
Analysis of Signature Wrapping Attacks and Countermeasures

Sebastian Gajek, Meiko Jensen, Lijun Liao, and Jörg Schwenk
Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany

{Sebastian.Gajek|Meiko.Jensen|Lijun.Liao|Joerg.Schwenk}@ruhr-uni-bochum.de

Abstract

In recent research it turned out that Boolean ver-
ification of digital signatures in the context of WS-
Security is likely to fail: If parts of a SOAP message
are signed and the signature verification applied to
the whole document returns true, then nevertheless the
document may have been significantly altered.

In this paper, we provide a detailed analysis on the
possible scenarios that enable these signature wrap-
ping attacks. Derived from this analysis, we propose
a new solution that uses a subset of XPath instead of
ID attributes to point to the signed subtree, and show
that this solution is both efficient and secure.

1. Introduction
The WS-* family of security protocols [1] sketches

a security framework that addresses many of the se-
curity issues concerning Web Services. However, this
strong security framework is built on weak founda-
tions: McIntosh and Austel [14] have shown that the
content of a SOAP message protected by an XML
Signature [3] as specified in WS-Security [16] can
be altered without invalidating the signature. This so-
called wrapping attack or XML rewriting attack [7],
[20] is possible because the referencing schemes used
to locate parts of a SOAP message document differ
between the signature verification function and the
application logic.

We investigate the possible scenarios of the two most
commonly used XML referencing schemes, ID refer-
encing and XPath expressions, and show (by construct-
ing realistic counterexamples) that wrapping attacks
are still feasible for many types of these expressions.

We propose to use a subset of XPath, called FastX-
Path, instead of ID attributes for signature referencing
in Web Services messages. If the proposed FastXPath
is used, this protects against wrapping attacks in most
reasonable scenarios without causing the performance
impact associated with the use of complex XPath
expressions.

The rest of this paper is structured as follows:
Initially, we provide some technical background (Sec-
tion 2). Then, we explain signature wrapping attacks
in Section 3, and discuss related work in Section 4.
In Section 5, we provide an in-depth analysis of the
different scenarios that may occurr in real-world ap-
plications, and we analyze their resistance to signature
wrapping attacks. Then, we describe the proposed
FastXPath referencing scheme (Section 6), and finally,
we conclude the paper in Section 7.

2. Technical Background

2.1. XPath Filtering

The signature transform XPath Filtering [3] is de-
veloped to select complex node sets based on the
XPath specification [6]. The XPath Filtering expression
is a Boolean expression, unlike the standard XPath
expression.

This approach of using XPath raises
the likelihood of misinterpretation. For
the example of Fig. 1 the expression
/Envelope/Header/Shipping/Departure
results including the whole document, and
Envelope/Header/Shipping/Departure
results that no node of the document is included.

This type of misinterpreting the XML signature
standard is rather common, see e.g. the WS-I basic
security profile [15, Section 8.2], and papers about
wrapping attack [14]. Due to the complexity of the
expressions in XPath Filtering, 1) it is difficult to define
a correct expression, 2) all nodes must be traversed
and evaluated according to this expression (which
drastically impacts on performance), and 3) it increases
the security problem (generally raising complexity is
accompanied by weakening security).

2.2. XPath Filter 2

The XPath Filter 2 transform is introduced [8] in
order to cope with these usability issues, and also
to improve transformation performance. It is designed

to specify a subset of a given XML document as
the information content to be signed. Unlike XPath
Filtering, which was based on evaluating boolean-
result expressions on all document nodes, XPath Filter
2 uses the standard XPath expression as defined in the
XPath standard. XPath Filter 2 allows a sequence of
XPath expressions to select node sets, these sets are
then combined using set intersection, subtraction, and
union, according to the attribute Filter. A detailed
example can be found in [8, Section 4].

Since XPath Filter 2 allows arbitrary XPath expres-
sions and three filter types, it may become hard to
define a correct XPath Filter expression. If multiple
XPath expressions with different filter types are ap-
plied, it is hard to determine whether a node and all
its descendants are included or excluded. Hence most
implementations traverse all nodes in the tree, resulting
in a still suboptimal evaluation performance.

3. Signature Wrapping Attacks

Wrapping attacks aim at injecting a faked element
into the message structure so that a valid signature
covers the unmodified element while the faked one
is processed by the application logic. As a result, an
attacker can perform an arbitrary Web Service request
while authenticating as a legitimate user.

Fig. 1 illustrates the structure of a SOAP message
as created by the sender. WS-Security [16] is used
to authenticate the departure time and the manifest
for the container with the identifier "mf1". An XML
Signature protects the whole <Manifest> element
and <Departure> element by canonicalizing, hash-
ing and digitally signing them (illustrated with gray
color). The <Manifest> element to be protected
in this way is referenced by an "Id" attribute with
the value "mf1", and the <Departure> element
is referenced by the XPath expression "//Ship-
ping[1]/Departure".

Upon mounting the wrapping attack, the <Mani-
fest Id ="mf1"> element is moved to a position
within the SOAP header unknown to the application
logic, resulting in that the logic never processes this
element. In our example, this is done by embed-
ding a new <Wrapper> element into the SOAP
header and adding <Manifest Id ="mf1"> as a
child (preserving all its descendants). Additionally,
a new <Manifest Id ="newMf1"> element is
added at the original position, having correct struc-
ture but different content. The modified message is
depicted in Fig. 2. Those parts of the tree that are
processed by the signature verification function are
colored in gray, those parts processed by the ap-

Body

Envelope

CId=”c1”Shipping

Header

document root

Departure Arrival

“02/15/2008” “03/15/2008”

Manifest
CId=”c1”

Id=”mf1”

tree
root

Security

Signature

SignedInfo

Reference

URI=”#mf1”

element

attribute “text node”

Legend:

(Content)

Reference
signed node

XPath
”/Envelope

//Shipping[1]
/Departure”

Connection between
node and direct child

Connection between
node and descendant

Figure 1. SOAP message with XML signature

Body

Envelope

Shipping

Header

document root

SecurityWrapper

Manifest
CId=”c1”

Id=”mf1”

(Content)

Manifest

CId=”c1”

Id=
”newMf1”

 (Modified
Content)

processed by
application logic

IDRef:
URI='#mf1'

Figure 2. modified SOAP message with valid
signature (IDRef)

plication logic for CId "c1" are contained within
/Envelope/Body/Manifest[@CId="c1"] and
/Envelope/Header/Shipping[@CId="c1"]
/Departure. For convenience, we omitted prefixes
and namespaces in the text.

The signature verification function finds the element
with the attribute "Id" of value "mf1". Since the
content of the element is not modified, the signature
remains valid. However, the application logic processes
the <Manifest Id ="newMf1"> element, what
results in that the attacker succeeds to invoke an
arbitrary service operation with arbitrary parameters,
executed in the context of the user’s authentication.

The reason for the exploit is that signature verifica-
tion and application logic process different elements,
because they use different referencing methods to
locate them.

4. Related Work
4.1. Policy Approach

McIntosh and Austel [14] show how to protect
against certain wrapping attacks by improving the
security policy to be followed by sender and receiver.

On the other hand, they also show how to counterfeit
each new security policy by a new, more sophisticated
wrapping attack.

In addition, the complex security policies employed
are not presented in XML syntax, thus they have to be
hardcoded into the application. By doing so, one would
loose all advantages of service-oriented architectures,
because services can no longer be loosely coupled.

4.2. Inline Approach
Rahaman, Schaad and Rits [20], [18], [19] propose

the inline approach for early detection of wrapping
attacks. Our previous work [11] demonstrates that this
approach is still vulnerable to wrappping attacks.

Benameur, Kadir, and Fenet [5] extend the inline
approach as follows: 1) adding an element that contains
the depth information of the signed object; 2) keeping
other information besides the name of the signed
object’s parent; or 3) identifying the parent of the
signed object by adding an "Id" attribute and keeping
its value and the name of its parent.

This extension is still vulnerable, because one can
move the signed element together with its parent to
somewhere so that the depth of the signed element is
not changed.

The weakness of the (extended) inline approach is
that the SOAP Account only preserves the relationship
to its parent and sibling elements. This is a relative
position in the DOM tree, which is not bound to a fixed
location information (such as the document root node).
Thus, it is still possible to move the whole structure
that is protected by the SOAP Account information
to a new position, what lets wrapping attacks remain
possible.

To mitigate the vulnerability, our recommendation is
to consider the absolute path from a signed element to
the document’s root element (“vertical fixing”) and to
its siblings (“horizontal fixing”). The position of the
signed element must be fixed so that it is infeasible
to move the signed element without invalidating the
reference—and thus the signature. This is discussed in
detail in Section 5.

4.3. Modified Verification Functions for XML
Signature

In previous work [11], we proposed a complemen-
tary solution that relies on changing the signature
verification function to return more than just a Boolean
value. This way, wrapping attacks may be detected
by the application logic in one of two ways: 1) the
signature verification function returns a structure-based
position indicator. This indicator helps the application

logic to determine whether the processed nodes are
signed. However, this obviously may lead to interop-
erability issues; 2) the signature verification function
returns a filter that disallows the application logic to
access those contents that are not signed. Thus, the
filter prevents the application logic from accessing
unsigned contents. This way, wrapping attacks are dis-
abled completely, but in most Web Service messages,
direct access to unsigned contents is also required.
Thus, this strict document access policy cannot be
enforced properly.

In both ways, the signature verification function has
to forward the position indicator or signed content filter
to the application logic. Though this is likely to disable
wrapping attacks in general, it is doubtful that these
approaches can be applied to real-world scenarios.

5. Signature Wrapping Scenarios

Wrapping attacks show that location information is
an essential part of the semantics of XML Signatures.
This contrasts to classical cryptographic data formats,
such as OpenPGP [9] or PKCS#7 [13].

In case of XML, wrapping attacks exploit the seman-
tics of XML Signatures. The use of an "Id" attribute
to identify signed content implies a meaning like “if the
hash value of the referenced data is the same as within
the <DigestValue> element, then the signature is
valid regardless where the data is located within the
base document”. If the application logic expects the
signed data at a certain location, an XML Signature
format should be used whose semantics says that “the
signature is only valid if it is located at or next to a
certain location”.

XPath restricts, in a way, the position of the signed
content. However, this restriction largely depends on
the particular XPath expression. In the following, we
analyze the different scenarios, with the signed content
referenced by ID attributes or different XPath expres-
sions.

Before we go into the details, we introduce two
definitions: the hashed subtree and the protected sub-
tree. Hashed subtrees are the subtrees that contain only
nodes that are input to the hash algorithm. Protected
subtrees are subtrees that contain hashed subtrees and
other nodes which are needed to locate the hashed
subtrees (e.g. siblings that influence the horizontal
position). For both definitions, assume that the selected
nodeset is the direct input of the hash algorithm, i.e.
there is no other XML transform, e.g. XSLT transform,
being applied.

5.1. Identifier Referencing

Due to its simplicity, Identifier-based referencing
is recommended or implied in the standards [2],
[15], and it is most widely used. For each ID
reference, there always exist equivalent XPath
Filtering and XPath Filter 2 expressions. For
example, an element with attribute Id="myId"
can be located either using ID referencing
via URI="#myId", with XPath Filtering via
ancestor-or-self::node()[@Id="myId"],
or with XPath Filter 2 via //*[@Id="myId"].

Since the location of a signed element does not
matter, it can be moved anywhere within the searching
scope of the signature verification process. The easiest
way to exploit this behaviour for performing a wrap-
ping attack is to move the signed element (with all its
descendants) to a position within the document so that
it can be verified by the signature verification logic but
is not processed by the application logic.

In this case, there exists only one hashed and one
protected subtree, which are identical. Considering
the initial example in Fig. 1 and the ID reference
URI="#mf1", an example attack is illustrated in
Fig. 2 and discussed in Section 3.

Manifest
CId=”c1”

Id=”mf1”

(Content) IDRef:
URI='#mf1'

Figure 3. protected
subtree (ID referenc-
ing)

Considering the orig-
inal message (Fig. 1)
and the modified mes-
sage (Fig. 2), it can
be seen that they have
the same hashed subtree
and the same protected
subtree, as depicted in
Fig. 3. That means, the

signature’s semantics is not violated. However, the
actual position of the hashed subtree may not be given
any meaning by the application logic.

5.2. XPath Referencing with descendant-or-
self

In XPath, // is the abbreviated syntax for /des-
cendant-or-self::node()/, it selects the con-
text node and all its descendants. // may lead or occur
within any XPath expression. An XPath expression
with // in the middle, e.g. path1//path2, first selects
all nodes (denoted as nodes1) that satisfy the part
before //, e.g. path1. Based on nodes1, it then selects
all nodes (denoted as nodes2) that satisfy the part after
//, e.g. path2. The positional relation between nodes2
and nodes1 does not matter here. For an XPath expres-
sion with leading //, part1 is null. Thus, nodes1 is
the document root. Without loss of generality, in the

following we only consider XPath expressions with //
in the middle.

At first, we investigate an XPath expression
with position predicate in the part after
//. We assume that the XPath expression
/Envelope//Shipping[1]/Departure is
used to locate the signed content in the message in
Fig. 1. Note that in XPath Filter 2 this expression
is combined with the intersect filter, and in
XPath Filtering it is expressed as ancestor-or-
self::Departure[parent::node()=/Enve-
lope//Shipping[1]].

This XPath expression selects the <Departure>
element whose parent is the first <Shipping> ele-
ment within the root element <Envelope>. A wrap-
ping attack succeeds if an attacker can 1) replace the
original <Shipping> element with a new one, and
2) move the original <Shipping> element to another
location that precedes the modified one within the root
element <Envelope> (in document order).

The new position should be unknown to the ap-
plication logic. This modification cannot be detected,
because the verification logic here only validates the
hash value of the original element. An example attack
is depicted in Fig. 4.

Envelope

CId=”c1”Shipping

Header

document root

Wrapper

Shipping

Departure

“02/15/2008”

Arrival

“03/15/2008”

Body

Security

processed by
application logic

Departure

“02/28/2008”

XPath:
/Envelope//Shipping[1]/Departure

Figure 4. modified SOAP message with valid
signature (XPath with // and position predicate)

Shipping

Departure

“02/15/2008”

First <Shipping>
element

XPath:
/Envelope//Shipping[1]/

Departure

Envelope

document root

Figure 5. protected subtree (XPath with // and
position predicate))

Considering the original message (in Fig. 1) and the
modified message (in Fig. 4), they have same hashed

Envelope

CId=
”newC1”

Shipping

Header

document root

Wrapper

Shipping

Departure

“02/15/2008”

Arrival

“03/15/2008”

Body

Security

processed by
application logic

Departure

“02/28/2008”

CId=”c1”

XPath: /Envelope//Shipping[
@Cid='c1']/Departure

or XPath filtering:
ancestor-or-self::Departure[

parent::Shipping[@CId='c1']/
parent::Header/parent::Envelope

Figure 6. modified SOAP message with valid
signature (XPath with // and attribute predicate)

Shipping

Departure

“02/15/2008”

XPath:
/Envelope//Shipping[
@CId='c1']/Departure

Envelope

document root

CId=”C1”

Figure 7. protected subtree (XPath with // and
attribute predicate)

subtree and same protected subtree, as depicted in
Fig. 5. That means, for the message in Fig. 4, the
signature semantics is not violated.

Next, we discuss an XPath expression with
attribute predicate in the part after //. We
assume that the XPath expression /Enve-
lope//Shipping[@CId="c1"]/Departure is
used to locate the signed content in the message in
Fig. 1. Note that in XPath Filter 2 this expression
is combined with the intersect filter, and in
XPath Filtering it is expressed as ancestor-or-
self::Departure[parent::node()=/Enve-
lope//Shipping[@CId="c1"].

This XPath expression selects the <Departure>
element whose parent is the <Shipping> element
that contains the attribute CId="c1", within the root
element <Envelope>. A wrapping attack is success-
ful if an attacker can 1) replace the original <Ship-
ping> element with a new one without the attribute
CId="c1", and 2) move the original <Shipping>
element somewhere unknown to the application logic.
An example attack is depicted in Fig. 6.

Considering the original message (in Fig. 1) and the
modified message (in Fig. 6), they have same hashed
subtree and same protected subtree (in Fig. 7). That
means, the signature semantics is not violated.

XPath filtering:
ancestor-or-self::Departure[

parent::Shipping[@CId='c1']/
parent::Header/parent::Envelope

Shipping

Departure

“02/15/2008”

Header

CId=”C1”

Envelope

Figure 8. protected subtree (relative XPath)

5.3. Relative XPath Referencing with XPath
Filtering

Some applications may want to sign elements
with special ancestors. In such situations, XPath
Filtering can be applied. For example, if one wishes
to sign the <Departure> element whose parent
is <Shipping CId="c1"> in the message
in Fig. 1, the signed content can be filtered
by the XPath Filtering expression ancestor-
or-self::Departure/parent::Shipping[
@CId="c1"]/parent::Header/parent::En-
velope.

Note that it is impossible to specify such relative
references in XPath Filter 2, since, in XML signature,
XPath Filter 2 is applied to filter the whole referenced
document. Thus, the context node is the document root.
In this sense, a leading / is implicitly added to the
relative XPath expression.

A wrapping attack is successful if an attacker can 1)
replace the original <Shipping> element with a new
one without the attribute CId="c1", and 2) move the
original <Shipping> element somewhere unknown
to the application logic. The attack in Fig. 6 can also
be applied here.

Considering the original message (Fig. 1) and the
modified message (Fig. 6), they have the same hashed
subtree and the same protected subtree, as depicted
in Fig. 8. That means, the signature semantics is not
violated.

5.4. Absolute XPath Referencing without
descendant-or-self

An absolute XPath consists of /, optionally followed
by a relative location path. A / by itself selects the
root node of the document that contains the context
node. Note that in XPath Filter 2 the document root is
considered as the context node, a relative XPath there
is actually considered as an absolute XPath.

In the following, we consider following XPath ex-
pressions:

1) /Envelope/Header/Shipping[1]/De-
parture or equivalent in XPath Filtering:

ancestor-or-self::Departure[pa-
rent::node()=/Envelope/Header/
Shipping[1]]

2) /Envelope/Header/Shipping[@CId=
"c1"]/Departure or equivalent in XPath
Filtering:
ancestor-or-self::Departure[pa-
rent::node()=/Envelope/Header/
Shipping[@CId= "c1"]]

Envelope

Shipping

Header

document root

Departure

“02/15/2008”

first <Shipping>
element

XPath:
/Envelope/Header/

Shipping[1]/Departure

Figure 9. protected subtree (absolute XPath with-
out // but with position predicate)

In the first XPath expression each step of the vertical
position of the signed element within the complete
document is fixed. Due to the restrictions of SOAP
messages, the leading /Envelope/Header points
to the unique <Header> element. Thus, together with
the position restriction in step Shipping[1], the
horizontal position of <Shipping> is also fixed.

By applying XPath expression 1 to the message in
Fig. 1, the protected subtree is as depicted in Fig. 9.

Envelope

CId=”c1”Shipping

Header

document root

Departure

“02/15/2008”

XPath:
/Envelope/Header/

Shipping[@CId='c1']/
Departure

Figure 10. protected subtree (absolute XPath with-
out // but with attribute predicate)

For XPath expression 2, the result is the same, ex-
cept that the horizontal position of the <Shipping>
element is fixed by the attribute CId="c1". Fig. 10
shows the protected subtree that results from applying
this XPath expression to the message in Fig. 1.

Assume that the application logic processes ac-
cording to one of the following rules: 1) the <De-
parture> whose parent is the first <Shipping>
within /Envelope/Header, or 2) the <Depar-
ture> whose parent is the <Shipping> (with the
attribute CId="c1") within /Envelope/Header.

Then, the XML signature with the protected subtree
in Fig. 9 is not vulnerable to wrapping attacks if rule

1 is applied. Similarly, the XML signature with the
protected subtree in Fig. 10 is not vulnerable if rule 2
is applied.

6. FastXPath: Structure-based Referenc-
ing

Resulting from the considerations discussed above,
our approach to fend wrapping attacks is to fix the
vertical (and maybe also the horizontal) position of the
signed elements by using an absolute XPath without
wildcards (i.e. starting at the document root). This way,
it becomes nearly impossible to successfully perform
a signature wrapping attack, as any relocation of the
signed contents immediately results in an invalidation
of the signature value. Nevertheless, this benefit comes
with some costs regarding flexibility, as there might be
some real-world scenarios where relocation of signed
contents may become necessary. However, note that
whenever it is possible to move a signed content within
an XML document without invalidating the signature,
this can always be performed by both the users and
the attackers.

In the past, a major argument against the XPath
approach is the weak performance of the XPath trans-
form. Indeed, for evaluating XPath expressions it usu-
ally becomes necessary to parse the XML document
into a DOM tree representation, which the XPath
expression can be evaluated against. This overhead
is increased by the way XPath was used in the
early XPath transforms stated in the XML signature
standard, which involved evaluating a certain XPath
expression at every node of the DOM tree. This use of
XPath caused a severe performance killer for applying
the XPath transform in Web Services scenarios.

FastXPath ::= ’/’ RelativeFastXPath
RelativeFastXPath ::= Step

| RelativeFastXPath ’/’Step
Step ::= QName PredicatePosition?
PredicatePosition::= Position Predicate?

| Predicate Position?
Position ::= ’[’ [1-9][0-9]* ’]’
Predicate ::= ’[’ PredicateExpr ’]’
PredicateExpr ::= PredicateStep

| PredicateExpr ’and’ PredicateStep
PredicateStep ::= ’@’ QName ’=’ Literal
Literal ::= ’"’ [ˆ"]* ’"’

| "’" [ˆ’]* "’"

Figure 11. BNF definition of FastXPath.

In order to cope with this issue, XPath Filter 2 [8]
has been introduced, but solely to improve usability
and performance, not security. Other approaches tried

 0

 10

 20

 30

 40

 50

 50 100 150 200 250

R
un

tim
e

(in
 m

s)

Document Size (in KB)

ID
FastXPath

FastXPath with Position
XPath

XPath with Position
XPath with ID value

Figure 12. Runtime comparison of ID, ForwardXPath, and full XPath referencing

to re-engineer arbitrary XPath expressions to match a
certain subset of XPath, which can then be evaluated
faster [12], [4], [17], but all of these pose some
restrictions to the usage scenario, and none copes with
the signature wrapping threat.

Thus, to simplify and secure the use of XPath in
XML digital signature, we define an even simpler
subset of XPath, called FastXPath, in Fig. 11. In that
definition, ˆ" and ˆ’ stand for all letters except " and
’, respectively.

FastXPath contains only forward directions, both in
the Axis and in the Predicate. The Predicate contains
Boolean expressions connected by “and”. Wildcards
may be used, but it can be shown that their use would
enable wrapping attacks. Additionally, every FastXPath
expression must start with “/” which indicates that the
evaluation always starts at the document root.

Some legal FastXPath expressions are e.g. /En-
velope/Body, and /Envelope/Header/Se-
curity[1][@role="next"]. Some illegal
FastXPath expressions are //Body, /Envelo-
pe/Header/Security[role="next" or
mustUnderstand="true"].

FastXPath allows for fast single-pass SAX style
selection of the elements to process. The program
checks whether the path starts with ’/’, and then checks
the current node and the current path step (in the
next program step, the current node is replaced by its
child, and the current path step is replaced by the next
one). This way, the evaluation overhead can be reduced

drastically compared to full XPath evaluation.
For our evaluation, we have implemented ID-based

and FastXPath referencing using the stream-based
XML parser StAX. The full XPath referencing—like
XPath Filtering or XPath Filter 2—in the evaluation
uses the DOM-based XML parser Xerces. Note that
it is very difficult to use a non-DOM-based XML
parser for full XPath. In the evaluation, the referenced
element was always located at the exact middle of the
document. The evaluation was performed using SUN
JRE 1.6.0 on a PC with 2.8 GHz Pentium 4 CPU and
2.5 GB memory.

As our evaluation shows (see Fig. 12), the
performance of FastXPath is equal or at least
comparable to ID-based referencing approaches,
and outperforms any full XPath referencing
by far. As can be seen in the figure, the
performance of FastXPath and ID referencing
is equivalent if the FastXPath expression also
provides position indicators for all its steps (e.g.
/Envelope[1]/Header[1]/Shipping[2]/
Departure[1]), and stays within a slow-down
factor of 2.5 if these are missing. Thus, the common
argument against tree-based referencing approaches
applies to full XPath only, and can be circumvented
by using a sensible limitation like FastXPath.

On the other hand, FastXPath turns out to be best
possibly resistant to signature wrapping attacks. As it
requires to explicitly name every single element on
the path from document root to the signed subtree,

there is no flexibility here to move any signed contents
to another location within the document. Additionally,
as the FastXPath expression can also include any ID
attribute, it securely supports both the ID-based and the
structure-based XML access method, as both methods
will point to the same element. Thus, there is no possi-
bility for deviation between the signature verification
function’s access method and the application logic’s
access method.

However, even with FastXPath the threat of signa-
ture wrapping attacks cannot be averted completely. If
the protected content is as depicted in Fig. 9 and rule
2 is applied in the application logic, a wrapping attack
is still possible. It is similar for Fig. 10 and rule 1.
Hence, there may be no default solution that solves all
problems related to XML signature references, but to
our consideration these scenarios are rare in real-world
applications.

Though FastXPath poses severe restrictions to the
abilities of defining a signature reference, this turns
out to be a trade-off between security and flexibility, as
every flexibility within the reference can potentially be
exploited for a wrapping attack. To our consideration,
the proposed limitations on the reference abilities are
not posing a big problem to real-world scenarios, but
the opposite option probably would.

7. Conclusion
In this paper we have revisited the problem of

wrapping attacks. We analyzed the potential scenarios
that lead to the signature wrapping vulnerability, and
we derived a new solution to the problem. We pro-
posed FastXPath to point to the signed subtree, and
showed that it is fulfilling this task in a secure and
performant way, disabling signature wrapping attacks
for all reasonable scenarios.

Our future work consists in defining a formal se-
mantics for XML Signature elements along with an
investigation on the different usage intentions of digital
signatures in Web Service messages (e.g. data integrity,
authentication etc.). The results are to be processed
within a signature application advisor tool.

References

[1] Security in a Web Services World: A Proposed Archi-
tecture and Roadmap, April 7, 2002. http://www.ibm.
com/developerworks/library/specification/ws-secmap/.

[2] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-
Baker (Editor). Web services security: SOAP message
security 1.1, Nov. 2006.

[3] M. Bartel, J. Boyer, B. Fox, B. LaMacchia, and E. Si-
mon. XML-signature syntax and processing, Feb. 2002.

[4] C. Barton, P. Charles, D. Goyal, M. Raghavachari,
M. Fontoura, and V. Josifovski. Streaming XPath
Processing with Forward and Backward Axes. In
Proceedings of the 19th International Conference on
Data Engineering (ICDE03), 2003.

[5] A. Benameur, F. A. Kadir, and S. Fenet. XML Rewrit-
ing Attacks: Existing Solutions and their Limitations.
In IADIS Applied Computing 2008. IADIS Press, Apr.
2008.

[6] Berglund, S. Boag, D. Chamberlin, M. F. Fernandez,
M. Kay, J. Robie, and J. Simon. XML path language
(XPath), version 2.0, Jan. 2007.

[7] K. Bhargavan, C. Fournet, and A. D. Gordon. Verifying
policy-based security for web services. In CCS ’04:
Proceedings of the 11th ACM conference on Computer
and communications security, pages 268–277, 2004.

[8] J. Boyer, M. Hughes, and J. Reagle. XML-signature
xpath filter 2.0, Nov. 2002.

[9] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer.
OpenPGP message format, Nov. 1998.

[10] A. Ekelhart, S. Fenz, G. Goluch, M. Steinkellner, and
E. Weippl. Xml security - a comparative literature
review. J. Syst. Softw., 81(10):1715–1724, 2008.

[11] S. Gajek, L. Liao, and J. Schwenk. Breaking and fixing
the inline approach. In SWS ’07: Proceedings of the
2007 ACM workshop on Secure web services, pages
37–43, New York, NY, USA, 2007. ACM.

[12] G. Gou and R. Chirkova. Efficient algorithms for evalu-
ating xpath over streams. In SIGMOD ’07: Proceedings
of the 2007 ACM SIGMOD international conference on
Management of data, pages 269–280, New York, NY,
USA, 2007. ACM.

[13] B. Kaliski. PKCS#7: Cryptographic message syntax
standard, version 1.5, Mar. 1998.

[14] M. McIntosh and P. Austel. XML signature element
wrapping attacks and countermeasures. In Workshop
on Secure Web Services, 2005.

[15] M. McIntosh, M. Gudgin, K. S. Morrison, and A. Bar-
bir. Basic security profile version 1.0. Web Services
Interoperability Organization Deliverables, 2007.

[16] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-
Baker. Web Services Security: SOAP Message Security
1.1 (WS-Security 2004). OASIS Standard, 2006.

[17] D. Olteanu, T. Furche, and F. Bry. An efficient single-
pass query evaluator for xml data streams. In SAC ’04:
Proceedings of the 2004 ACM symposium on Applied
computing, pages 627–631, New York, NY, USA, 2004.
ACM.

[18] M. A. Rahaman, R. Marten, and A. Schaad. An inline
approach for secure soap requests and early validation.
OWASP AppSec Europe, 2006.

[19] M. A. Rahaman and A. Schaad. Soap-based secure
conversation and collaboration. In ICWS, pages 471–
480, 2007.

[20] M. A. Rahaman, A. Schaad, and M. Rits. Towards
secure soap message exchange in a soa. In Workshop
on Secure Web Services, 2006.

