
The Curse of Namespaces in the Domain of XML Signature

Meiko Jensen
Meiko.Jensen@rub.de

Lijun Liao
Lijun.Liao@rub.de

Jörg Schwenk
Joerg.Schwenk@rub.de

Horst Görtz Institute for IT-Security
Ruhr-University Bochum, Germany

ABSTRACT
The XML signature wrapping attack is one of the most dis-
cussed security issues of the Web Services security commu-
nity during the last years. Until now, the issue has not been
solved, and all countermeasure approaches proposed so far
were shown to be insufficient.

In this paper, we present yet another way to perform sig-
nature wrapping attacks by using the XML namespace in-
jection technique. We show that the interplay of XML Sig-
nature, XPath, and the XML namespace concept has severe
flaws that can be exploited for an attack, and that XML
namespaces in general pose real troubles to digital signa-
tures in the XML domain. Additionally, we present and
discuss some new approaches in countering the proposed at-
tack vector.

Categories and Subject Descriptors
H.3.5.f [XML/XSL/RDF]: XML Namespaces and XPath;
M.3.0.b [Web Services Communication Protocols]: WS-
Security; M.13.0.a [Security Concerns of Service-Ori-
ented Solutions]: digital signatures in SOAP messages

General Terms
Security, Standardization

Keywords
XML namespaces, signature wrapping, XML namespace in-
jection, prefix-free canonicalization, XML Signature

1. INTRODUCTION
XML Wrapping attacks (also named XML Rewriting at-

tacks in the literature) were described in [1], and this severe
security problem still persists in security related XML stan-
dards. While the core problem is still unsolved, we present
a new, sophisticated variant of this attack, which easily cir-
cumvents all proposed countermeasures, and sheds a light
on the complexity of XML based security standards.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWS’09, November 13, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-789-9/09/11 ...$10.00.

Our attack makes use of the namespace concept of XML,
which is used to render element and attribute definitions
unique. We exploit the fact that in the most popular ca-
nonicalization algorithm, Exclusive Canonicalization, only
the prefix abbreviations are fixed by the XML Signature,
whereas the namespace definition remains unprotected. The
basic idea is to define a new (non-signed) element that re-
places the signed element from the original document, where
new prefixes are introduced to abbreviate the correct names-
pace(s). The abbreviations in the signed element remain un-
changed, but will be bound to another namespace, and thus
become invalid for the application logic.

To prevent this kind of attacks, namespace definitions
must be included in the signed element. Unfortunately, the
canonicalization algorithm that includes namespace defini-
tions, Inclusive Canonicalization, is only defined optional.
We thus describe a solution based on an extension of Exclu-
sive Canonicalization (which hopefully is implemented), and
several other options to avoid this kind of attacks. However,
one should keep in mind general defenses against wrapping
attacks, as described in [1, 2, 3, 4].

The paper is structured as follows. The next section in-
troduces the important specifications and prerequisites for
the paper’s contents, Section 3 then provides previous and
related work. After that, Section 4 describes the namespace
injection technique and attack pattern, and Section 5 enu-
merates a list of countermeasure approaches and improve-
ments. The paper concludes with future work in Section 6.

2. FOUNDATIONS

2.1 XML Namespaces
The main idea behind the introduction of the XML Names-

paces specification [5] was to make XML element names
globally unique so that merging issues with identical ele-
ment names originating from different contexts could be pre-
vented. The use of namespace uris for this purpose provides
an unambiguous way to create unique identifiers by using ap-
propriate domain names. Further, it enables a second useful
functionality of lodging descriptive contents at the address
specified by the url (but this is not required).

Additionally, the XML Namespace specification introduces
an abbreviation mechanism for urls: the namespace prefixes.
These short strings can be added to an element’s tag name
(separated by a colon) in order to have that element being
bound to the namespace url the prefix refers to. Names-
pace prefixes are not required to be globally unique. Their
only purpose is to bind XML elements to namespace uris.

Therefore, prior to using a namespace prefix in an XML doc-
ument, it must be bound to a certain namespace uri. This is
done by adding namespace declarations. A namespace dec-
laration looks like xmlns:prefix="uri", and binds the prefix
to the given namespace uri for the whole subtree of this ele-
ment. Alternatively, an element can be bound by using the
xmlns="uri" notation.

Generally, the choice of where and how to place names-
pace bindings within an XML document is due to the XML
creator. However, all of these approaches result in the very
same XML semantics when being parsed, as the only infor-
mation required is the namespace uri a certain XML element
is bound to. Thus, the prefix concept provides XML with
high flexibility in terms of namespace bindings, and XML
parsers usually are required to be able to cope with all of
them.

2.2 XML Signature
XML Signature [6] defines an XML syntax for digital sig-

natures. It provides similar functionality as PKCS#7 [7],
however is more extensible and tailored towards signing of
XML documents. The basic structure is illustrated in Fig-
ure 1.

When generating an XML Signature, at first, each re-
source to be signed is transformed—if necessary—and canon-
icalized. Then, the digest value over the resulting data ob-
ject is calculated and stored in the DigestValue of a Refer-

ence, along with the Transforms and DigestMethod. Fur-
ther, the element SignedInfo with all of its child elements
(cf. Figure 1) is created. Finally, the SignatureValue is
calculated over the canonicalized SignedInfo using the al-
gorithms specified in SignatureMethod.

When validating an XML Signature, each digest specified
in Reference is verified by retrieving the corresponding re-
source information and applying the described transforma-
tions and the specified digest algorithm. The resulting value
is compared to the content of the DigestValue; validation
fails if any of them does not match. Then, the content of
the SignedInfo is serialized using the specified canonicaliza-
tion method, and the signature is verified using the specified
algorithm.

2.3 Canonicalization
Digital signatures require the contents covered by the sig-

nature to be truly identical on signature application and
verification, for else a digital signature gets invalid. How-
ever, in the case of digital signatures on XML documents,
slight changes to the signed XML fragments are tolerable, as
long as the document’s contents remain identical to an XML
parser. For example, the use of XML comments or the ex-
tra addition of whitespaces between an element’s attributes
are not of significance to an XML parser, thus any of such
modifications are not required to immediately invalidate the
signature.

In order to realize this flexibility, the XML Signature spec-
ification [6] introduced the concept of canonicalization. This
is a set of operations to be performed on the signed XML
contents prior to signature application or verification in or-
der to hide irrelevant character-level modifications of the
underlying XML document.

As it turned out, especially the canonicalization of names-
pace declarations is a real problem of the XML Signature
specification. This can be determined by the fact that the

<Signature xmlns =".../ xmldsig#">
<SignedInfo >

<CanonicalizationMethod
Algorithm =".../xml -c14n11"/>

<SignatureMethod
Algorithm =".../ xmldsig#dsa -sha1"/>

<Reference uri="# signedContent">
<Transforms >

<Transform
Algorithm =".../xml -c14n11"/>

</Transforms >
<DigestMethod

Algorithm =".../ xmldsig#sha1"/>
<DigestValue >g6EsdUK ...</ DigestValue >

</Reference >
</SignedInfo >
<SignatureValue >DHG2Q ...</ SignatureValue >

</Signature >

Figure 1: XML Signature Data Structure

XML Signature specification provides two different canoni-
calization algorithms to choose, each of them having some
special parameters, benefits, and flaws. These two, called
Inclusive Canonicalization [8] and Exclusive Canonicaliza-
tion [9], are to be described next.

2.3.1 Inclusive Canonicalization (Inc-C14N)
The first, most simple approach in canonicalizing names-

pace declarations in the context of XML Signature consists
in leaving all namespace declarations within the signed sub-
tree in place, and only including all namespace declarations
that were specified outside the signed subtree but also cover
the signed subtree be included in the signed subtree’s root
element. Thus, if e.g. a namespace prefix x with names-
pace uri nsx is defined within any ancestor of the signed
subtree’s root element, the Inclusive Canonicalization algo-
rithm requires the declaration of x to be repeated within the
root element of the signed subtree—regardless of whether it
is used within the subtree or not.

However, this approach has lead to severe interoperability
issues in the past, since every addition of namespace declara-
tions e.g. at a SOAP Envelope element lead to invalidation
of every XML Signature within that message, as the new
namespace declaration is considered on signature verifica-
tion, but was not present on signature calculation. Thus,
the hash values differ, and the verification will result in a
fault.

2.3.2 Exclusive Canonicalization (Exc-C14N)
In order to solve the interoperability issues of Inc-C14N,

a new algorithm was included in the XML Signature speci-
fication, namely the Exclusive Canonicalization. It was in-
tended to only contain those namespace declarations that
really were required for parsing the signed contents, and
to have only their namespace declarations become embed-
ded in the signed subtree. Thus, if another namespace is
introduced after signature generation, this won’t affect the
signature’s validity any more.

However, when trying to identify the namespaces required
within a certain subtree, Exc-C14N makes use of a cer-
tain, rather complex definition, called the “visibly utilized”
namespaces of a subtree. This definition refers to the set
of all namespaces that have at least one element or at-

<Transform Algorithm =".../REC -xpath -19991116" >
<XPath xmlns:soap="ns-soap">

ancestor -or-self::soap:Body
</XPath >

</Transform >

Figure 2: XPath transform example

<Transform Algorithm =".../ xmldsig -filter2">
<XPath Filter =" intersect"

xmlns="http ://.../ xmldsig -filter2"
xmlns:soap="ns-soap">

//soap:Body
</XPath >

</Transform >

Figure 3: XPath Filter 2 transform example

tribute from that namespace occurring within the signed
contents. Thus, if a namespace is visibly utilized, its names-
pace declaration—regardless of its position within the signed
subtree—is kept in place. If that namespace happened to
be declared outside of the signed subtree, its declaration is
moved to the first element that visibly utilizes it.

2.4 ID, XPath, and XPath Filter 2
An important capability of the XML Signature specifi-

cation is the possibility to have multiple digital signatures
being applied to arbitrary parts of the very same XML doc-
ument. However, this capability requires a reliable way to
describe references to arbitrary subtrees or nodesets of the
document. The XML Signature specification actually sug-
gests three different approaches for describing such refer-
ences, which may also be used in conjunction with each
other. They are ID-based referencing, XPath tranforms, and
XPath Filter 2 transforms.

The ID-based referencing is the easiest and most common
referencing scheme, which relies on the use of the fragment
part of a reference uri. For instance, a reference to the uri
"#n34" within the uri attribute of a Reference element im-
plies that the element with an ID attribute of value n34 is
targeted by that particular reference. Thus, the digital sig-
nature will cover the whole subtree that is rooted at the
element of ID n34. Another valid approach is to set the uri

attribute to "" to reference a document’s root element.
The XPath and XPath Filter 2 referencing schemes rely on

the XPath language [10] for referring to arbitrary nodesets
of an XML document. This de-facto standard in terms of
XML referencing is used in the context of XML Signature
by two specific transforms that can be applied to the ID-
referenced subtree prior to signature value calculation.

The first transform, the original XPath transform, enables
the signing party to specify a Boolean expression that must
be evaluated against every DOM node of the referenced sub-
tree. If that evaluation turns out to true, the corresponding
DOM node is kept in the nodeset to be protected by the dig-
ital signature. Otherwise, the DOM node is excluded and
thus will not be covered on signature value calculation. As
an example, the XPath transform shown in Figure 2 will re-
sult in that the whole subtree rooted at the Body element of
a SOAP message will be covered by the signature. For each
descendant of Body (and the Body element itself), the evalu-

ation of that XPath expression will result in true, whereas
for any node of the SOAP header, it will result in a false,
excluding them from the signed subtree—even if the uri

reference attribute refers to the document root.
A major disadvantage of the original XPath transform

consists in its complexity and high probability of unintended
misconfigurations. Additionally, it turned out that its for-
mal semantics drastically differed from most user’s intu-
itive interpretations, as they expected a different processing
approach—namely specifying an XPath that is evaluated
against the root of the signed subtree only, then pointing
to the subtree roots or nodesets to be signed. This—more
intuitive—referencing scheme was later-on adapted in the
specification, resulting in the XPath Filter 2 transform [11].
This transform, which is based on foundations of the set op-
erations ∪, ∩, and \, enabled a more intuitive referencing
mechanism. For the example in Figure 3, the signature pro-
tects both the Routing header—including its descendants—
and the whole SOAP body, without any necessity to specify
two separate references or to create the very complex XPath
expression required for achieving the same results with the
original XPath transform. Thus, if ID-based referencing is
not sufficient (see e.g. next section), the use of the XPath
Filter 2 transform is the preferable choice.

2.5 XML Signature Wrapping Attacks
In 2005, McIntosh and Austel [1] first identified the threat

of Signature Wrapping Attacks, also known as XML rewrit-
ing attacks. This XML-specific attack pattern misuses the
referencing flexibility of XML Signature to trick the process-
ing application so that arbitrary XML data of the attacker’s
choice is treated as if being signed by a legitimate user.

The key vulnerability exploited by the signature wrap-
ping attack consists in that the XML processing in presence
of XML Signatures usually is done twice: once for the val-
idation of the digital signature, and once for the real ap-
plication that uses the XML data (i.e. the Web Service
application). The issue is that each of these two steps ac-
cesses the XML contents using a different approach. The
XML Signature processing locates the Signature element
in the SOAP header, then uses the reference IDs given to
find the signed contents. The application parser instead uses
tree-based navigation to locate the data it is interested in.
Usually, both referencing schemes should end up at the very
same XML contents, but in the signature wrapping case,
the attacker moves the signed contents with its ID to an-
other location, while placing its own contents at the original
structure position.

An example for such a signature wrapping attack is given
in Figures 4 and 5. Figure 4 shows the original SOAP mes-
sage that was created and signed by a legitimate Web Service
client, but was eavesdropped by the attacker. Then, the at-
tacker modifies the SOAP message as shown in Figure 5. As
can be seen, the signed contents now no longer reside on their
intended structural position. Nevertheless, the XML Signa-
ture for the subtree of ID signedContent still remains valid.
Thus, when the receiving side processes the new SOAP mes-
sage altered by the attacker, it will firstly identify a valid dig-
ital signature on an element with ID signedContent, then
process the contents at /soap:Envelope/soap:Body for the
service application. This way, the attacker’s operation is
performed, using the legitimation of a valid user’s valid sig-
nature.

Figure 4: Signature Wrapping: Original SOAP mes-
sage

3. RELATED WORK
McIntosh and Austel [1] showed how to protect against

certain wrapping attacks by improving the security policy
to be followed by sender and receiver. On the other hand,
they also show how to counterfeit each new security policy
by a new, more sophisticated wrapping attack.

In addition, the complex security policies employed are
not presented in XML syntax, thus they have to be hard-
coded into the application. By doing so, one would lose
all advantages of service-oriented architectures, because ser-
vices can no longer be loosely coupled.

Rahaman, Schaad and Rits [12, 4, 13] proposed the in-
line approach for early detection of wrapping attacks. Our
previous work [2] demonstrated that this approach is still
vulnerable to wrappping attacks.

Sinha, Benameur, Kadir, and Fenet [14, 15] extended the
inline approach by adding an element that contains the depth
information of the signed object, keeps other information
besides the name of the signed object’s parent, or identifies
the parent of the signed object by adding an "Id" attribute
and keeping its value and the name of its parent. However,
also these extensions do not eliminate signature wrapping
attacks completely, as discussed in [3].

4. NAMESPACE INJECTION ATTACKS
While the XML Signature specification [6] suggests both

canonicalization methods—Inc-C14N and Exc-C14N (cf. Sec-
tion 2.3)—WS-Security [16] prefers the latter one. Even
more, the renowned WS-I Basic Security Profile [17] explic-
itly disallows the use of Inc-C14N. Exc-C14N is more flexi-
ble; however, it introduces a severe security risk, as we will
show next.

The basic vulnerability exploited for the XML namespace
injection attack lies in the default behavior of canonicaliza-
tion of namespace mappings. As a digital signature for XML
covers all element nodes, text nodes, and attribute nodes of
the XML document, a modification on any of these auto-
matically would cause an invalidation of the signature. The
only critical part of the XML structure that is not signed by
default is the mapping of namespace prefixes to namespace
urls1. This is due to the issue that a namespace prefix can
be defined at an arbitrary ancestor node of the root element
of the subtree to be protected by the signature.

1There are other XML components that are not signed by
default, but these are usually not of relevance for the inter-
pretation of an XML document’s semantics

soap:Body

soap:Envelope

soap:Header

Document root

wsse:Security

ds:Signature

ds:SignedInfo

ds:Reference
URI=

”#signedContent”

Id=
”alteredContent”

addUser login=”attacker”

soap:Body
Id=

”signedContent”

deleteUser login=”johndoe”

dummy:Wrapper

Figure 5: Signature Wrapping: Modified SOAP
message

Thus, the W3C working group on XML Signature decided
to cope with such namespace prefix mappings by using ca-
nonicalization (cf. Section 2.3). The main purpose of this
prior-to-hash transformation is to embed all namespace pre-
fix mappings into the hashed—and thus protected—part of
the XML document. Unfortunately, there are may possible
scenarios—e.g. due to misconfiguration or unawareness of
the issue—where a namespace prefix mapping is not embed-
ded correctly into the protected subtrees of the XML docu-
ment. Thus, a modification to these unprotected namespace
prefix mappings does not change the hashed element’s syn-
tactical appearance, and thus does not invalidate the digital
signature.

ID-based referencing is most widely used to select the
signed XML element. This is, however, vulnerable to sig-
nature wrapping attacks, because the position of the signed
element is not protected by the signature. A more secure
method is to apply XPath to fix the position, using XPath
transforms or XPath Filter 2 (cf. Section 2.4). In both cases,
the signed element’s position is fixed by one or more XPath
expressions (cf. Figures 2, 3). For clarity, most XPath ex-
pressions use prefixes instead of the represented namespaces
to specify elements and attributes. These prefixes are de-
fined in the ancestor elements of the text node that repre-
sents the XPath expression (e.g. in the XPath element).

As all XPath transforms or XPath Filter 2 transforms are
declared within the Reference elements, which in turn are
contained in the SignedInfo element, their canonical form
is protected by the signature (cf. Section 2.2).

When Exc-C14N is applied, it embeds a prefix/names-
pace pair only if the prefix is used by the element tags or
attributes within the subtree that is to be canonicalized (cf.
Section 2.3.2). The prefixes contained in XPath expressions
are not considered, since XPath expressions are considered
only as normal text nodes. That means, an adversary can
modify the namespace uri bound to a prefix without invali-
dating the signature—as long as the prefix used in the XPath
expression is not used in any elements or attributes else-
where within the SignedInfo subtree.

Consider the example in Figure 6. Exc-C14N is used
to canonicalize the SignedInfo element. The signature in-
tends to protect the element ReplyTo which is colored in
gray. Apparently the signature covers the element located
by the XPath /soap:Envelope/soap:Header/wsse:Securi-

ty/wsa:ReplyTo whose prefixes are all defined within the el-

soap:Body

soap:Envelope

soap:Header

Document root

wsse:Security

ds:Signature

ds:SignedInfo

ds:Canonicali-
zationMethod

Algorithm=
”EXC-C14N”

soap=ns-soap

ds:Reference URI=””

wsse=ns-wsse

ds=ns-dswsa:ReplyTo

“correct
address”

xf:XPath

“/soap:Envelope/soap:Header/
wsse:Security/wsa:ReplyTo”

Filter=”Intersect”

xf=ns-xf,
soap=ns-soap,
wsse=ns-wsse,
wsa=ns-wsa

wsa=
ns-wsa

Legend:

prefix=namespace

Figure 6: Exclusive Canonicalization without Inclu-

siveNamespaces

ement XPath. However, the XPath expression is only a text
node, hence the prefixes within it will not be automatically
added to the canonicalization method.

As a result, the canonicalized SignedInfo subtree looks
like shown in Figure 7. The namespaces for the prefixes
soap, wsse, and wsa within the XPath expression are not
protected by the signature.

ds:SignedInfo

ds:Canonicali-
zationMethod

Algorithm=
”EXC-C14N”

ds:Reference URI=””

xf:XPath

“/soap:Envelope/soap:Header/
wsse:Security/wsa:ReplyTo”

Filter=”Intersect”

xf=ns-xf

ds=ns-ds

Figure 7: canonicalized SignedInfo from Figure 6

For the following explanation, we use {ns}ElementName to
specify an element with local name ElementName and names-
pace uri ns.

To perform a rewriting attack, an adversary modifies the
namespace associated with the unprotected prefix, adds a
wrapper element with modified namespace, and moves the
signed element to the wrapper element.

Figure 8 shows such an attack for the example given in
Figure 6. The adversary changes the namespace uri asso-
ciated with the prefix “wsse” from “ns-wsse” to “ns-attack”
in the xf:XPath element. He then creates a new {ns-att-

ack}Security element, and adds it as a sibling of the orig-
inal {ns-wsse}Security element. Then, the ReplyTo ele-
ment is modified, and the original version is moved from the
{ns-wsse}Security element to the {ns-attack}Security

element.
After receiving the SOAP message in Figure 8, the signa-

ture verification process initially searches for an XML Signa-
ture located at /{ns-soap}Envelope/{ns-soap}Body/{ns-

wsse}Security/{ns-ds}Signature. Though the message
contains two Security headers, note that only the one of
namespace ns-wsse (and prefix wsse) matches the search

soap:Body

soap:Envelope

soap:Header

Document root

wsse:Security

ds:Signature

soap=ns-soap

wsse=ns-wsse

ds=ns-dswsa:ReplyTo

“modified
address”

wsa=ns-wsa

attack:Security

wsa:ReplyTo

“correct
address”

wsa=ns-wsa

attack=
ns-attack

xf:XPath

“/soap:Envelope/soap:Header/
wsse:Security/wsa:ReplyTo”

xf=ns-xf,
soap=ns-soap,
wsse=ns-attack,
wsa=ns-wsa

Filter=”Intersect”

Figure 8: A wrapping attack on the SOAP message
from Figure 6

criteria. Then, the signature validation extracts the con-
tained XPath reference, and starts resolving all prefixes used
within. This prefix resolution starts at the text node child of
the xf:XPath element, thus the namespace bindings declared
within that element are used. The resulting reference of the
XPath expression /soap:Envelope/soap:Body/wsse:Secu-

rity/wsa:ReplyTo then points to /{ns-soap}Envelope/{ns-

soap}Body/{ns-attack}Security/{ns-wsa}ReplyTo, as the
resolution of the wsse prefix within the XPath leads to a dif-
ferent binding than it had been on signature creation. Thus,
the signature verification process follows that reference, end-
ing up at the original wsa:ReplyTo subtree, even though it
is no longer located at its original position. Its hash value,
however, remains identical, and thus the signature verifica-
tion succeeds.

Then, the application logic—here the WS-Addressing pro-
cessing logic—accesses the SOAP message using the struc-
tural position of /{ns-soap}Envelope/{ns-soap}Body/{ns-
wsse}Security/{ns-wsa}ReplyTo. Thus, it ends up at the
malicious ReplyTo element inserted by the adversary, and
falsely treats its contents as covered by the signature.

As can be seen, due to insufficient canonicalization, the
modification of the wsse namespace binding is not detected
on signature validation. Thus, it can be misused to change
an XPath’s target, which affects any kind of XPath-based
referencing schemes, such as XPath transforms and XPath
Filter 2 transforms.

5. ATTACK COUNTERMEASURES
The wrapping attacks described above can be avoided if

all prefixes contained in the XPath expression are contained
in the canonical form of the SignedInfo element. In general,
there are three ways to achieve this goal. At first, prefixes in
XPath expressions can be considered as in Inc-C14N. Sec-
ondly, prefix/namespace pairs can be specified explicitly in
the wrapper element that contains the XPath expression, or
thirdly, prefix-free XPath expressions can be used.

5.1 Explicitly Embedding Namespaces in Ca-
nonicalized XML

The prefixes used in the XPath expressions can be in-
cluded in the InclusiveNamespaces element of Canonicali-
zationMethod within SignedInfo. This way, the namespace

declarations associated with such prefixes are processed as
if using Inc-C14N. That means, all these prefixes are con-
tained in the canonical form. For the example in Figure 6,
the CanonicalizationMethod then looks as follows:

<ds:CanonicalizationMethod
Algorithm =".../xml -exc -c14n#">

<ec:InclusiveNamespaces
PrefixList ="soap wsse wsa"/>

<ec:InclusiveNamespaces >
</ds:CanonicalizationMethod >

However, this requires that the canonicalization method
and references must work together. A program should add
the prefixes used in the XPath expression to the Inclusive-

Namespaces implicitly. However, as far as we know, this is
not implemented in any open/available libraries for XML
signatures, e.g. Apache XML Security [18] and Microsoft’s
.Net Framework [19]. Even worse, in some libraries (e.g.
both libraries mentioned above), although it is possible to
specify the InclusiveNamespaces, the specified prefixes will
be ignored while canonicalizing the SignedInfo. In this case,
if both signer and verifier ignore the InclusiveNamespaces

element, the threat of namespace injection remains—if not
becoming worse, as syntactically the attack vector seems to
be disabled. Otherwise, if only one party correctly processes
the InclusiveNamespaces element, the canonicalized XML
representations differ, and thus the signature becomes in-
valid.

5.2 Defining Namespaces Explicitly
Another solution is to specify the prefix/namespace pairs

explicitly in the wrapper that contains the XPath expres-
sions. By doing so, the position fixed by the XPath expres-
sion is unique, independent from the environment. There are
several ways to specify such pairs, either using attributes or
as child element structures. As an example, consider the
following:

<XPath xmlns="dummy">
<PrefixNs >

soap=ns-soap wsse=ns-wsse wsa=ns-wsa
</PrefixNs >
<XPathExpr >

/soap:Envelope/soap:Header/wsse:Security/
wsa:ReplyTo

</XPathExpr >
</XPath >

Unfortunately, this solution cannot be applied to the exist-
ing XPath transform and XPath Filter 2 transform, because
they are not extensible.

5.3 Using Prefix-free XPath Expressions
Actually, the most reliable countermeasure to the threats

described above consists in placing the namespace uri di-
rectly into the XPath expression itself. This way, it is no
longer necessary to resolve namespace prefixes contained in
an XPath expression into their corresponding namespace
uris. This also provides the benefit of that an XPath ex-
pression is no longer dependent from its surrounding XML
document context (which usually provides the prefix-uri-
mapping), but remains identical for arbitrary usage scenar-
ios.

The XPath specification therefore provides some opera-
tors for accessing namespace uris in XPath, most impor-
tantly the namespace-uri() function, which actually re-
turns the namespace uri of the evaluation context node (if

not explicit nodeset parameter is provided). Thus, it is pos-
sible to use this function to create XPath expressions that
are independent from the local namespace prefix resolution
functionality. For example, the typical XPath expression
/soap:Envelope/soap:Body with soap mapping to ns-soap

can also be expressed like this:

/*[local -name ()=" Envelope" and namespace -uri()=
"ns-soap "]/*[local -name ()=" Body" and
namespace -uri ()="ns-soap"]

As can be seen, that XPath expression does no longer con-
tain any references to namespace prefixes, but ensures the
referenced elements to belong to the correct namespaces.
Please note that the use of the local-name() function is
required here, as a test like

/Envelope[namespace -uri ()="ns-soap"]

will not result in the expected matches. With that expres-
sion, the XPath parser would treat /Envelope like a refer-
ence to any child element of the document root that has lo-
cal name Envelope and an empty namespace. As the SOAP
message’s Envelope element definitely has a namespace, the
node test would fail already (irrespective of the namespace-

uri() predicate, and the result of the XPath evaluation
would be empty.

Using XPath expressions like this, the threat of names-
pace injection is countered, as the namespace resolution is
no longer required to be identical for both XPath expres-
sion and referenced element. It solely depends on the refer-
enced element to belong to the correct namespace, and the
namespace declarations valid at the XPath expression can
be neglected.

However, this solution obviously induces a serious rise
in complexity of the XPath expression, and also raises the
threat of misconfigurations. For instance, if the XPath de-
veloper accidentally uses namespace-uri="..." in one of the
predicates, the XPath evaluation would treat this token no
longer as a function call, but merely as a string statement.
Thus, it would compare the string "namespace-uri" with
the actual namespace uri string (which always returns false),
and the XPath expression would select nothing. The threat
here is that this does not induce a visible error neither in
XPath processing nor in XML Signature processing. If, for
instance, an XPath Filter 2 transform contains an inter-

sect filter with such a faulty XPath expression, it will reduce
the selected nodeset after transformation to become empty.
Thus, the XML Signature implementation will calculate a
hash value over the empty nodeset, and embed it as the
DigestValue of the Reference. The XML Signature valida-
tor will do the same, resulting in identical hash values (over
the empty nodeset), and thus it will approve the signature’s
validity, even though in fact none of the SOAP message’s
elements actually were protected against modification.

5.4 Excluding Prefixes
Another approach that is worth a thought consists in

abandoning namespace prefixes completely from being cov-
ered by any digital signatures. Actually, the original purpose
of namespace prefixes was to make it easier to define the
namespace a certain XML element belongs to. The prefix
merely was intended to act as a shortcut for circumventing
the requirement to always repeat the long namespace urls.
Thus, a prefix was not considered to be globally unique for
a certain namespace nor was it thought to be of semantic

purpose for XML processing, apart from helping to bind el-
ements to namespace uris.

5.4.1 Prefix Coverage in XML Parsers
Actually, neither the DOM nor the SAX XML processing

libraries provide any means to easily access or modify the
namespace prefixes or their declarations within an XML doc-
ument. In fact, the SAX event startElement, for example,
provides an application with an element’s local name and
namespace uri. Beyond these parameters, the SAX specifi-
cation only list an extra parameter named qname, which may
contain the full element’s name (including the prefix and the
: character), but are also allowed to be empty, depending on
the actual SAX parser in duty. Thus, it is not always possi-
ble for any SAX-based application to determine namespace
prefixes at all. The same applies to DOM parsers; as these
are not required to provide namespace prefixes, and even do
not provide any details on where in the document a prefix
was defined.

Additionally, when it comes to re-serialization of a parsed
and processed XML document, each serializer component
is free to use any namespace prefixes and prefix definition
styles it considers useful. It is allowed to declare all prefixes
within the root element of the XML document, or to declare
prefixes only where they are used for elements.

For the sole purpose of processing raw XML data, this lib-
eral prefix usage does not cause any major difficulties, but
for the specific context of digital signatures applied to XML
documents, the impact of this usage flexibility is tremen-
dous. For instance, consider a SOAP message that contains
an XML Signature. Assume it to be parsed, processed,
and re-serialized by any SOAP Intermediate, e.g. a com-
pany’s gateway application. If the Intermediate decides to
change any little detail on the namespace definitions within
the SOAP message, it may invalidate the XML signature,
even if the resulting XML document would be semantically
identical to any other XML processing application. This is
due to the issue that namespace prefix bindings are covered
by the signature though they are not of semantic importance
to any XML parser (as long as the elements are somehow
linked to their correct namespaces).

5.4.2 Prefix-free Canonicalization (PFC14N)
In order to solve the issue outlined above, we suggest the

use of a different approach in XML canonicalization, which is
completely independent from the actual prefixes and names-
pace mapping approach used in an XML document. This
canonicalization approach, which we called Prefix-free Ca-
nonicalization, relies on the plain use of prefix-free names-
pace declarations (xmlns="uri") throughout the whole doc-
ument.

The prefix-free canonicalization works as follows. Every
element X with namespace nsX and parent element P of
namespace nsP in the XML subtree to be canonicalized is
transformed according to Algorithm 1.

Figures 9 and 10 show an example of an XML subtree
before and after canonicalization of the root element En-

velope. As can be seen, the resulting XML subtree still
contains the very same element-namespace-bindings as the
input did, but apart from the (few and predefined) prefixes
required for proper namespace bindings of attributes, the
resulting XML does not contain any prefixes. Thus, the out-
come is completely independent from the namespace bind-

Algorithm 1 PFC14N(P, X)

Require: Parent element P, current element X
Ensure: PFC14N-canonical form of X

1: remove all prefix definitions and all namespace declara-
tions from X

2:
3: if nsX 6= nsP or P is outside of the subtree to be canon-

icalized then
4: add the namespace declaration xmlns="nsX" to X
5: end if
6:
7: if there are namespaces except nsX associated with at

least one attribute of X then
8: sort these namespaces in lexicographic order
9: i← 0

10: for each namespace nsA do
11: add the prefix definition xmlns:nsi="nsA" to X
12: i = i + 1
13: end for
14: end if
15:
16: add the attributes in lexicographic order
17:
18: return X

<soap:Envelope xmlns:soap="http :// soap.ns"
xmlns:legacy ="http :// legacy.ns"
xmlns:ids="http :// identity.ns">

<soap:Body ids:ID=" myBody">
<my:operation xmlns:my="http ://my.app.ns">

<my:customer xmlns="http ://my.app.ns">
<name >John Doe </name >
<cc:creditcard

xmlns:cc="http :// creditCard.ns">
<cc:number >1234 5678</cc:number >
<cc:validity >10/11 </cc:validity >

</cc:creditcard >
</my:customer >

</my:operation >
</soap:Body >

</soap:Envelope >

Figure 9: Example input for PFC14N

<Envelope xmlns =" http :// soap.ns">
<Body xmlns:ns0 =" http :// identity.ns"

ns0:ID=" myBody">
<operation xmlns =" http :// my.app.ns">

<customer >
<name >John Doe </name >
<creditcard

xmlns =" http :// creditCard .ns">
<number >1234 5678</number >
<validity >10/11 </ validity >

</creditcard >
</customer >

</operation >
</Body >

</Envelope >

Figure 10: Canonicalization output for PFC14N

ing approach utilized in the original XML document, even
if it was processed and rewritten by any other Intermediate
instance. Nevertheless, if this canonicalization approach is
used prior to hash value calculation, an XML Signature ap-
plied to the document before Intermediate interference still
remains valid after reserialization, even if the Intermediate
applies changes to the namespace definition approaches.

5.4.3 Merits and Flaws of PFC14N
The obvious merit of PFC14N is that it allows modifica-

tions to an XML document on an application-unaware level
of processing. Thus, the huge threat of interoperability fail-
ures caused by namespace processing issues can be resolved
completely. Additionally, due to the low configuration re-
quirements for this canonicalization approach—in compari-
son to Inc-C14N or Exc-C14N—the threat of misconfigura-
tions causing vulnerabilities as described above can be mit-
igated by far.

On the other hand, at first glance, the prefix-free canonica-
lization seems to cause a lot of processing overhead, as every
XML element has to be modified. This obviously causes a lot
of overhead, which may affect processing performance. As
we are not yet able to provide a full evaluation on the real
performance implications, it is arguable if the merits out-
value the flaws here. Nevertheless, an argument on the real
performance implications consists in that the namespace uri
for each XML element of the document is attached to the
element’s parser representation besides any canonicalization
already. Thus, the canonicalization requires few more than
using this data on hash value calculations. Thus, that task
can be optimized by integrating it into the hash calculation
step.

Other benefits of this canonicalization approach cover its
streamability (PFC14N can be done in a one-time pass on
the XML document on event-based parsing) and reduction
on the canonicalized message’s size (the approach removes
all prefixes and prefix declarations), but to our considera-
tion these are not the major competing factors for a cano-
nicalization algorithm. Please also note that the PFC14N
algorithm already contains a slight optimization in that it
only includes an element’s namespace declaration if its par-
ent’s namespace differs. Thus, if all descendants of a certain
element belong to the same namespace, this namespace is
declared only once.

6. CONCLUSION AND FUTURE WORK
In this paper, we have shown that the up-to-date pro-

cessing of XML namespaces in the domain of XML Sig-
natures has severe flaws, causing a vulnerability to XML
signature wrapping attacks, and a general threat of acciden-
tal signature invalidation. We have described the problem
of namespace injection, and exemplified an attack scenario
based on this technique. Further, we discussed several coun-
termeasure approaches to this threat. To resume, it must be
stated that XML Signature is not secure today, and that the
flexibility given in defining XML namespaces poses yet an-
other severe threat to its proper application and reliability.
Future work consists in developing appropriate countermea-
sures and supervising the standardization and adaptation of
these countermeasures in real-world scenarios.

7. REFERENCES
[1] M. McIntosh and P. Austel, “Xml signature element

wrapping attacks and countermeasures,” in SWS,
2005, pp. 20–27.

[2] S. Gajek, L. Liao, and J. Schwenk, “Breaking and
fixing the inline approach,” in SWS, 2007, pp. 37–43.

[3] S. Gajek, M. Jensen, L. Liao, and J. Schwenk,
“Analysis of signature wrapping attacks and
countermeasures,” in IEEE International Conference
on Web Services (ICWS 2009). IEEE CS, July 2009.

[4] M. A. Rahaman, R. Marten, and A. Schaad, “An
inline approach for secure SOAP requests and early
validation,” OWASP AppSec Europe, 2006.

[5] T. Bray, D. Hollander, A. Layman, and R. Tobin,
Namespaces in XML 1.0 (Second Edition), W3C Std.,
2006.

[6] M. Bartel, J. Boyer, B. Fox, B. LaMacchia, and
E. Simon, XML-Signature Syntax and Processing
(Second Edition), W3C Recommendation, June 2008.

[7] B. Kaliski, PKCS#7: Cryptographic Message Syntax
Standard, Version 1.5, IETF RFC 2315, Mar. 1998.

[8] J. Boyer, Canonical XML Version 1.0, W3C
Recommendation, Mar. 2001.

[9] J. Boyer, D. Eastlake, and J. Reagle, Exclusive XML
Canonicalization, Version 1.0, W3C Recommendation,
July 2002.

[10] Berglund, S. Boag, D. Chamberlin, M. F. Fernandez,
M. Kay, J. Robie, and J. Simon, XML Path Language
(XPath), Version 2.0, W3C Recommendation, 2007.

[11] J. Boyer, M. Hughes, and J. Reagle, XML-Signature
XPath Filter 2.0, W3C Recommendation, Nov. 2002.

[12] M. A. Rahaman, A. Schaad, and M. Rits, “Towards
secure SOAP message exchange in a soa,” in Workshop
on Secure Web Services, 2006.

[13] M. A. Rahaman and A. Schaad, “SOAP-based secure
conversation and collaboration,” in IEEE
International Conference on Web Services (ICWS
2007). IEEE CS, 2007, pp. 471–480.

[14] A. Benameur, F. A. Kadir, and S. Fenet, “XML
Rewriting Attacks: Existing Solutions and their
Limitations,” in IADIS Applied Computing 2008, 2008.

[15] S. K. Sinha and A. Benameur, “A formal solution to
rewriting attacks on SOAP messages,” in SWS, 2008,
pp. 53–60.

[16] A. Nadalin, C. Kaler, R. Monzillo, and
P. Hallam-Baker, Web Services Security: SOAP
Message Security 1.1 (WS-Security 2004), OASIS
Std., 2006.

[17] M. McIntosh, M. Gudgin, K. S. Morrison, and
A. Barbir, “Basic security profile version 1.0,” Web
Services Interoperability Organization Deliverables,
2007.

[18] (2007, Mar.) The apache xml security java version.
[Online]. Available:
http://santuario.apache.org/Java/index.html

[19] (2009, May) Microsoft .net framework. [Online].
Available: http://www.microsoft.com/NET/

