
Invocations of streamable processing

This document describes the various ways streamable processing, and its counterpart, non-streamable processing, can be

instigated by either the API or by using a declared streamable construct.

It raised a few questions:

1) What happens if a non-streamable construct is given a streamed node (i.e., on invocation). I couldn't find this written

out in the spec.

A: I think the consensus is that no error is raised and the streamed node is buffered in full (notwithstanding the

processor's freedom to stream it anyway if it can)

2) What happens if a streamable invocation construct is given a non-streamed node?

A: I think what should happen is that it is treated as a grounded node, i.e., the node is not processed using streaming,

but we don't specify this (we could consider this an API matter). See also Bug 29690, which shows that we currently

mandate that you must use streaming.

3) Can the IMS be a sequence of streamed, or mixed nodes?

A: I think it can, this is just API dependent. We have no Note or suggestion in either direction though.

4) Can the IMS be something else than a streamed document node?

A: Yes, it can be of any node type, though I don't think we say this very explicitly.

5) Can the IMS be a streamed string or continuous sequence of items (this was a question during XML London 2016)?

A: No, as a sequence has a beginning and end in XDM. Again, I don't think we are explicit about this, but it follows

from the XDM definition of sequences and atomics.

6) Can fn:unparsed-text-lines be streamed?

A: No, because the function is considered deterministic, multiple invocations must return the same string.

Key

(use mouseover on a term in the blue table to see a short description popup, doesn't work in all PDF readers):

NORMAL normal operation, non
streamed

Means: input tree is not a streamed node, process without streaming, similar
to XSLT 2.0 invocation

MUST must stream Current rules mandate that streamable processor must process the input tree
using streaming

ATTEMPT attempt processing For non-streaming processors, if the input tree is a streamed node, it must
attempt to process it by buffering the input tree as a whole, or fail doing so.

ATT-CHOOSE attempt / E3430 / non-strm Processor must provide options for each of the following (19.10 Rule 2):
a) Attempt streaming if it can
b) Or raise XTSE3430
c) Process non-streaming

ERR-CHOOSE error? / normal / E3430 When input tree is not streamed, construct is declared streamable but not
guaranteed streamable, then the consensus seems to be, at user option:

a) Raise error, because it cannot attempt streaming (?)
b) Process non-streaming, do not raise error
c) Raise XTSE3430

OPT-ERR opt / error? /non-strm If IMS is a streamed node, initial construct is not streamable, then behavior is
processor dependent, consensus seems to be:

a) Optionally attempt streaming
b) Raise an error (?)
c) Process non-streaming

ERR-NORM error? / normal When input tree is not a streamed node, construct tree is streamable and is
invoked as initial construct. This scenario is not clear from the spec, I think.

https://www.w3.org/Bugs/Public/show_bug.cgi?id=29690

Key to reading the table:

Heading Description

input shows a method with which you can give the processor a streamed document or node

invocation method one of the three ways of invoking a transformation

declared streamable whether or not the invocation construct (term is mine) is declared streamable

guaranteed streamable whether static analysis shows that any construct is guaranteed streamable

streaming processor how a streaming processor is supposed to behave

non-streaming processor how a non-streaming processor is supposed to behave

Table of invocation variants

Input
invocation

method
declared

streamable
Guaranteed
streamable

Streaming
processor

Non-streaming
processor

IMS is streamed apply-templates

no no
1
 opt-error?

attempt yes yes must

yes no attempt-choose

IMS is non-streamed apply-templates

no no
1
 normal

normal yes yes error-or-normal

yes no error-choose

IMS a not a node apply-templates

no no
1
 normal

normal yes yes error-or-normal

yes no error-choose

context-item or
global context item
is streamed node

apply-templates
or call-template

– –
API matter, will likely
attempt processing non-
streaming

process CI non-
streaming

doc / document /
collection return a
streamed node

n/a n/a n/a

F&O allows non-
deterministic behavior
upon request, so I think
there's room for this, but
the spec has no rules here

n/a

xsl:stream
tree is streamed

n/a

no
2
 no

1
 must not stream

attempt yes yes must

yes no attempt-choose

xsl:stream
tree is non-streamed

n/a

no no
1
 normal

normal yes yes error-or-normal

yes no error-choose

xsl:merge-source
tree is streamed

n/a

no no
1
 opt-error?

attempt yes yes must

yes no attempt-choose

xsl:merge-source
tree is non-streamed

n/a

no no
1
 normal

normal yes yes error-or-normal

yes no error-choose

xsl:function
arg is streamed

initial-function

no no
1
 opt-error?

attempt yes yes must

yes no attempt-choose

xsl:function
arg is non-streamed

initial-function

no no
1
 normal

normal yes yes error-or-normal

yes no error-choose

xsl:param
initiated to a
streamed node

n/a

no no
1
 Spec has no rules here,

API may allow it, but
behavior will be
implementation-dependent

process param non-
streaming

yes yes

yes no

extension functions
or instructions
providing a
streamed node

n/a

no no
1

implementation-defined
3
 implementation-defined yes yes

yes no

1
 A non-streamable construct is automatically not guaranteed streamable, even if the invocation mandates that no streamability

rule checks should take place

2
 This feature is currently under debate in issue 29472, the idea is to allow xsl:stream to behave non-streaming, similar to the

fn:doc function, in which case streamability guarantees are not checked.

3
 The effect of an extension function or instruction invoking streamability is implementation defined. However, we disallow

implementation defined behavior to behave differently than the spec, do we allow, say, an extension attribute to change an

instruction into streamable that otherwise would not? (use-case, say you allow <xsl:variable ext:streamable="true">, which

allows throughput processing of the stream in xsl:variable, and this would enforce certain streamability guarantee rules, is that

OK?)

https://www.w3.org/Bugs/Public/show_bug.cgi?id=29472

	NORMAL
	MUST
	ATTEMPT
	ATT_CHOOSE
	ERR_CHOOSE
	OPT_ERR
	ERR_NORM

