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Abstract. The assignment of tasks to human performers is a critical component
in people-centric business process management systems. Workflow
management systems typically assign work items using strategies that only
consider qualified resources. There are, however, situations, where this
approach falls short. For instance, in emergency response situations, tasks need
to be carried out by resources that are available immediately, even if they do not
match all skill requirements. This paper compares the performance of a set of
six task assignment mechanisms for workflow applications using a scenario
from the emergency management domain. In particular, we develop and
simulate assignment strategies inspired by stimulus/response models derived
from swarm intelligence, and benchmark these strategies against conventional
task assignment strategies. Our findings show that swarm intelligence-based
approaches outperform the traditional assignment of tasks in ad-hoc
organizations, and that workflow-based emergency management systems could
benefit significantly from these novel task assignment strategies.

Keywords: Business Process Management, Workflow, Task Assignment,
Swarm Intelligence.

1 Introduction

Workflow Management Systems (WfMS) coordinate tasks, resources and data
according to the formal representation of the process logic, the workflow model [1].
The assignment of work items to human performers is a critical component in people-
centric business process management scenarios. Excessive task automation and poor
design of work assignment strategies are critical issues that can jeopardize the success
of workflow projects [2].

During the build time of a workflow application, the workflow application designer
has to describe both the structure of the business process to be automated, and the
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resources that carry out the process. At run time, work items are assigned to resources
based on assignment policies that determine the strategy for how process work should
be allocated. Upon the instantiation of a workflow task, the workflow enactment
service places work items on the work lists of qualified performers who are
determined using a process of role resolution. For the assignment of pending work
items different strategies can be implemented, such as first-come-first-served, market-
based allocation mechanisms or hierarchical distribution algorithms. These strategies
have an impact on how the workflow enactment service prioritizes activities and
notifies candidate performers.

Many commercial WfMSs focus on process routing, while (1) oversimplifying
resource and task attributes [3] and (2) providing limited facilities to represent
dynamic changes in the actual organizational structure of their environment [4]. The
factors used to determine the optimal set of resources to be charged with a pending
activity is currently workflow-driven: qualifications of resources are treated as static
values. The amount of dynamics employed in current WfMSs goes no further than
linking the allocation mechanism to certain properties of the process instance at hand,
e.g. its priority.

In this paper we focus on the domain of Emergency Management Services,
where the shortcomings of traditional workflow-based task assignment mechanisms
become very apparent. Emergency Management Services are concerned with
improving public safety, and share the common objective of responding to citizen
calls for assistance as quickly as possible to reduce loss of life and injury [5].
Examples of these services are those delivered by police and fire departments and
emergency medical services of hospitals. Characteristic for emergency settings is
that after a work item has been available for some time, it should rather be
performed by a less qualified resource, than not performed at all (e.g., first response
in case of injuries).

As a source of inspiration to extend workflow assignment policies, we turn to
Swarm Intelligence [6]. This is a term dubbed for the collective behavior that emerges
from groups of social insects. Social insects, such as ants or wasps, divide labor
amongst the resources in such a way that the ratios of workers performing different
tasks can vary (i.e., workers switch tasks) in response to internal perturbations or
external challenges. Algorithms that mimic this behavior have been successfully
applied to reduce set up times and throughput times for production scheduling in
industrial settings (e.g. [7] and [8]).

The paper is organized as follows. In the next section, we introduce the sub-area
of Swarm Intelligence relevant to our study, the stimulus/response model by
Bonabeau et al. [9], and discuss the specific requirements of the emergency
management domain. Section 3 outlines our research design: We use discrete event
simulation to evaluate the effectiveness of various task assignment strategies in a
realistic emergency management scenario. The results are presented in Section 4,
which is followed by an overview of related work (Section 5). We conclude the
paper with a discussion of our findings, limitations, and an outlook on future work
(Section 6).
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2 Background

2.1 Swarm Intelligence

For years, scientists have been studying ants, bees and wasps because of the amazing
efficiency of social insects in finding the shortest path to a food source, spreading
alarm in a colony, or dividing labor [6]. Building on many empirical experiments and
observations, various models for labor division of social insects were developed
(e.g. [10]). These so-called threshold models consist of two components. First, a
threshold exists for each resource towards each task type, which indicates how
responsive a resource is towards a certain task type. The lower this threshold is, the
more responsive a resource becomes to perform a task of this type. The second
component involves the stimulus, which is available for each pending task. The more
important a task becomes, the higher its stimulus will be. Eventually, even resources
with a high threshold towards a certain task type will respond to a work item of this
type, given that it has a high stimulus.

In this paper, threshold models are modified to show behavior similar to bidding
mechanisms for task assignment. The setting is a workflow environment where
pending work items are approached similar to a job market with job seekers of
different activity levels. Job seekers with a low task threshold will make a relatively
high bid and the highest bidder will be given the pending task, while job seekers with
high threshold levels will not become active until the stimulus reaches the threshold
(compare [9]). The threshold for each job seeker to perform a certain task at a
particular time scales with the contribution that a job seeker adds to the global
performance. For example, the threshold may relate to the shortest distance for a wasp
to pick up food [10,11], so that the global optimum is a minimum function, i.e. the
overall time that is required to pick up all food should be minimal.

Threshold models can be extended with a learning mechanism. This mechanism
ensures that the threshold towards a certain task type decreases when a resource is
working on that task type (i.e., the resource learns to perform it well) and increases
for all other resources that are not performing that particular task type (i.e., they forget
how to perform the task). The threshold models that include the learning mechanism
are referred to as learning threshold models, in contrast to the fixed threshold models.
One advantage of a learning threshold model over a fixed threshold model is in the
area of robustness, which various biological studies point out as an essential element
of colonies [12,13].

In this study, we consider three different threshold models, which we introduce
more formally now. We denote a threshold with m,;, which represents the threshold
for resource r towards task i at a certain time. The stimulus S; describes the demand to
perform task i at a particular time. The stimulus that is used for our task assignment
studies is updated after each discrete time step with a constant d. This way, the
stimulus S; is used to improve the probability of completion for task i, which becomes
more important over time [14]. The fixed threshold model for ants (F-ANT), as
proposed by [15], lets resource r bid for task i with the following bid:

S?
SE+(ml)*
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where % € [l,) is a moderating coefficient that determines the impact of the
threshold on the level of the bid. If two resources both place the highest bid, the task
is allocated randomly between these two resources.

A specific case of the F-FANT model is the fixed threshold model for wasps, as
described in [10]. Here, y=1. We refer to this model as F-WASP.

We also consider a learning threshold model, which can be seen as a refinement of
the F-WASP model. An additional threshold 6,; is introduced, which exists for
resource r towards task i and which evolves over time. Using & and ¢ as respectively
the learning and forgetting coefficients, 0,; is lowered at each discrete time step with
& when a resource works on a task of type i and increased with ¢ if not. In the
learning threshold model for wasps (L-W ASP), resource r bids for task i with the bid:
S?

l

Si2 + 0‘93,1‘ + an,i

where o and [ are positive coefficients that determine the relative importance of the
thresholds and 6 is usually restricted to a certain positive domain.

The F-ANT, F-WASP, and L-WASP models can be considered as the basic
threshold models in the Swarm Intelligence domain and they were chosen based on
their known value in industrial optimization problems (e.g. [7] and [8]).

2.2 Emergency Management Domain

The performance of typical business processes, such as those found in governmental
agencies, banks, insurance companies, etc., is measured in a variety of ways. This
variety stems from the different stakeholders involved that may pursue different
interests. However, in the Emergency Management Domain the primary concern is to
reduce loss of life, injury and damage to property. Therefore, timeliness of execution
is the most dominant performance evaluation criteria in this domain [5]. Other
considerations such as efficiency and costs are often irrelevant, neglected, or can be
seen as variations of the time criteria. In this study we focus on two different ways of
making this criteria operational:

1. Throughput Time (TPT), which measures the time between an incoming
Emergency Call and the moment that the incident is resolved, and

2. Response Time (RT), which is the time between the incoming Emergency Call
and the moment that the emergency response begins at the location of the
incident.

While an incident’s TPT includes its RT, favoring one criteria over the other may lead
to different decisions. Consider, e.g., the dilemma to send out an available unit to
assist at a large incident X (to which a single unit has already responded) or to
respond to a small incident Y that has just occurred. The first option will lower the
TPT of X, the second will lower the RT to Y. While minimizing TPT reduces the
negative consequences of incidents, such as loss of life, injury and damage to
property, a large RT has its own set of negative consequences [16,17]. Just as
described in [16], we consider TPT and RT as equally important.

Furthermore, even though reducing the average TPT and RT is of the utmost
importance, emergency responders must take into account the principle of equity [5],
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which states that similar incoming emergency calls must be treated equally. In
particular, incidents that occur further away from an emergency center must not be
structurally neglected in favor of nearby incidents.

Typical business processes differ from emergency services in that resources in the
latter environment are generally trained and equipped to perform all kinds of tasks
besides their specialization, while this is not necessarily so in non-emergency settings.
The advantage of this generalist approach is that non-specialists can perform tasks
when specialists are unavailable. The disadvantage of this approach is that the
processing times for tasks performed by non-specialists are typically greater. For
example, a fire-fighting unit with a small aerial ladder is capable to perform high
angle rescues using ropes and manual ladders. Characteristically, this takes longer
than a rescue attempt by a team using a vehicle with a longer and flexible aerial
ladder [16]. As we will demonstrate, a supply of heterogeneous resources is an
important ingredient to the emergency response scenario that we use to benchmark
different task assignment strategies.

3 Methodology

In this section we benchmark the task assignment mechanisms that originate from the
swarm intelligence concepts with three conventional task assignment mechanisms,
using an example scenario from the emergency management domain. First we
describe the three conventional assignment mechanisms used for benchmarking. We
then introduce the simulation scenario, followed by the simulation model, the
simulation approach and the design of the experiments.

3.1 Conventional Task Assignment Mechanisms

To better understand the performance and the behavior of the threshold models
introduced above, we evaluate them against three conventional task assignment
mechanisms: First-in, First-out (FiFo), a Greedy dispatch rule and the Dynamic
Model.

The FiFo mechanism assigns tasks in the sequence of arrival of new cases. FiFo
queuing is a simple and robust allocation rule [18] and widely used in commercial
WiIMSs [4]. Tasks are dispatched based on a best-available basis. If no qualified
performer can be found in the system, the assignment of a task will be deferred until a
qualified resource becomes available. Most WfMSs buffer this gap by using work
lists as local queues for individual resources. The FiFo mechanism will then place
arriving tasks on the work list of (one or more) suitably qualified resources. The
actual allocation of work (i.e., the decision, which of multiple resources performs the
task) can be implemented using a similar First-Come-First-Served mechanism, or
through auction or other bidding protocols.

The Greedy mechanism assigns tasks to resources that can complete the task in the
shortest time possible. This heuristic has been applied to several task assignment
problems [8,19,20]. In a WfMS the Greedy mechanism resembles the Shortest
Processing Time (SPT) rule, which can be used as a dispatch rule in WfMSs [18]. The
SPT rule optimizes the assignment of pending tasks based on the assumption of
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resource-independent processing times of the task. The Greedy rule ensures that a
pending task is assigned to the resource that guarantees the shortest processing time.
Since in practice task-processing times depend on the capabilities of individual
resources, a Greedy mechanism needs to compute the expected completion time for
all task-resource combinations that qualify for the assignment.

The third model used as a benchmark for the threshold approach is a task
assignment model proposed by Kumar et al. [3]. This model includes the parameters
suitability and wurgency. Suitability is the inherent qualification of a resource to
perform a specific task. This may include qualifications, authorizations, and
permissions. In addition, each work item is assigned a time-dependent urgency value.
Each of the resources () bids for a work item (i) using an assignment function taking
into account suitability (r,i) and urgency(i). The work item is then assigned to the
resource with the highest computed bid. Note that the other two parameters in
Kumar’s model are not considered in this study, as they add little value in the scenario
under consideration (see Section 3.2). In particular, there are no constraints, which
makes the conformance parameter obsolete, and resources work in shifts, so that the
availability parameter is not adding much value. While each of the three benchmark
mechanisms represents a dynamic assignment mechanism, we denote Kumar’s model
as the Dynamic Model, just as it is referenced in the original work.

3.2 Emergency Response Scenario

To benchmark all proposed task assignment mechanisms we performed a simulation
study using a fictional emergency response scenario. This scenario contains a Local
Fire Station (LFS), which responds to relatively small incidents in its district, i.e.
Emergency Calls (ECs). Such emergencies never require more than three fire fighting
units. The process descriptions, resources and processing times for this scenario are
based on data from the Austin Fire Department [16].

In this scenario, we defined a limited set of twelve EC types that have equal
priority and a set of heterogeneous resources with different specializations (i.e.,
varying levels of task suitability). An EC of type 'water rescue' requires a specialized
rescue team with diving skills. Should this team be unavailable, a less suitable
resource can (and should) respond to the incident, e.g., one fire fighter with a boat
may respond. If a non-perfect resource responds, the processing times of incident-
related tasks will increase. The resources work in shifts of 24 hours. Within these 24
hours all personnel is available for work. After 24 hours the shift personnel is
replaced by a new set of resources. There are always enough resources available to fill
a shift, i.e. we do not account for absences or vacation times [16]. When maintenance
is performed, a spare vehicle with exact the same specification is available.

Processing times are based on a defined minimal processing time, which may be
different for each type of tasks. If a task is assigned to a less suitable resource, this
minimal processing time is multiplied by a penalty factor that accounts for the degree
of unsuitability.

A Location Model defines the operating area of the LFS. This Model is used to
compute the travel distance of units to incidents within the LFS district. The distance
between the responders and the incident is an input parameter for the task assignment
mechanisms. The calculation of distances is done using Euclidean or Manhattan
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distance grids [21]. The Location Model is a square shaped territory (grid) that
indicates a part of a city. At the north side of the territory a river runs from east to
west. The LFS is located at the center of the territory.

3.3 Model Building and Validation

All models used for the experiments share the same structure and were built using
CPN tools. This simulation language is based on the logic of Colored Petri Nets and is
suitable for discrete event simulation [22].

All models share a six module structure as shown in Fig. 1. The environment
module represents the environment of the LFS. This module creates the ECs and
defines their associated characteristics. Newly arriving ECs are routed through the
model and are handled in the process module. When resources have finished working
on the tasks for a particular EC, they will still be located at the incident site. The drive
back module manages their return to the LFS. Each time a work item is made
available by the process module it is managed by the task module. This module
queues the task until the task is assigned and completed. After the task has been
completed, the task module allows the process module to access the task again. The
task module consists of two other modules, i.e. the failure module and allocation
module. The allocation module is unique for each proposed mechanism.

Process Module \
k] \ Drive Back
ask—— ) Module
/

Task Module
Queued
Task

Failure Module Allocation module

-

Fig. 1. General model structure

L

Environment
Module

The CPN models are used to collect data, and to analyze the performance of the
different assignment mechanisms in the sample scenario with regard to TPT and RT.
Data is collected for each EC type individually. We are interested to learn whether
mechanisms that seem to perform well on overall TPT and RT treat individual EC
types different from other mechanisms. The average utilization of each resource is
measured for all experiments performed in this study.

Verification of the model consists of checking the code, inspecting output reports
and verifying that the modeled elements correctly represent the real world equivalents
[23]. Making use of the state space tool, it is possible to check the model on home,
liveness and fairness properties [22]. In addition, we verified the model by simulating
EC distributions and routing. The expected counts were within a 99% confidence
interval of the observed CPN model counts, hence, we considered the CPN model to
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be qualified. Since the model is based on a fictional case it is not possible to validate
the model against real life data or historical data. The use of mathematical queuing
models is not feasible in this situation, because processing times heavily depend on
the resource that performs a task. For this reason a simulation study is essential.

3.4 Simulation Approach

Prior to starting the actual experimentation stage, a number of issues need to be
addressed, i.e., the warm-up period, run length and the number of replications. Also, a
number of parameters must be set in order to optimally use the mechanisms.

The length of the warm-up period needs to be evaluated, if the state of the model at
starting time does not represent the steady state of the actual system. The warm-up
period is the amount of (simulated) time that a model needs to run before the statistical
data collection begins [23]. In this research, the warm-up period is evaluated based on
the moving average of the TPT. It appeared that all experiments that are concerned with
non-learning assignment mechanisms, i.e., FiFo, Greedy, the Dynamic Model and
F-WASP, evolve in the same way, and reach a steady state at t =25000 minutes. For the
L-WASP mechanism the steady state is observed from ¢ =36000.

Once the model has warmed up, the run length of the model has to be decided. One
method for deciding this is inspecting the random numbers sampled. As a rule of
thumb, a minimum of 15 to 20 random numbers for each type of random number
stream should be used in this model. To ensure that this takes place for all of the
random number streams the least frequent event in the simulation model should be
selected and the model should be run until this event occurs 15 to 20 times [23]. This
event is the occasion of a chemical structural fire with a probability of 0.011.
Therefore, at least 1818 ECs need to be observed to detect 20 chemical structure fires
of this category. Based on the lowest arrival rate under consideration, i.e., A=11000, a
period of t = 86867 minutes has to be considered. In this study a run length of t =
125000 was applied, which is approximately a three month run length.

Due to the very nature of random numbers, it is imprudent to draw conclusions
from a model based on the results generated by a single model run. Replication is
defined as executing the same model a number of times n, but with different random
numbers in each run [23]. A statistical method for determining the number of
replications is described by [24]. Applying this procedure led to a satisfying accuracy
level at 20 replications for all mechanisms at low and high arrival rate, i.e., the
deviation of a replication never exceeded 5% of the average.

In addition to the general simulation settings, some parameters need to be tuned for
the Dynamic Model and the threshold models. For the Dynamic Model two
parameters have to be tuned: urgency () and suitability (S), which are both in the
interval [0.0-1.0]. The Dynamic Model originally uses an urgency level of interval
[0.9-1.0] with parameter u =0.1 when a work item is queued for a period ¢. This rigid
approach is refined in this study. A larger interval is chosen, i.e. [0.5-1.0] and u
=0.05: The urgency level starts at 0.5 and increases each discrete time step with a
constant 0.05. The suitability parameter S is also in the interval [0.5-1.0]: The least
capable resources to perform a task type have a suitability rating of 0.5, the best one
for that same task type has a suitability rating of 1.0. The rest of the capable resources
scale in between this interval.



Workflow Management Systems + Swarm Intelligence = Dynamic Task Assignment 133

The settings of the threshold models are based on the literature and a sensitivity
analysis. The stimulus (S) represents the number of time steps an EC is in the WfMS,
in this study we use S=1 [14]. The parameter tuning for the learning mechanism can
be based on a genetic algorithm [25], a simple hand tuning technique [26], or a
sensitivity analysis that first sets the most important parameter followed by the
parameter with the second highest impact, and so on [27]. Based on the latter
approach, we derived the threshold values as well as the learning importance o and
the task duration component . The exact values have been tuned based on a
sensitivity analysis. For L-WASP this resulted in 0=0.02 and B=1; for F-ANT in
x=1.1. The learning coefficient & and forgetting coefficient ¢ have an insignificant or
moderate influence and tuning is not necessary. To set these parameters in a sensible
manner in this study, the values from the social insect behavior are taken: E&=10 and

o=1[10].
3.5 Design of the Experiments

In this study, we compare six different mechanisms for task assignment. We want to
answer three distinct questions. How do the mechanisms perform regarding the TPT
and RT:

1. Atincreasing arrival rates?

2. When the fire station is located further away from the river (both at low and
high resource utilization levels)?

3. At an increasing failure rate (both at low and high resource utilization
levels)?

To answer the first question we used six different scenarios. The arrival rate is
denoted by A and represents the average arrival of ECs each year. We chose arrival
rates that correspond to an average resource utilization of the mobile resources of
respectively 0.34, 0.43, 0.53, 0.62, 0.71, and 0.80. The six alternative mechanisms are
tested for these six different arrival rates. This results in 36 experiments.

To answer the second question we set two parameters to derive the different
scenarios. For each of the two settings two different river locations are chosen, thus
influencing the traveling time. In this alternative, also two different arrival rates are
considered, i.e. for a low and high resource utilization. The two settings of the two
parameters result in four scenarios.

To answer the third question, we again set two parameters to derive the different
scenarios. For each of the two settings two failure probabilities are proposed: 0.02
and 0.05. Again, two different arrival rates are considered. The two key parameters
with two settings results in four scenarios.

In total over a hundred experiments were performed to address the objectives of
this simulation study. The complex CPN models require a lot of computing power.
Experiments that require models with high arrival rate settings (23000 arrivals a year),
take approximately 15-30 hours to finish all 20 replications on a Pentium 4 with SGB
RAM. Five such systems were required for a period of three weeks to perform all
experiments. The output of all these experiments were collected, analyzed and
documented according to the structured procedures as described in the next section.
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3.6 Procedure for Mechanism Comparison

The performance of each mechanism during a particular experiment depends on RT
and TPT that are measured for all ECs and for each EC type individually. To compare
different alternatives the procedure mentioned below was followed.

For each experiment, a summary of all 20 runs for each performance was provided
in one overall CPN report, including the average and the standard deviation of all 20
runs. To assess the performance for all mechanisms, the overall RT and TPT were
plotted in a graph for the increasing arrival rates. To test whether the differences
between mechanisms are significant a pair wise comparison was made. It is not safe
to assume equal variances, therefore we applied the Welch test and not a pooled
variance test 24]. When comparing more than two alternatives and making several
confidence interval statements simultaneously, the individual confidence levels of the
separate comparisons have to be adjusted upwards to reduce the number of type 1
errors (rejecting the null hypothesis when it is true). Therefore, we applied the
Bonferroni correction to all measurements [24,28]. To test whether a specific
mechanism respects the equity property (similar incoming emergency calls are treated
equally), a Kolmogorov-Smirnov test was applied to determine whether the
emergency incidents that exceeded the response time limit were uniformly distributed
over the Location Model.

4 Results

4.1 Ranking

On the basis of the simulation study, the various allocation mechanisms can be ranked
with respect to their performance in minimizing TPT and RT. For each of these
criteria, a mechanism is ranked higher if its average value as aggregated over all ECs
is significantly lower. If two mechanisms do not differ in this respect, the mechanism
that significantly outperforms the other for most of the 12 EC types is considered to
be better. The latter procedure was explicitly necessary to distinguish between the
performance of the F-ANT and F-WASP mechanisms. For all comparisons, a
confidence level of 95% is applied.

In Fig. 2, mechanism rankings are shown for low and high levels of utilization, i.e.,
aggregated over the lowest and highest three levels of resource utilization.

Our analysis provides various insights, of which the most important ones are as
follows:

e At both utilization levels, the Greedy mechanism delivers the best performance
with respect to RT. However, it is the only mechanism that violates the equity
property (this is indicated by the shading in Fig. 2). The Greedy mechanism
leads to a favorable handling of incidents that are closest to the LFS, since it
prefers the use of idle resources for performing tasks with a short task duration
which includes the travel time. Clearly, this is unacceptable for society (e.g. cats
are saved from nearby trees while the chemical factory further away is burning).
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Fig. 2. Ranking of allocation mechanisms

e In contrary to the good performance of the L-WASP mechanism in studies like
[8], [9] and [29] it performs markedly poor in this study. The reason for this is
that its learning property has a negative impact in the context of the
heterogeneous fire-fighting units. The incidental assignment of EC types to less
suitable resources (e.g. when more suitable resources are occupied) leads to a
structural preference for using such resources over time.

e The FiFo mechanism performs well with respect to TPT when resource
utilization is low, but it is the worst performing mechanism overall at high
utilization levels. Because it strictly focuses on the arrival pattern, it completely
fails to exploit the different resource capabilities.

e The Dynamic Model is almost the mirror image of the FiFo mechanism. Its
performance is poor at low levels of utilization, but it is the best performer on
TPT at high utilization levels. The reason for the latter is its subtle balancing of
the incident urgency and a resource’s suitability, while ignoring the task
duration. We found that the Dynamic Model commits particularly fast to EC
types that multiple resources can work on, while other mechanisms (e.g. Greedy,
F-WASP and F-ANT) prefer work items that they can finish fast (at least
initially). Because the Dynamic Model does not consider the task durations, it is
outperformed with respect to response time at high utilizations by the F-ANT
and F-WASP mechanisms.

e The F-ANT and F-WASP mechanisms provide the best trade-offs in minimizing
both TPT and RT. When not considering the Greedy algorithm (violating the
equity property) they are only outperformed at TPT. At a high utilization level it
depends on the relative value of minimizing either TPT or RT which of the two
mechanisms is preferable. Note that the absolute differences in TPT and RT
between the two are generally smaller than for other mechanisms.

e The absolute differences in TPT and RPT between the various mechanisms tend
to increase when the utilization increases. Clearly, this is not captured by our
ranking of the models in Figure 2, as the axes reflect ordinal scales. There is no
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satisfactory, way to summarize the absolute differences within the limitations of
this paper because of the great variations of these differences over EC types and
the statistical subtleties that result from aggregating these differences. The most
important insight here is that at higher utilization levels the choice of assignment
mechanism is all the more important, as differences become more apparent. In
other words, with an excess of resources everything will turn out well anyway.

4.2 Robustness

To test the robustness of the rankings as presented in the previous section, we
examined two additional scenarios (see Section 3.5). In the first scenario, the river is
relocated from the northern side of the grid to the center, close to the LFS. We
expected this to generate a general advantage with regard to RT and TPT for this EC
type (e.g. river rescues) of 3.068 minutes. Oddly, the gap between the L-WASP
mechanism and the other mechanisms turned out to be larger after the relocation,
perhaps because of the poor allocation decisions it makes anyway. In addition, FiFo
and the Dynamic Model improve their performance after relocation, which conforms
precisely with the expected gain. This makes sense: Both mechanisms do no consider
travel time in their decision-making. For Greedy, F-ANT and F-WASP mechanisms,
their favorable position increases towards the other mechanism for the river rescues.
But only for the Greedy mechanism this increase is significantly larger than expected.
This once more illustrates that this mechanism structurally favors incidents that are
close to the LFS.

In the second scenario, the impact of an increasing (mechanical) failure rate of
firefighting units was examined. From the evaluation of this scenario we conclude
that the difference between the Dynamic Model on the one hand and F-WASP and F-
ANT on the other decreases as the failure rate increases. Also, the L-WASP
mechanism performs even poorer when the failure rate increases. The overall ranking
of the mechanisms, however, is not affected. In summary, the evaluation of both
scenarios suggests that the ranking incorporates a certain level of robustness.

5 Related Work

Decentralized resource allocation is of particular interest to various scientific
domains. An impressive amount of studies has exposed different aspects of the
problem and respective algorithms for solving it. We will subsequently point out only
a small excerpt of these approaches which are most relevant to our research.

In the workflow management domain, numerous authors tried to tackle the
problem from an implementation perspective [30,31]. They predominantly focus
either on modeling organizational structures with process elements linking to them,
e.g. [4,31,32] or on the definition of criteria for assignment mechanisms, e.g. [33,34].
Research in the area of resource management in workflow applications is centered
around access control mechanisms and policies that permit or restrict the ability of
individual resources to perform tasks [35,36]. Dynamic resource allocation is of
considerable importance to the fields of distributed (grid) computing [37], robotics
[38] and multi-agent systems [39]. These domains draw heavily on market-based
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algorithms, as well as on reinforcement learning techniques. Shen proposed to extend
current task assignment mechanisms beyond the static role-concept by including
criteria such as the social proximity of workflow participants, or the compatibility of
tasks with the existing content of work lists [34]. Allocation mechanisms inspired by
economic principles, such as auctions and games, have been studied by Tan and
Harker [40], as well as Alt et al. [41]. Auction protocols for the scheduling of
decentralized resources have been discussed in other domains as well [42].

Despite the considerable amount of related work, we are unaware of research that
specifically deals with dynamic algorithms for distributed task assignment in the
business process management domain. There are two notable exceptions, however:
the model by Kumar et al [3] takes into account the tradeoff between flexibility and
efficiency (see Section 3.1). For the example case described therein, we were able to
produce similar results with our stimulus/response model (these results are not
included in this paper because of page restrictions). This indicates a high similarity in
the effectiveness of both approaches. However, in this paper we show that Kumar's
model is less robust in dealing with different time criteria.

The other exception is the work in [43]. This approach is based on the estimation
of execution times and possible routes that cases will follow. When a new case
arrives, a snapshot of the system is taken and a static scheduling problem based on
this snapshot and the estimations is being solved. The resulting preliminary schedule
is implemented and the whole procedure is repeated as soon as the next job arrives.
The capability of this algorithm to minimize late jobs depends on the accuracy of the
estimations and the solution quality of the scheduling instance. An important insight
from this paper coinciding with ours is that when utilization rates are greater than or
equal to 65%, almost every other technique than the FiFo rule is advantageous.

6 Discussion and Conclusion

Our studies show a favorable performance of fixed stimulus/response-models as a
basis for workflow task assignment in emergency response situations. In particular,
these models provide a balanced trade-off between the performance criteria that are
important in this domain.

Among the most important limitations of our study, it must be noted that in our
simulation model the execution of tasks cannot be interrupted: ACID properties are
strictly enforced [18]. In real world fire fighting situations, tasks can be interrupted
(e.g., a fire fighter will stop saving a cat from a tree if called to extinguish a chemical
fire elsewhere). Also, we do not consider false alarms, which sometimes amount to
50% of all fire incidents [16]. Finally, the higher utilization levels we studied are
beyond what is normal for emergency response situations (there, utilization levels are
typically between 35% and 45% [44]). These limitations restrict general statements on
the effectiveness of workflow technology in the emergency management domain. At
the same time, various developments point at the increasing importance and use of
workflow technology in this domain, as illustrated by the RESCUE [45], CITI [46],
and AMIRA projects [47]. In addition, the emergency management domain itself may
undergo changes, e.g., in the form of increasing resource utilization at local fire
stations and by assigning larger incidents to regional fire stations. The implementation
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of swarm intelligence-based algorithms could contribute to robust process
performance both at low and high resource utilization levels.

The main insight from our study is that stimulus/response-based task assignment
mechanisms are appropriate in environments where timeliness of call resolution is
critical. In particular, as most WfMSs dispatch work items to their performers on a
FiFo basis, the latter strategy should be reconsidered in situations where timeliness is
critical and resources are scarce. Models inspired by swarm intelligence could serve
as a template for mechanisms that are more sensitive to (a) the impact of the elapsed
time on the urgency of cases and (b) variations in the suitability of cross-trained
resources. Since the environment in which businesses operate is increasingly
complex, it can be expected that Business Process Management will have to provide
capabilities similar to those of emergency management systems in order to
continually provide valuable competitive advantage.
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