
Introduction 
 
Basically everything is modelled as RDF Quads. Classes in the diagram below (and Resources 
in general) have their instances represented as a Context (in the Quad) in which Resources 
have ‘occurrences’ or ‘parents’ (Quad’s Subjects) in which they play a role having ‘attributes’ 
(Quad’s Predicates) and ‘values’ (Quad’s Objects). 
 

 
 
Resources, Statements and Kinds 
 
Resources (SPOs) with an occurrence into an Statement have a Kind (type) corresponding to 
the Resource’s attribute and value (other SPOs of the Resource). 



 
For example, a Subject ‘John Doe’ has a Subject Kind of ‘Employee’ in the Statement: 
 
‘John Doe’, ‘worksAt’, ‘someCompany’. 
 
Kinds aggregate Classes and may represent compound types (many attributes sharing their 
values. 
 
Predicates and Objects are classified the same way than Subjects. 
 
Model / Facades (for Containers) 
 
Model : (Model, FactStatement, TopicStatement, PurposeStatement); 
 
Aggregated Resource types (metamodel levels). 
 
Profiles 
 
Profile : (Profile, ?); 
 
Templates 
 
Template : (Template, ?); (Mapping). 
 
Variables, expressions, wildcards. Patterns. Selectors. 
 
Adapters / Ports 
 
Adapter : (Adapter, Model, Profile, Model); (src, filter, dest). 
 
Port : (Port, Adapter, Template, Adapter); (src, transform, dest). 
 
[srcModelType][destModelType]Adapter class. 
 
JenaModel; InMemoryModel; RDBMSModel 
 
Events, Rules and Flows 
 
Events:​ Order metadata / knowledge. Contextual registry functionality. Inference. 
 
Event : (Event, Statement, Statement, Statement); 
 



Rules:​ Identity, equivalence knowledge.Grammars. Alignment and merge inference. Patterns. 
Selectors. Naming resolution functionality. 
 
Rule : (Rule, Event, Flow, Kind); 
 
Flows:​ Attributes / links knowledge and inference. State graph resolution service (Index). 
 
Flow : (Flow, Rule, Class, Class); 
 
Example: 
 
Event : (evt1, (anEmp, sal, lowSal), (anEmp, perf, goodPerf), (anEmp, sal, highSal)); 
 
Rule : (raiseSal, evt1, raiseSalFlow, empKind); 
 
Flow : (raiseSalFlow, raiseSal, (lowSal, ‘salAttr’, 5000), (highSal, ‘salAttr’, 10000)); 
 
Containers 
 
Container : (Container, Event, Rule, Flow); (data, context, interaction). 
 
Messages 
 
Algorithms. Message SPO: Data, Context, Interaction (Map, Filter, Reduce). 
 
Encoding of ‘reactive’ expressions: event listeners / triggers. Routing / patterns. 
 
Message : (Message, Container, Container, Container); 
 
Subject Container apply(ied) to target Model (Map / actors). 
 
Resulting Container is apply(ied) with Predicate Container (Filter / contexts). 
 
Then, Object Container is applied to this result (Reduce / interaction). This interaction collects / 
returns into Object container, having ‘wildcards’ to be fulfilled from sender and then Message(d) 
back to resolve all patterns / selectors. 
 
Resource matching: 
Resource - Statement - Event. 
Resource - Kind - Rule. 
Resource - Class - Flow. 
 
Map (align, rules) / Filter/Sort (events) / Reduce (links, attrs, classes). 



 
Resources 
 
Resource (Containers). Static factory / APIs. 
 
Aggregators: 
 
Resource’s static class singleton (for each Resource type). 
 
Abstract factory. 
 
Parent / child of aggregated Resource types (metamodel levels). 
 
Quad classes (C, S, P, O) parameterized (Java generics). 
 
Tracks instances: hierarchical aggregated lists: (C(S(P(O)))). 
 
Instantiation of children hierarchies. 
 
Factory / CRUD / Functional methods. 
 
Dispatch Message(s). 
 
Query / browse (Classes / instances navigable graph, contexts). 
 
Services implementation / facade. 
 
Handle Model’s backends (via Mapping specs). 
 
Mappings (specs) 
 
Mappings conforms the specifications to which a Model implementation relies in respect to its 
interaction with persistence or other IO mechanisms. 
 
A Mapping is later leveraged by a Peer’s services who handles the actual protocols and 
connections needed to realize it. 
 
RESTMapping: Mapping which provides (given Peer’s services) with the needed 
conceptualization to implement such interface: 
 
URIs, Resources, Content Types, Representations, Verbs. HATEOAS Principles. DCI - JAF like. 
OData impl. 
 



ObjectMapping: ORM like for RDF graphs. Clients (stubs, VM Activation). 
 
Protocol (Container, Resources, Messages) 
 
Container.apply(cont : Container) : Container; 
 
Schema less protocol / storage. Dialog. Client sends Container and receives Container. Referer 
(context). ‘One method’ bi-di CRUD (metadata and semantics just in Container). 
 
Mappings (other) implemented / interact with this abstraction (also schema-able / relational 
Mappings). 
 
Model Backends 
 
Mappings. 
 
Peer services. 
 
Deployment. 
 
ETL / Dashboard 
 
UX. Streaming CRUD. Planning (Rule, Flow, Event management. Process designer). 
 
Data preparation / Refine. Reports, indicators. Document templates (forms, gestures, DAV). 
Design. Server. Client. 
 
Interactions. Process (schema), Flows (instance) visualization. MDM, Governance, Traceability. 
BRMS, CEP. BPM. Workflow. 
 
Alignment. Graph based schema merge / sync: Container protocol metadata. ISO / WebOWL 
Tools (export, endpoints). 
 
Peers (services) 
 
Binds Mappings / Models with specific protocols (persistence / communication mechanisms). 
 
HTTP (REST, WebDAV), JMS, RDBMS (JDBC), JCR, SPARQL (RDF, OWL, ISO) services 
(interface implementation for each Model / Mapping type). 
 
ISO Alignment 
 



Align core model (Resource hierarchy classes) with an ISO OWL upper ontology. Backend 
metamodel. 
 
Lab 
 
Octal. Quad. Addressing encoding. URNs, Naming. Deep Learning. Cube. Algorithms facade. 
Functional Providers. Data addressable dataflow behaviors. Index, Registry. Clustering, 
Classification, Regression. Weka. 
 
Order, Align: Opposite, inverse, complement. 
 
Peer 'public html' folder (DAV / REST). 
 
Naming (of Classes and Kinds). Resource type metadata (any SPO). Primitives (enumerable, 
operations) types. Naming (URNs) of Resources in context/occurrence with attributes and 
values. Concepts hierarchy / lattice. 
 


