XHTML — myths and reality

It is difficult to find a web development language that is as misunderstood as XHTML. The following article examines why, identifies concepts that frequently confuse authors, and offers practical suggestions on real-life XHTML use.

Tina Holmboe

Introduction

When the first informal version of HTML was released in 1992, it was described as a hypertext mark-up language and an SGML format. SGML, a powerful meta-language for creating markup languages, was developed between 1969 and 19801 but grew out of work done as early as 19452.

Powerful, close to infinitely adaptable, and widely adopted, particularly in technology, government, and academiasgm, SGML was a logical base for the markup language of the World Wide Web. However, SGML was too complex for the casual author. To simplify HTML corners were cut to the extent that some authors claim it does not qualify to be an SGML applicationray.

When the W3C decided to create XML in 1996, the rationale was to “enable generic SGML to be served, received, and processed on the Web in the way that is now possible with HTML. For this reason, XML has been designed for ease of implementation, and for interoperability with both SGML and HTML.” It was further described as “an extremely simple dialect of SGML.”

Since the design goals of XML partially mirrored those of the original HTML, it was logical to begin formulating an XML-based markup language. XHTML 1.0x10 became a W3C Recommendation in January 2000, followed by XHTML 1.1x11 in May 2001. Work on XHTML 2.0x20 is ongoing as of September 2008. Another project is underway in the XHTML WGx2w to produce a revision 1.2, containing features such as ARIAari, rolesrol, the ACCESS moduleacc, and RDFardf.

In short, XML is still SGML, as described in David Megginson's SGML FAQsfa: "Unlike HTML, XML is not an SGML application — instead, it's a set of simple conventions for using SGML without some of the more esoteric features."

Summary The XHTML family of languages is created by the XHTML WG, with the current version being 1.1. A revision, 1.2, and a new version, 2.0, are in the pipeline.

The Purpose of XHTML

XHTML has, when it comes down to it, two distinct reasons for existing. First, to shift from SGML to XML and in the process remove the leftover crud that has plagued the WWW for many years. The 1.* series of XHTML is only the first step in this process.

Potentially more important, the second reason is to extend HTML through namespaces. This will make it possible for authors to express more structures and richer semantics than is possible with HTML, theoretically without the need for a browser upgrade to handle new languages.

In practise it is reasonably easy to create a browser that can parse even multi-namespace XML documents, apply CSS, and use JavaScript with a node tree to manipulate the resulting bits and pieces. Regardless of the method used, it is far more complicated to create a browser that can present the meaning of structures. This goes beyond what can be achieved with snippets of JS which add behaviour to elements. Despite the best intentions of authors, elements’ semantics must be communicated to browsers in a manner that the presentation—visual, aural, tactile—can be adapted to the user’s needs.

Achieving this today, using HTML, is simple enough. A browser "knows" what the <h1> tag means, and can present header content that makes sense to the user, whether by audio description, a particular font, weight, or colour, or by raising a distinct set of dots on a Braille display.

However, in a mixed-namespace XML document, <foo:bar> makes make no sense to the browser. It cannot determine how to convey the element’s meaning. Some work, notably the W3C's semantic web activityrdf, is being undertaken to find a solution.

Nevertheless, more pitfalls exist.

XHTML and the Content Type

For content transmitted using HTTP, the aptly named Content-Typectp header provides a mechanism for identifying the type of data. By reading this header, a browser can quickly determine how to deal with the content, whether to render, process, or even offer a download prompt. HTTP Content-Type values are Internet Media Typesimt, and ought be duly registered with the Internet Assigned Number Authority (IANA)ian.

To specify that a document is indeed XHTML we want it to deal with, simply set the correct content-type. Keep in mind that browsers that can handle XML have two parsers. One for XML and the other for HTML. The browser uses the media type to decide which parser to use.

An important aspect of the HTTP specification is that a Content-Type sent from the server is authoritativeATAG, meaning it will override constructions such as:

<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />

For XHTML, the appropriate content-type is application/xhtml+xml. Any data with
 this type is treated as XML, specifically XHTML, and is treated according to XML rules only if the browser can parse XML and "understands" XHTML. Not all do.

So that authors could start using XHTML, get a feel for the changed rules, and investigate the possibilities provided—yet still use the markup in current browsers—it was decided to allow use of the text/html content type.

This decision has a number of consequences:

· Well-formedness errors will not be detected.

· HTML rules for applying styles and using the DOM will apply.

· Mixing namespaces, i.e. having an XHTML document contain MathML or a similar XML-based language, cannot be done without relying on browser-specific methods for handling "alien" markup embedded in HTML.

When using XHTML syntax rules in an HTML user agent, follow the compatibility guidelinescompat laid out in the XHTML specification to avoid any nasty surprises. You shouldn’t encounter problems, as most browsers handle XHTML as yet another form of HTML tag soup.

Summary Browsers use the authoritative HTTP Content-Type header to determine the type of content being received. The header’s value decides whether to use an XML or HTML parser on the data. XHTML, even 1.1, can be labelled as text/html if you accept that your page is treated as HTML, and not as XHTML.

Strictly XHTML

The idea that XHTML is "stricter" than HTML springs from the fact that, as an application of XML, documents written in XHTML are subject to XML processing rules, specifically the handling of "fatal errors".

When a conforming XML processor detects well-formedness violation, in standards terminology, it "MUST NOT" continue normal processing. There is an absolute prohibition on error recovery.

Several errors are considered fatal, with violation of the well-formedness constraintwfc being the most commonly known. A number of other fatal errors exist related to entity handling, although these are outside the scope of this article.

Validity constraint violations are not fatal errors, so the handling of syntax errors other than those involving well-formedness is lenient. Such errors should, if requested, simply be reported to the user.

Another major difference exists between SGML-based HTML and XML-based XHTML: in an SGML DTD it is possible to specify which elements should be excluded from appearing inside certain other elements, as illustrated by the definition of P and FORM below:

<!ELEMENT P - O (%inline;)* -- paragraph -->

<!ELEMENT FORM - - (%block;|SCRIPT)+ -(FORM) -- interactive form -->

For this document to be valid, a P cannot contain anything other than inline elements and a FORM cannot contain another FORM. Such prohibition is not possible in XML, where such rules must be specified in prose**, making situations such as the following undetectable by both formal validators and XML processors:

<form action="x">

 <div>

 <form action="y">

 <fieldset>

 <legend>z</legend>

 </fieldset>

 </form>

 </div>

</form>

The above construct would give an HTML validator the jiffies, while an XML parser, even a validating one, wouldn't bat an eyelash. Even so, in XML Schema** such constraints can be implemented.

On the other hand HTML does allow certain constructions which XHTML does not, such as omitted end-tags on certain non-empty elements and on empty elements, making the following valid:

<p>here is a paragraph.<p>here is another paragraph.

<hr>

Such markup is not sloppy. It is exactingly defined in the HTML 4.01 DTD as allowed by SGML rules and as such cannot be considered "less strict". Also, HTML does not allow incorrect nesting of elements, but you must include a DOCTYPE.

With this knowledge we can conclude that while XML processors stop on fatal errors, not all syntax violations in XHTML can be formally specified as they can in HTML. Strictly speaking an HTML document is an HTML document only when fully valid**, while an XML document may very well be syntactically invalid but still remains an XML document.

Not that the processing application—not the language—is what is more, or less, strict. Only when sent with the appropriate content-type will an XHTML document be handled by a conforming XML processor.

Summary When sent as text/html, your XHTML document will not be subject to the XML processing rules described above, and so the browser will not treat the XHTML document any differently than HTML.

Lack of Support

Lack of support for XHTML is a fact of life on the web in 2008. Prior to the Firefox 3.0 the XHTML processor in Gecko was so poor that Mozilla's own engineers recommended against it** and no version of Internet Explorer up to, and including, IE 8 offers any support for XHTML. A number of other browsers such as Lynx were never written to handle XML in the first place. Several other user agents, such as search engines** likewise do not support both XML and XHTML.

It is possible, albeit not recommended, to send XHTML documents as either application/xml or text/xml. Thereby XML-capable browsers without XHTML support can actually parse and even to an extent style the document; however, constructs such as the following will not work:

link text

Simply parsing an XML-based language is not enough for the browser to "understand" that the A-element is a hyperlink.

Summary To support the widest possible range of user agents, consider using HTML 4.01 as text/html or use content negotiation to serve either HTML or XHTML as appropriate.

Content Negotiation

Using the response determined by a web server negotiating with a user agent is not new, having been introduced in HTTP 1.1 as early as 1999, but is woefully underutilized.
In theory negotiating for HTML or XHTML is simple enough. Look at the HTTP Accept header and then determine if text/html or application/xhtml+xml has the highest priority. Send the document in the correct markup language, transforming it if a version is not already cached.
In practise such negotiating becomes much more difficult, as several generations of Internet Explorer include "*/*" in the Accept string, thereby claiming that everything is supported.

Luckily we can argue to disregard "*/*", and on close examination it is clear that the HTTP specification neither explicitly prohibits such behaviour, nor does it state authoritatively what to do. Subsequently we'll take the pragmatic route and forget IE's patently absurd claim. The following algorithm written in Perl, analyses an HTTP Accept header and returns either 'xhtml' or 'html' depending on which is judged best and is a pragmatic approach to solving the "HTML or XHTML" question, and
 will not work as a generic Accept parser.

sub examineAccept {

 my $accept = shift() ;

 $accept =~ s#(\n|\r)##g ;

-- -

- This is the conservative default. -

-- -

#

 my $contentType = 'text/html' ;

-- -

- If, at this spot, there is no XHTML -

- explicitly mentioned, we return 'html', -

- and vice versa. -

-- -

 #

 return('html') if ($accept !~ m#\Qapplication/xhtml+xml\E#i) ;

 return('xhtml') if ($accept !~ m#\Qtext/html\E#i) ;

-- -

- We explicitly retrieve the Q-parameter -

- for text/html and application/xhtml+xml -

-- -

 #

 my($html_quality) = $accept =~ m#text/html(?:;\s*q\s*=\s*([0-9\.]+))?# ;

 if ($html_quality eq '') {

 $html_quality = '1.0' ;

 }

 my($xhtml_quality) = $accept =~ m#application/xhtml+xml(?:;\s*q\s*=\s*([0-9\.]+))?# ;

 if ($xhtml_quality eq '') {

 $xhtml_quality = '1.0' ;

 }

-- -

- IF they are of equal weight, we return -

- the default.-

-- -

 #

 if ($html_quality == $xhtml_quality) {

 return($contentType) ;

 }

-- -

- If the Q-parameter of text/html is -

- heavier, return 'html' -

-- -

 #

 if ($html_quality > $xhtml_quality) {

 return('html') ;

 }

-- -

- And vice versa. -

-- -

 #

 if ($html_quality < $xhtml_quality) {

 return('xhtml') ;

 }

-- -

- If, for some unfathomable reason, we -

- arrive here, we return the default. -

-- -

 #

 return($contentType) ;

}

Once you determine which markup language to send, do a proper transformation of the content. Replacing Content-Type and DOCTYPE is not enough. You need to change the XHTML syntax into HTML. This, luckily, is a small task if you have not used any of XHTML's special features, such as namespace mixing and have also not used the extended structures of XHTML 1.1 such as Ruby or of XHTML 1.2 such as ARIA or ACCESS.

For a simple transformation, replace all occurrences of /> with >, all selected="selected" with selected, and all checked="checked" with checked.

For a more complex transformation, replace the new structures with equivalent HTML ones, which is often is difficult, since HTML does not have Ruby or ACCESS support. You can also disregard the new structures, thereby losing out on structure and semantics.

In either case you shouldcache the separate versions so that processing time is not significantly impacted.

Summary Content-negotiation can be a practical method by which to serve up HTML or XHTML, depending on what is requested by the browser, but hinges on ignoring the special value */*
Recommendations

· Consider using HTML 4.01 Strict if you don't need to deliver XML-based structures to the client, for example due to mixing namespaces such as having MathML content in your pages, using Ruby (XHTML 1.1) or techniques such as ACCESS (XHTML 1.2).
· Even if it is problematic to deliver XML to clients, there is nothing preventing you from, for example, keeping your content in an XML-based language such as XHTML or DocBook on the server, and then transforming the content into HTML 4.01 Strict before delivery.

· If you do want, or need, to use XHTML, consider using the method outlined in the section on content negotiation so as not to exclude any of your end users.

Disclosure

The author is a member of the World Wide Web Consortium's XHTML Working Group. This article is not endorsed by either the W3C or the Working Group, although experience and knowledge gained from both have gone into the authoring.

References

	Title
	Author
	Date

	A Brief History of the Development of SGML
	SGML User's Group
	June 1990

	Authoritative Metadata
	Fielding, Roy T. et al
	April 2006

	Assigned Numbers (STD 2, RFC 1700)
	Reynolds, J., Postel, J.
	October 1994

	As We May Think
	Bush, Vannevar
	July 1945

	Cover Pages Technology Reports
	Cover, Robin
	July 2002

	David Megginson's SGML FAQ
	Megginson, David
	September 1998

	Dropping the Normative Reference to SGML
	Ray, Arjun
	October 1999

	Content-Type in HTTP 1.1
	Fielding, R, et al
	June 1999

	HyperText Mark-up Language
	Berners-Lee, Tim
	November 1992

	Extensible Markup Language
	Bray, Tim; Sperberg-McQueen, C. M.
	November 1996

	HTML 4.01: Conformance
	Ragget, Dave; Le Hors, Arnaud; Jacobs, Ian
	December 1999

	Media Type Registration Procedure (RFC 1590)
	Postel, J
	November 1996

	Mozilla Web Developer FAQ:
	Sivonen, Henri
	May 2007

	W3C Semantic Web Activity
	Berners-Lee, Sir Tim, et al
	July 2008

	SGML
	Berners-Lee, Tim
	November 1992

	4.9 SGML Exclusions in XHTML 1.0
	Pemberton, Steven
	August 2002

	well-formedness constraint in XML 1.0, 4th edition
	Bray, Tim et al
	September 2006

	XHTML 1.0
	Pemberton, Steven et al
	January 2000

	XHTML 1.1
	McCarron, Shane; Masayasu Ishikawa
	February 2007

	XHTML 2.0
	Axelsson, Jonny et al
	July 2006

	XHTML 2 WG
	W3C
	-

	XHTML in Search Engines
	Dorward, David
	February 2008

	C. HTML Compatibility Guidelines
	Pemberton, Steven et all
	January 2000

	XHTML Media Types
	石川 雅康 (Ishikawa, Masayasu)
	August 2002

	XHTML Modularization 1.1
	Austin, Daniel et al
	July 2006

�of?

�but?

