed, e.g. because a credit check 
failed. 

• Channel Variables that contain information that describes how and where a 
message is sent to a Role. For example, a Channel Variable could contain 
information such as the URL to which the message should be sent, the policies that 
are to be applied, such as security, whether or not reliable messaging is to be used, 
etc. 

• Other Variables including 
o Locally Defined Variables that contain information created and changed locally 

by a Role. They can be Information Exchange, State or Channel Variables as 
well as variables of other types. For example “Maximum Order Amount” could 
be data created by a seller that is used together with an actual order amount 
from an Order received to control the flow of the choreography. In this case 
how Maximum Order Amount is calculated and its value would not be known by 
the other Roles 

o Common Variables that contain information that is common knowledge to two 
or more Roles, e.g. “OrderResponseTime” which is the time in hours in which a 
response to an Order must be sent 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 16 



WS Choreography Model Overview 

396 

397 

398 

399 

400 

401 
402 
403 

The value of Variables can be: 

• Known by all the roles prior to the start of the choreography 

• Assigned by one role and optionally communicated to other roles 

• Assigned as a result of an interaction 

• Assigned by one role from other information 

• Used to determine the decisions and actions to be taken in a Choreography.  
The way Variables are defined will vary depending on the type of choreography. 
 

Choreography 
Type 

Variables 

Abstract In an abstract choreography, variables are described by: 

� An Role name that identifies the role within which the 
variable is known 

� A name that identifies the variable, that is unique within the 
Role within the Choreography Definition  

� A semantic definition, that describes what the variable 
means 

Portable In a portable choreography, the abstract definition of the 
Variables is extended to include a Variable Type, which define 
what type of information the variable contains 

Concrete Variables in a Concrete Choreography are defined in the same 
way as for a Portable Choreography. 

Issue TVT-02. How could (or should) we combine variables of the form , e.g. “Account 404 
Balance + Order Amount” so that it could be compared with “Credit Limit” 405 

406 
407 

408 
409 

410 
411 

412 
413 
414 
415 

3.4.2.1 Variables and Abstract/Concrete Choreographies 
Defining Variables to hold information about the objects in a Choreography means that: 

• Variables contain all the information about a Choreography that can change from 
implementation to implementation 

• The definition of the sequence and conditions in which information is exchanged is 
independent of how those information exchanges are actually implemented 

• As new methods are developed for defining interfaces, messages, as well as other 
Web Services standards, only the way the variables are defined should need to 
change. The essence of the choreography, i.e. the basic definition of the sequence 
and conditions in which information is exchanged, remains the same. 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 17 



WS Choreography Model Overview 

In addition the Import statement also allows definitions in one choreography, to be over-
ridden by other, replacement definitions. This means that: 

416 
417 

418 
419 

420 
421 

422 
423 
424 

• The same choreography can be reused in different contexts with different interfaces, 
message types and varying levels of detail as required 

• The Abstraction Level of the variables can change as required from abstract through 
to concrete 

• The definitions of the variables in an “abstract” choreography can be used as a 
checklist to validate that any replacement definitions at either the Portable or 
Concrete levels form a complete list. 

3.4.3 Tokens 425 

426 
427 
428 
429 
430 
431 
432 
433 
434 
435 
436 

A Token is an alias for a piece of data in a variable or message that needs to be used by a 
Choreography. Tokens differ from Variables in that Variables contain values whereas 
Tokens contain information that defines how to access the piece of the data that is relevant.  
For example a Token for "Order Amount" within an Order business could be an alias for an 
expression that pointed to the Order Amount element within an XML document. This could 
then be used as part of a condition that controls the flow of a choreography, for example 
“Order Amount > $1000” 
All tokens may have a type, for example, an Order Amount would be of type amount, Order 
Id could be alphanumeric and counter an integer. 
The way these tokens are defined will vary depending on the type of choreography. 
 

Choreography 
Type 

Tokens 

Abstract In an abstract choreography, tokens are described by: 

� A unique identifier, e.g. a URI that identifies the token 
� A semantic definition, that describes what the token means 

However Abstract tokens do not have a type. 

Portable In a portable choreography, a token extends an Abstract 
definition of a token by defining: 

� Its type, e.g. by giving it an XML Schema type 
� A reference to the location of the item, for example using an 

XML Path expression 

Concrete Tokens in a Concrete Choreography are defined in the same way 
as for a Portable Choreography. 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 18 



WS Choreography Model Overview 

3.5 Interactions 437 

438 The diagram below shows the model for Interactions. 

Interaction

PK,FK1 ChoreoId
PK,FK1 WorkUnitName
PK,FK1 ActivityId

FK2 FromRoleName
FK3 ToRoleName

Operation

One Way

PK,FK1,FK3,FK4,FK5 ChoreoId
PK,FK1 WorkUnitName
PK,FK1 ActivityId

FK3 OneWaySourceVar
FK2 OneWayContent
FK4 OneWayDestVar
FK5 Channel
FK3,FK4,FK5 RoleName

Request Response

PK,FK1,FK4,FK5,FK6,FK7,FK8,FK9 ChoreoId
PK,FK1 WorkUnitName
PK,FK1 ActivityId

FK4 RequestSourceVar
FK2 RequestContent
FK5 RequestDestVar
FK8 RequestChannel
FK6 ResponseSouceVar
FK3 ResponseContent
FK7 ResponseDestVar
FK9 ResponseChannel
FK4,FK5,FK6,FK7,FK8,FK9 RoleName

Role

PK RoleName

RoleUri

is from for
*

is to for
*

Message Content Type

PK,FK1 MessageContentType

content for

*

request content for
*

response content for
*

Information Exchange Variable

PK,FK1 ChoreoId
PK,FK1 RoleName
PK,FK1 VariableName

FK2 MessageContentType

source var for

*

dest var for

*

request source for

*

request dest for

*

response source for

*

response dest for

*

StateChange

PK,FK1,FK2,FK3 ChoreoId
PK,FK1 WorkUnitName
PK,FK1 ActivityId

FK2 FromState
FK3 ToState
FK2,FK3 RoleName

causes
*

State Variable

PK,FK1 ChoreoId
PK,FK1 RoleName
PK,FK1 VariableName

is from state for* is to state for*

Channel Variable

PK,FK1 ChoreoId
PK,FK1 RoleName
PK,FK1 VariableName

FK2 ChannelType

channel for*

request channel for

*
response channel *

 439 

440 
441 
442 
443 

444 

445 

Figure 6: Model for Interactions 
An Interaction always involves the exchange of information between two Roles in a 
Relationship that conform to a Message Exchange Pattern as defined by WSDL 1.2. This 
means an Interaction can be one of two types: 

• A One-Way Interaction that involves the sending of single message, 

• A Request-Response Interaction when two messages are exchanged.  

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 19 



WS Choreography Model Overview 

446 

447 

448 

449 
450 

451 
452 

453 
454 

455 
456 
457 

An Interaction also contains “references” to: 

• The From Role and To Role  that are involved 

• The Message Content Type that is being exchanged 

• The Information Exchange Variables at the From Role and To Role that are the 
source and destination for the Message Content 

• The Channel Variable that specifies the interface and other data that describe where 
and how the message is to be sent 

• The Operation that specifies what the recipient of the message should do with the 
message when it is received 

• A list of potential States Changes that can occur and may be aligned at the From 
Role and the To Role as a result of carrying out the Interaction. 

Each of these is described below. 
Issue I-01. The model diagram does not describe how error responses are handled 458 

3.5.1 Interaction Roles 459 

460 
461 
462 

Interactions always have a “direction” in that there is a From Role that sends the original 
message and a To Role that receives the message. In the case of a request/response 
MEP, the “To Role” will also send a response message back to the “From Role”.  

3.5.2 Interaction Message Content 463 

464 
465 

466 
467 

468 
469 

470 
471 

472 
473 

474 
475 

476 
477 

Message Content identifies the type of information that is exchanged between the roles and 
the Information Exchange Variables used as follows: 

• One Way From Message is the variable that is the source for a One-Way Message 
at the From Role 

• One Way To Message is the variable that is the destination for a One-Way Message 
at the To Role 

• Request From Message is the variable that is the source for Request Message at 
the From Role 

• Request To Message is the variable that is the destination for Request Message at 
the To Role 

• Response To Message is the variable that is the source for Response Message at 
the To Role 

• Response From Message is the variable that is the destination for Response 
Message at the From Role 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 20 



WS Choreography Model Overview 

478 
479 
480 

The type of information that is referenced will vary depending on the type of the 
Choreography. 
 

Choreography 
Type 

Message Content 

Abstract In an Abstract Choreography, the message content that is 
exchanged is described by: 

� A unique identifier, e.g. a URI, that identifies the message 
content and 

� A semantic definition that explains the purpose of the 
message and outlines its content. 

No detail is provided of the actual message content, e.g. XSD 
definitions 

Portable In a Portable Choreography, the Abstract definition of Message 
Content is extended to include a WSDL Message Type or an 
XSD element type 

Concrete In a Concrete Choreography, Message Content is defined in the 
same way as for a Portable Choreography 

Issue I-02. Should Portable Choreography message content be extended to include other 481 
items such as SOAP headers, security, etc or should this be included in the Channel? 482 

3.5.3 Interaction Channel Variables 483 

484 
485 
486 
487 
488 
489 
490 
491 
492 
493 
494 
495 

A Channel Variable contains information on where and how to send information to a 
specific instance of the To Role. This is because Concrete Channel information plus 
Correlation information about a Choreography contains sufficient information to identify how 
to send messages to a specific instance of a process. 
Additionally, Channel Variable information can be passed within Message Content. This 
allows the destination for messages in a choreography to be determined dynamically. 
For example, a Buyer could specify Channel information to be used for sending delivery 
information. The Buyer could then send the Channel information to the Seller who then 
forwards it to the Shipper. The Shipper could then send delivery information directly to the 
Buyer using the Channel Information originally supplied by the Buyer. 
The content varies depending on the type of the choreography. 
 

Choreography 
Type 

Channel 

Abstract In an Abstract Choreography, the channel is described by: 

� A unique identifier, e.g. a URI that identifies the Channel 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 21 



WS Choreography Model Overview 

Choreography 
Type 

Channel 

within the Role 
� A semantic definition, that describes the type of channel 

information that the Channel can accept 

Portable In a Portable Choreography, the abstract channel is extended by 
identifying its Channel Type, which defines what type of 
information the variable contains. 

Concrete In a concrete choreography, the channel extends a portable 
channel by adding end point information for each interface such 
as complex Service References or simple URIs, digital 
certificates etc. 

496 
497 
498 

499 

500 
501 
502 
503 

At run time, information about a channel variable is expanded further. This requires that the 
messages in the Choreography also contain Correlation information, for example by 
including: 

• A SOAP header that specifies the correlation data to be used with the Channel, or  

• Using the actual value of data within a message, for example the Order Number of 
the Order that is common to all the messages sent over the Channel 

In practice, when a Choreography is performed, several different ways of doing correlation 
may be employed which vary depending on the Channel Type. 

3.5.4 Interaction Operations 504 

505 
506 
507 

An Operation specifies the particular part of an interface that is the target for a message. 
The content varies depending on the type of choreography. 
 

Choreography 
Type 

Interaction 

Abstract In an abstract choreography, an operation is described by a 
unique name within the Interface within the Channel 

Portable In a portable choreography, an operation is described referencing 
a WSDL one-way or request-response Operation 

Concrete Same as portable. 

3.5.5 Interaction State Changes 508 

509 
510 

States contain information about the State of a Role as a result of information exchanged in 
the form of an Interaction. For example after an Interaction where an order is sent by a 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 22 



WS Choreography Model Overview 

Buyer to a Seller, the Buyer could create the State Variable “Order State“ and assign the 
value “Sent” when the message was sent, and when the Seller received the order, the 
Seller could also create its own version of the “Order State” State Variable and assign it the 
value “Received”. 

511 
512 
513 
514 
515 
516 
517 
518 
519 
520 
521 

As a result of a State Change, several different outcomes are possible which can only be 
determined at run time. The Interaction lists each of these allowed State Changes, for 
example when an order is sent from a Buyer to a Seller the outcomes could be one of the 
following State Changes: 

1. Buyer.OrderState = Sent, Seller.OrderState = Received 
2. Buyer.OrderState = SendFailure, Seller.OrderState not set 
3. Buyer.OrderState = AckReceived, Seller.OrderState = OrderAckSent 

3.5.6 Interaction Based Alignment 522 

523 
524 
525 
526 
527 
528 
529 
530 
531 
532 
533 
534 

535 
536 
537 

538 
539 
540 

541 
542 
543 
544 
545 
546 

In some choreographies there may be a requirement that, at the end of an Interaction, the 
Roles in the Choreography have agreement of the outcome. More specifically within an 
Interaction, a Role needs to have a common understanding of the state changes of one or 
more State Variables that are complimentary to one or more State Variables of its partner 
Role. Additionally within an Interaction, a Role needs to have a common understanding of 
the values of the Information Exchange Variables at the partner Role. 
Without alignment the Buyer knows that her “OrderState” is set to “Sent”, but does not 
know the value of the OrderState at the Seller. Once the Seller receives the Order then the 
Seller knows that his “OrderState” variable is set to “Received”. He also knows the Buyers 
“OrderState” was set to “Sent”, as the Choreography defines that the Buyer’s Order State 
variable is set in this way when an Order is sent. 
With Choreography Alignment the difference is that both the Buyer and the Seller have: 

• State Variables such as Order State variables at the Buyer and Seller, that have 
Values that are complementary to each other, e.g. Sent at the Buyer and Received 
at the Seller, and 

• Knowledge of the values of each others States Variables, i.e. the Buyer knows that 
the Seller’s “OrderState” variable has the value “Received” and the Seller knows that 
the Buyer’s “OrderState” variable is set to “Sent” 

• Information Exchange Variables that have the same types with the same content, 
e.g. The Order variables at the Buyer and Seller have the same Variable Types and 
hold the same order 

This assurance of the outcome with respect to States is achieved by an ‘agreement’ 
protocol that is used in conjunction with the Choreography such as the Web Services and 
other specifications designed to coordinate long-running transactions. 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 23 



WS Choreography Model Overview 

3.5.7 Protocol Based Information Exchanges 547 

548 
549 
550 
551 
552 
553 
554 
555 
556 
557 
558 
559 

The One-Way, Request or Response messages in an Interaction may also be implemented 
using a Protocol Based Exchange where a series of messages are exchanged according to 
some well-known protocol, such as the reliable messaging protocols defined in 
specifications such as WS Reliability. 
In both cases, the same or similar Message Content may be exchanged as in a simple 
Interaction, for example the sending of an Order between a Buyer and a Seller. Therefore 
some of the same State Changes may result. 
However when protocols such as the reliable messaging protocols are used, additional 
State Changes will occur. For example, if a reliable messaging protocol were being used 
then the Buyer, once confirmation of delivery of the message was received, would also 
know that the Seller's "Order State" variable was in the state “Received” even though there 
was no separate Interaction that described this. 
Issue I-03. Do we add additional standard states to describe the outcomes of using reliable 560 
messaging protocols? Similarly, should we include additional states to handle other 561 
outcomes, such as security failures? 562 
Issue I-04. Do we want to specify standard "reusable" names for the State Variable values 563 
for the common states associated with Interactions, e.g. for an Interaction you could have 564 
“Sent”, “Received”, “SendFailure”, et.c 565 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 24 



WS Choreography Model Overview 

3.6 Activities and Control Structures 566 

567 The diagram below shows the model for Activities … 

Choreography

PK ChoreoId

Base Choreo

PK,FK1 ChoreoId

contains
1

Work Unit

PK,FK1,FK2,FK3 ChoreoId
PK WorkUnitName

EnablingCondition
RepeatCondition

contains
1..*

Activity

PK,FK1 ChoreoId
PK,FK1 WorkUnitName
PK ActivityId

contains
1

Performed Choreo

PK,FK1 ChoreoId
PK,FK1 WorkUnitName
PK,FK1 ActivityId

FK2 PerformedChoreoId

performed by

*

Interaction

PK,FK1 ChoreoId
PK,FK1 WorkUnitName
PK,FK1 ActivityId

FK2 FromRoleName
FK3 ToRoleName

Operation

Assign

PK,FK1,FK2 ChoreoId
PK,FK1 WorkUnitName
PK,FK1 ActivityId

FK2 AssignedVariable
FK2 RoleName

Variable

PK,FK1 ChoreoId
PK,FK3 RoleName
PK VariableName

FK2 Type
AbstractionLevel
VariableUsage

assigned by
*

Assigned To

PK,FK1,FK2 ChoreoId
PK,FK1 WorkUnitName
PK,FK1 ActivityId

FK2 VariableName
FK2 RoleName

has*

assigned to
*

NoAction

PK,FK1 ChoreoId
PK,FK1 WorkUnitName
PK,FK1 ActivityId

 568 

569 Figure 7: Model for Activities 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 25 



WS Choreography Model Overview 

570 … and this diagram shows the model for Control Structures … 

Sequence

PK,FK1 ChoreoId
PK,FK1 WorkUnitName
PK,FK1 ActivityId

Choice

PK,FK1 ChoreoId
PK,FK1 WorkUnitName
PK,FK1 ActivityId

Parallel

PK,FK1 ChoreoId
PK,FK1 WorkUnitName
PK,FK1 ActivityId

SequencePart

PK,FK1,FK3 ChoreoId
PK,FK1,FK3 WorkUnitName
PK,FK1 ActivityId
PK Seq

FK3 PerformedActivity

has part
*

Select Part

PK,FK1,FK3 ChoreoId
PK,FK1,FK3 WorkUnitName
PK,FK1 ActivityId
PK Seq

Condition
FK3 PerformedActivity

has part
*

Parallel Part

PK,FK1,FK3 ChoreoId
PK,FK1,FK3 WorkUnitName
PK,FK1 ActivityId
PK Seq

FK3 PerformedActivity

has part

*

Select Other

PK,FK1,FK2 ChoreoId
PK,FK1,FK2 WorkUnitName
PK,FK1 ActivityId

FK2 PerformedActivty

has part

0..1

Activity

PK,FK1 ChoreoId
PK,FK1 WorkUnitName
PK ActivityId

Work Unit

PK,FK1,FK2,FK3 ChoreoId
PK WorkUnitName

EnablingCondition
RepeatCondition

contains
1

Base Choreo

PK,FK1 ChoreoId

contains
1..*

Choreography

PK ChoreoId

contains
1

is performed by

*
is performed by

*

is performed by

*

is performed by

*

 571 

572 Figure 8: Model for Control Structures 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 26 



WS Choreography Model Overview 

Activities are the lowest level components of the Choreography which do the actual work, 
such as the Interactions described earlier or the performance of other Choreographies.  

573 
574 
575 
576 
577 
578 
579 
580 

581 
582 
583 
584 
585 
586 
587 
588 
589 
590 

591 
592 
593 
594 
595 
596 
597 
598 
599 
600 
601 
602 
603 

Control Structures combine these Activities with other Control Structures in a nested way to 
specify the sequence and flow of the exchange of information within the Choreography. 
However at the highest level, the Choreographies consist of Work Units, that each contain 
a single Activity that is performed whenever an optional enabling condition on the Work 
Unit, called a Guard, is true. 
Each Activity within a Work Unit is then either: 

• A Basic Activity that does the actual work. These are: 
o An Interaction, i.e. the Work Unit consists of a single Interaction as described 

earlier 
o A Perform, which means that a complete, separately defined choreography is 

performed 
o An Assign, which assigns, within one Role, the value of one Variable to the 

value of a Variable or Token, or makes a Token reference a Variable or another 
Token 

o No Action, which means that the Choreography should take no particular action 
at that point 

• Control Structures that group Basic Activities and Control Structures together in a 
nested structure to express the logic and decision flow involved in the 
Choreography. The Control Structures are: 
o Sequence, which specifies a list of Activities that are performed in sequence 
o Choice, which specifies that just one of two or more Activities are performed 

depending on the condition on a Guard 
o Parallel, which means that all the Activities are performed at the same time. 

Note that an Activity is a modeling concept that would not appear in an XML equivalent of a 
Choreography definition. However it is needed to allow the Sequence, Choice and Parallel 
Activities to contain other Activities in a nested structure that allows the specification of 
Work Units that contain multiple Activities to be created. 
Each of the ideas above, apart from Interaction, which was described earlier, is described 
in more detail below. 

3.6.1 Work Units 604 

605 

606 
607 

Each Work Unit has two optional conditions or guards associated with it: 

• An Enabling Condition, which specifies a combination of states that must be 
available and also evaluate to true before the Work Unit can be performed, and 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 27 



WS Choreography Model Overview 

• A Repeat Condition that specifies a combination of states that, if they evaluate to 
true once the Work Unit is complete, means that the enabling condition of the Work 
Unit (if specified) is re-checked. 

608 
609 
610 
611 

612 
613 
614 

615 
616 
617 

618 
619 
620 

Examples of a Work Unit include: 

• A Send PO Work Unit that includes Interactions for the Buyer to send an Order, the 
Supplier to acknowledge the order, and then later accept (or reject) the order. This 
work unit would probably not have a guard 

• An Order Delivery Error Work Unit that is performed whenever the Place Order Work 
Unit did not reach a “normal” conclusion. This would have a Guard condition that 
identifies the error – see also Choreography Exceptions and Transactions 

• A Change Order Work Unit that can be performed whenever an order 
acknowledgement message has been received and an order rejection has not been 
received. 

Issue ACS-01: How do you limit the number of repetitions of a work unit to a specific 621 
number where the number is fixed, or where the number of repetitions varies by instance or 622 
dependent on some “Locally Defined variable”. 623 

3.6.2 Performed Choreography 624 

625 
626 
627 

The Performed Choreography Structure enables a Choreography to define that a 
separately defined Choreography is to be performed. The Choreography that is performed 
can be defined either within the same Choreography Definition or separately. 
Issue ACS-02. Should variables be used to define: 628 

• How Message Content is passed to (or from) the performed Choreogaphy 629 

• How state information is passed to (or from) a performed choreography  630 

3.6.3 Assign 631 

632 
633 

634 
635 
636 

637 
638 

Assign sets, within one Role, the value of one Variable to the value of a Variable or Token, 
or makes a Token reference a Variable or another Token. The assignments may include: 

• Assigning one Information Exchange Variable to another, for example so that a 
Choreography can define that a message received by one role is forwarded to 
another 

• Assigning a Locally Defined Variable to part of the data contained in an Information 
Exchange Variable 

3.6.4 NoAction 639 

640 
641 

This Activity means that the choreography at this point should take no particular action. 
Examples of its use include: 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 28 



WS Choreography Model Overview 

• In a Work Unit, when there is a need to wait until the Guard condition on the Work 
Unit is true, for example you need to wait until say three separate Interactions are 
complete before progressing to the next step in the Choreography 

642 
643 
644 

645 
646 

• In a Choice so that you can enumerate all the possible choices even if some of the 
choices involve no Interactions. 

3.6.5 Sequence Control Structure 647 

648 
649 
650 
651 

The Sequence Control Structure enables a Work Unit to define that one or more Activities 
must be performed in sequence. It works by grouping the Activities within a <Sequence> ... 
</Sequence> 
Activities must be performed in the same sequence that they are defined. 

3.6.6 Choice Control Structure 652 

653 
654 

655 

656 
657 
658 
659 

The Choice Control structure enables a Work Unit to define that only one of two or more 
Activities should be performed. It works by: 

• Grouping the Work Units within a <Choice> ... </Choice> 

• Adding a Guard statement to each individual Activity within the Choice. 
An Activity should only occur if the Guard on the Activity evaluates to true. Once one of the 
Activities in the Choice have been performed, then no other Activities in the Choice must be 
performed. 

3.6.7 Parallel Control Structure 660 

661 
662 

The Parallel Control Structure enables a Work Unit to define that Activities are performed in 
parallel. It works by grouping the Activities within a <Parallel> ... </Parallel> 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 29 



WS Choreography Model Overview 

3.7 Choreography Exceptions and Transactions 663 

664 The diagram below shows the model for Choreography Exceptions and Transactions. 

Choreography

PK ChoreoId

ExceptionBlock

PK,FK1 ChoreoId

Recovery Block

PK,FK1 ChoreoId
contains

contains

0..1

0..1

TransactionBlock

PK,FK1 ChoreoId

contains0..1

Work Unit

PK,FK1,FK2,FK3 ChoreoId
PK WorkUnitName

EnablingCondition
RepeatCondition

contains contains1..* 1

 665 

666 
667 
668 

669 
670 
671 

672 
673 
674 
675 
676 

677 
678 
679 

680 
681 

Figure 9: Model for Exceptions and Transactions 
Choreographies are the unit for recovery purposes. This means that the Choreography 
should provide: 

• Exception Handling so that Information Exchanges can be defined that are to be 
followed when an unexpected condition occurs while the Choreography is being 
performed 

• Transaction Handling so that one Choreography can perform another Choreography 
up to a suitable point and then later perform the Choreography again to compensate 
for its effects. 

To handle both of these a Choreography may contain an optional Recovery Block which 
contains one or both of: 

• An Exception Block, that contains one or more Work Units with guards. If some 
exceptional circumstance occurs when the Choreography is performed one of the 
Work Units will be followed 

• A Transaction Block, that contains a single Work Unit that is followed when the 
effects of the Choreography need to be reversed 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 30 



WS Choreography Model Overview 

Note however, that although recovery from errors can be defined, depending on the nature 
of the choreography and the problem that occurs, recovery, in practice may not be 
possible. 

682 
683 
684 

3.7.1 Exception Block 685 

686 
687 

688 

689 
690 

691 
692 

693 
694 

695 
696 

697 
698 

699 
700 
701 
702 

A Choreography can sometimes fail as a result of an exceptional circumstance or error. 
Different types of exceptions are possible including this non-exhaustive list: 

• Interaction Failures, for example the sending of a message did not occur 

• Protocol Based Exchange failures, for example no acknowledgement was received 
as part of a reliable messaging protocol 

• Security failures, for example a Message was rejected by a recipient because the 
digital signature was not valid 

• Choreography Sequence Failures, for example a Message was received that was 
not in the sequence as defined by the Choreography 

• Timeout errors, for example an Interaction did not complete within a required 
timescale 

• Validation Errors, for example an XML order document was not well formed or did 
not conform to its schema definition 

• Business Process “failures”, for example the goods ordered were out of stock. 
To handle these and other “errors“ separate Work Units are defined in the Exception Block 
for each “exception” condition (as identified by its guards) that needs to be handled. Only 
one Work Unit per exception should be performed. 
Issue CET-01. What happens if you get an error in a Work Unit that is within an Exception 703 
Block 704 
Issue CET-02. What happens if you get an error condition for which no Work Unit in an 705 
Exception Block is specified 706 
Issue CET-03. Should you be able to resume a choreography where the exception 707 
occurred if the exception block managed, for example, to fix the problem 708 
Issue CET-04. How do you indicate that the choreography completed with an error if the 709 
choreography is being performed 710 
Issue CET-05. Do we need "special" standard conditions/states that correspond to such 711 
things as "choreography out of sequence" that are choreography language specific 712 
Issue CET-06. What does exception matching in the Work Unit guard condition? 713 
Issue CET-07.  Do we want to allow “catch all” conditions in Work Units in an Exception 714 
Block so that you can define the behavior of the Choreography when common but unlikely 715 
errors occur? For example, you could have an enabling condition that looked something 716 
like “*.StateVariable=SendFailure”. 717 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 31 



WS Choreography Model Overview 

Copyright © 2003 W3C® (MIT, ERCIM, Keio)  Page 32 

3.7.2 Transaction Block 718 

719 
720 
721 
722 
723 
724 
725 
726 
727 
728 
729 
730 
731 
732 

733 
734 

735 
736 

737 
738 
739 

Transaction handling allows one Choreography to perform another Choreography up to a 
suitable point and then later perform the Choreography again to compensate for its effects. 
For example, a Choreography could exist that supported the purchasing of a property that 
involved exchanging information between many Roles including: a Purchaser who was 
buying the property, a Seller who was selling the property, a Buyers Agent who was 
advising the Purchaser, a Bank that was going to provide a mortgage, and a Title Company 
to prepare all the legal documents and handle the transfer of the actual moneys. 
Only when the purchase was completed, could the choreography fully complete, and if the 
purchase fell through, then the effects of the Choreography would need to be reversed at 
each Role. 
The Choreography model supports this type of example by defining a Transaction Block 
that contains one Work Unit that is followed when the effects of the Choreography need to 
be reversed. 
In the example given above, this would work by defining a Choreography that:  

• Performs one Choreography to carry out the main part of the process of creating and 
exchanging information required for the transaction 

• Waits until the critical messages have been received that indicate that the 
transaction is either going to go ahead or fail 

• Performs the main choreography again indicating that the effect of the 
Choreography should be Compensated by performing a Work Unit in the 
Transaction Block. 

3.8 Semantics 740 

741 
742 
743 
744 
745 

746 

747 
748 
749 

750 
751 
752 
753 

Although not shown on this model, descriptions will be required to allow the recording of 
semantics definitions. In principle, this will be supported by including a Description structure 
in the definition of almost every single component within the model. 
This Description structure will allow for the recording of semantics in any or all of the 
following ways: 

• Text. This will be in plain text or possibly HTML and should be brief. 

• Document Reference. This will contain a URL to a document that more fully 
describes the component. For example on the top level Choreography Definition that 
might reference a complete paper 

• Structured Attributes. This will contain a machine processable definition in a 
languages such as RDF or OWL. 

Descriptions that are Text or Document References can be defined in multiple different 
human readable languages. 


	Introduction
	Purpose
	Goals
	Document Scope

	Abstract, Portable and Concrete Choreographies
	Abstract Choreography
	Portable Choreography
	Concrete Choreographies
	Relationship between Choreography Types

	Model Description
	Roles, Participants and Relationships
	Roles
	Participants
	Relationship

	Choreography Structure
	Choreography Composition and Import
	Choreography Composition
	Import Statements

	Types, Variables and Tokens
	Types
	Variable Types
	Channel Types

	Variables
	Variables and Abstract/Concrete Choreographies

	Tokens

	Interactions
	Interaction Roles
	Interaction Message Content
	Interaction Channel Variables
	Interaction Operations
	Interaction State Changes
	Interaction Based Alignment
	Protocol Based Information Exchanges

	Activities and Control Structures
	Work Units
	Performed Choreography
	Assign
	NoAction
	Sequence Control Structure
	Choice Control Structure
	Parallel Control Structure

	Choreography Exceptions and Transactions
	Exception Block
	Transaction Block

	Semantics


