Notes on Reading the State Tables

The purpose of the state tables is to illustrate, via a separate means from the normative text, the allowable order and interactions of various messages and activities. The state tables are not intended to constrain implementations beyond those necessary to insure this ordering.

· States are represented as columns.

· Actions (messages, application actions, timer events) are represented as rows. Actions are annotated by their type; “[app]” – represents an application action (e.g. a user selecting a “Enumerate” menu item); “[msg]” – represents an incoming, WS-Enumeration defined, message; “[timer]” – represents an internal timer event. The relevant values for a particular fault message are footnoted.

· Each cell describes the appropriate response for a given state and action. Transitions to other states are indicated by displaying the name of that state in square brackets (e.g. “[Active]”). Where the transition or activity is dependent upon other factors than the state and action (e.g. the value of a fault message), the activity is described in pseudo-code. The section of the specification that describes these activities is displayed in curly brackets (e.g. “{4.2}”).
· The Consumer State Table pre-supposes a synchronous style of interaction in which the Consumer is not allowed to send messages whose response may cause a state transition if there is an outstanding request whose response may trigger a different transition. For example, it does not allow a Consumer to send a GetStatus message while there is a pending Renew or Release operation. While it is certainly possible for a Consumer to function in an asynchronous style, the interaction of potentially overlapping operations is out of scope of this specification.
	Consumer State Table

	Actions
	States

	
	Idle
	Creating
	Active
	Renewing
	Getting Status
	Releasing
	End

	Create Enumeration
[app]
	send wsen:Enumerate
[Creating]
{3.1}
	
	
	
	
	
	

	EnumerateResponse
[msg]
	
	[Active]
{3.1}
	
	
	
	
	

	Create Fault 1
[msg]
	
	[End]
{3.1}
	
	
	
	
	

	PullResponse
[msg]
	
	
	if (EndOfSequence)
 [End]
else
 [Active]
{3.2}
	
	
	
	

	Renew
[app]
	
	
	send wsen:Renew
[Renewing]
{3.3}
	
	
	
	

	RenewResponse
[msg]
	
	
	
	update expiration time
[Active]
{3.3}
	
	
	if (was-Renewing)
 update expiration time
 [Active]
{3.3}

	Renew Fault 2
[msg]
	
	
	
	expiration time not updated
[Active]
{3.3}
	
	
	

	GetStatus
[app]
	
	
	send wse:GetStatus
[Getting Status]
{3.4}
	
	
	
	

	GetStatusResponse
[msg]
	
	
	
	
	[Active]
{3.4}
	
	

	GetStatus Fault 3
[msg]
	
	
	
	
	[Active]
{3.4}
	
	

	Release
[app]
	
	
	send wsen:Release
[Releasing]
{3.5}
	
	
	
	

	ReleaseResponse
[msg]
	
	
	
	
	
	[End]
{3.5}
	

	Relase Fault 4
[msg]
	
	
	
	
	
	[Active]
{3.5}
	

	Expiration
[timer]
	
	
	[End]
{3.1}
	[End]
{3.1}
	[End]
{3.1}
	[End]
{3.1}
	

	InvalidEnumerationContext
[msg]
	
	
	[End]
{3.2}
	[End]
{3.3}
	[End]
{3.4}
	[End]
{3.5}
	[End]
{4.7}

	EnumerationEnd
[msg]
	
	[End]
{3.6}
	[End]
{3.6}
	[End]
{3.6}
	[End]
{3.6}
	[End]
{3.6}
	

It is assumed throughout that the correct/latest wsen:EnumerationContext is used in any messages the consumer sends to the data source.

1. wsen:InvalidExpirationTime, wsen:ExpirationTimeExceeded, wsen:UnsupportedExpirationType, wsen:FilteringNotSupported, wsen:FilterDialectRequestUnavailable, wsen:CannotProcessFilter, wsen:UnusableEPR, wsen:EndToNotSupported
2. wsen:InvalidExpirationTime, wsen:ExpirationTimeExceeded, wsen:UnsupportedExpirationType (wsen:InvalidEnumerationContext described as separate message)
3. excluding wsen:InvalidEnumerationContext
excluding wsen:InvalidEnumerationContext

	Data Source State Table

	Actions
	States

	
	Idle
	Active
	End

	Enumerate Request
[msg]
	if (EndToOK && expirationOK && filterOK)
 send EnumerateResponse
 [Active]
else
 generate appropriate fault
 [Idle]
{3.1}
	generate fault
	generate fault

	Pull Request
[msg]
	generate InvalidEnumeratationContext fault
	send wsen:PullResponse
if (end of sequence) {
 include wsen:EndOfSequence
 [End]
}
else {
 [Active]
}
{3.2}
	generate InvalidEnumeratationContext fault

	Renew Request
[msg]
	generate InvalidEnumeratationContext fault
	update expiration timer
send wsen:RenewResponse
[Active]
{3.3}
	generate InvalidEnumeratationContext fault

	GetStatus Request
[msg]
	generate InvalidEnumeratationContext fault
	send wsen:GetStatusResponse
[Active]
{3.4}
	generate InvalidEnumeratationContext fault

	Release Request
[msg]
	generate InvalidEnumeratationContext fault
	send wse:ReleaseResponse
[End]
{3.5}
	generate InvalidEnumeratationContext fault

	Expiration
[timer]
	
	[End]
{4.1}
	

	Shutdown/Error
[app]
	
	if (EndTo engaged)
 send wsen:EnumerationEnd
[End]
{4.5}
	

