Motivation:

There are several factors motivating this proposal:

· During the previous F2F the WG was discussing the need to be able to distinguish different instances of a single metadata types. For example, distinguish the "application (stockquote) WSDL" from the "feature (eventing) WSDL" without requiring knowledge of WS-Eventing's namespace in advance. The idea of adding a @View attribute to the mex:MetadataSection wrapper was discussed and seemed like a reasonable approach.

· However, while adding a @View attribute is possible, and to those of us who live and breathe this stuff on a daily basis it might not seem like much, to "normal" people it might appear as though we're taking a very simple concept (gimme some metadata) and over engineering it. But, without some kind of classification mechanism we still have the original problem.

· Rather than looking at ways to "tag" the metadata (which by itself might be problematic since we would then need to define those tags and one man's application is another man's feature), it might be better to look at achieving the same end goal through association rather than tagging. For example, we already have the notion of advertising support for "non-application semantics" (i.e. implicit semantics) by adding Policy assertions to the application's WSDL. These assertions can provide us with the association we're looking for.
· With this in mind, the basic idea behind this proposal is to place any metadata associated with these "implied semantics" inside their appropriate Policy assertions.

· This idea is not new - we discussed this before when talking placing Notification WSDL within the wse:EventSource assertion. However, this was dismissed for several reasons, not the least of which because there could be more than one Notification WSDL as well as the desire to describe the Events independent of the Notification formats. One thing we didn't consider was to associate the Notification WSDL with the Format URIs. For example, if we modified the wse:Format policy parameter slightly we could allow the Notification WSDL (or any other FormatURI metadata) to appear as a child:
 <wse:FormatName uri="http://.../Unwrap">
 <wsdl:definitions>
 ... Notification WSDL for Unwrapped ...
 </wsdl:definitions>
 </wse:FormatName>
This gives us the association we're looking for.

· This works well for cases where people want to inline the metadata but for other people it may seem a bit verbose. For those cases we should allow for references to appear. Modifying the mex:MetadataReference element slightly (mainly because the use of the word "Metadata" in there seems redundant when its already prefixed with "mex:" and it aligns it better with the mex:Location element), we could allow for metadata references like the following to appear as Policy parameters:
 <wse:EventSource>
 <wse:FormatName uri="http://.../Wrap">
 <mex:Location Dialect=".../wsdl" uri="http://sq.com/Wrapped_Notif_WSDL"/>
 </wse:FormatName>
 <mex:Reference Dialect=".../EventDescriptions">
 <wsa:Address> http://sq.com/Evd </wsa:Address>
 </mex:Reference>
 <mex:Location Dialect=".../wsdl" uri="http://sq.com/EventingWSDL"/>
 </wse:EventSource>
This example Policy assertion tells us several things:
· WS-Eventing is supported

· The wrap Format URI is supported

· The Wrapped Notification WSDL can be retrieved with an HTTP GET to: http://sq.com/Wrapped_Notif_WSDL
· The Event Descriptions metadata can be retrieved with a WS-Transfer.Get to the above EPR.

· The Event Source's WSDL can be retrieved with an HTTP GET to http://sq.com/EventingWSDL. This would allow, as an example, for the Event Source to have a QoS properties within the WSDL, or perhaps specify a certain EPR as the target for the Subscribe message if it's not the same as the stockquote endpoint.
· The previous example, aside from providing the association we're looking for, does several other things.

· It scopes the processing of WS-Eventing metadata to the correct component. By this I mean, if someone doesn't understand the wse:EventSource policy assertion (and they're going to ignore it) then they will automatically ignore all of this extra metadata as well. They will not be forced to see it out of context and wonder if it's something they need to worry about (more on this later).

· Likewise, this means that it's possible to design the WS-Eventing component such that all of its policy/metadata-based configuration data is localized to one place. Ideally, this means that passing along this one assertion to the WS-Eventing component should be enough for it to get its job done. It won't need to do subsequent metadata retrievals - except to resolve any mex:Reference or mex:Location pointers. But that's different from having to use WS-MEX to ask for any Notification WSDL, Event Descriptions and Event Source WSDL that might, or might not, exist. The lack of the refs in the assertion will tell them that no future retrievals are needed.
· In order for this to work the mex.GetMetadata operation needs to be modified to make it clear that the metadata returned MUST NOT include implicit metadata that is meant to appear as children of Policy assertions. For example, doing a mex.GetMetadata("wsdl") MUST never return the stockquote WSDL and the WS-Eventing WSDL (assuming WS-Eventing is supported) - it must only be the stockquote WSDL. This is important because if they were both returned then we're back to the issue of trying to tag them in some way - which probably means the @View attribute. To avoid this we should just only return the application's WSDL.
· This proposal (and in particular the previous point) will also simplify things by aligning MEX with existing metadata retrieval, in particular ?wsdl. People use ?wsdl today and it works just fine. It returns just the application WSDL so it's hard to argue that people need more than one WSDL doc when using MEX. To that end, let's just copy the semantics of ?wsdl and say that mex.GetMetadata("wsdl") returns the same thing as ?wsdl - meaning the application WSDL.

· Also, this proposal will align ?wsdl and MEX by allowing ?wsdl to return pretty much everything people need to interact with the service - even QoS metadata .

· This proposal also adds a bit of a REST flavor to how we deal with MEX. By that I mean it follows the REST model where people start with one piece of data (in this case the base WSDL) and then follow links to get all other metadata. In other words, while people can inline all data under the Policy assertions they could also choose to include references (mex:Reference and mex:Location).

· I've tried to avoid using the term "application WSDL" because it begs the question of what's the "application"? I believe that this proposal (if we get the wording right in the spec for the previous couple of bullets) will avoid this issue. This is because the endpoint itself will determine what the application is and what isn't. Let's take two examples:

· A Stockquote service
In this example doing a ?wsdl to the endpoint will return the stockquote operations. If WS-Eventing is supported then we expect this is be known through the use of the wse:EventSource policy assertion - as shown in the above examples. So, doing a mex.GetMetadata("wsdl") MUST return just the WSDL for the getQuote operation and not any of the WS-Eventing associated WSDL - that implicit metadata.

· A WS-Eventing dedicated service - meaning it only supports WS-Eventing
In this example doing a ?wsdl to the endpoint will return a concrete instance of the WS-Eventing WSDL. And in this case the "application" is WS-Eventing, which means doing a mex.GetMetadata("wsdl") to the endpoint will return the WS-Eventing WSDL. It's worth noting that if this endpoint supports QoS Features on the WS-Eventing ops (e.g. RM-enabled Subscribe) then the RM assertions would appear in the WS-Eventing WSDL and, if necessary, the RM WSDL might appear within that assertion.
QUESTION: Where does the wse:EventSource policy appear in this case? I guess it's on the WS-Eventing WSDL, right?
· One of the nice things about this proposal is that it allows for all metadata to appear in one document. So, someone could make it so that ?wsdl (or mex.GetMetadata("wsdl")) returns one huge WSDL doc that includes all the metadata they would need to interact with the service. This is what I think the WSDD folks are looking for. For example, it could include:

· The stockquote wsdl/operations.

· A Policy assertion to indicate that WS-Eventing is supported.

· The Event Descriptions metadata embedded under the wse:EventSource policy.

· All of the Notification WSDL embedded under the appropriate wse:EventSource/wse:Format policy.

The following XML examples show this proposal in action. It starts with two baseline XML snippets - one being a Stockquote WSDL doc, and one being a WS-Eventing NotifyTo EPR - and shows how this proposal would require that metadata be associated with each one. The examples build on each other and the "new" bits are highlighted in red.
Initial WSDL:

<wsdl:definitions targetNamespace="http://sq.com" xmlns:tns="http://sq.com">
 ...

 <wsdl:portType name="sqPort">

 <wsdl:operation name="GetQuote"> ... </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="sqBinding" type="tns:sqPort">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="GetQuote"> ... </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="sqService">

 <wsdl:port binding="tns:sqBinding" name="sq">
 <soap:address location="http://sq.com"/>

 <wsa:EndpointReference>

 <wsa:Address> http://sq.com </wsa:Address>

 </wsa:EndpointReference>

 </wsdl:port>

 </wsdl:service>
</wsdl:definitions>

Initial EPR:

<wse:NotifyTo>

 <wsa:Address> http://sink.com </wsa:Address>

</wse:NotifyTo>

WSDL + EventSource:
This WSDL is for a StockQuote service that also support WS-Eventing.

The WS-Eventing protocol messages (e.g. Subscribe) are sent to the same endpoint as the application messages.

It only supports Unwrapped delivery format.

<wsdl:definitions targetNamespace="http://sq.com" xmlns:tns="http://sq.com">
 ...

 <wsdl:portType name="sqPort">

 <wsdl:operation name="GetQuote"> ... </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="sqBinding" type="tns:sqPort">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="GetQuote"> ... </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="sqService">

 <wsdl:port binding="tns:sqBinding" name="sq">

 <soap:address location="http://sq.com"/>

 <wsa:EndpointReference>

 <wsa:Address> http://sq.com </wsa:Address>

 </wsa:EndpointReference>

 <wsp:Policy>

 <wse:EventSource>

 <wse:FormatName uri="http://.../Unwrap"/>
 </wse:EventSource>

 </wsp:Policy>

 </wsdl:port>

 </wsdl:service>
</wsdl:definitions>

WSDL + EventSource + EventDescriptions:
This WSDL is for a StockQuote service that also support WS-Eventing.

The WS-Eventing protocol messages are sent to the same endpoint as the application messages.

It only supports Unwrapped delivery format.

The description of the format of the events is included - just one Event is generated.

<wsdl:definitions targetNamespace="http://sq.com" xmlns:tns="http://sq.com">
 ...

 <wsdl:portType name="sqPort">

 <wsdl:operation name="GetQuote"> ... </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="sqBinding" type="tns:sqPort">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="GetQuote"> ... </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="sqService">

 <wsdl:port binding="tns:sqBinding" name="sq">

 <soap:address location="http://sq.com"/>

 <wsa:EndpointReference>

 <wsa:Address> http://sq.com </wsa:Address>

 </wsa:EndpointReference>

 <wsp:Policy>

 <wse:EventSource>

 <wse:FormatName uri="http://.../Unwrap"/>
 <wse:EventDescriptions>
 ...
 <wse:eventType name="sq" element="sq:Quote" actionURI="urn:Quote"/>

 </wse:EventDescriptions>

 </wse:EventSource>

 </wsp:Policy>

 </wsdl:port>

 </wsdl:service>
</wsdl:definitions>

WSDL + EventSource + EventDescriptions + Notification WSDL:
This WSDL is for a StockQuote service that also support WS-Eventing.

The WS-Eventing protocol messages are sent to the same endpoint as the application messages.

It only supports Unwrapped delivery format.

The description of the format of the events is included - just one Event is generated.

The WSDL for the Unwrapped Notifications is included.

<wsdl:definitions targetNamespace="http://sq.com" xmlns:tns="http://sq.com">
 ...

 <wsdl:portType name="sqPort">

 <wsdl:operation name="GetQuote"> ... </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="sqBinding" type="tns:sqPort">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="GetQuote"> ... </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="sqService">

 <wsdl:port binding="tns:sqBinding" name="sq">

 <soap:address location="http://sq.com"/>

 <wsa:EndpointReference>

 <wsa:Address> http://sq.com </wsa:Address>

 </wsa:EndpointReference>

 <wsp:Policy>

 <wse:EventSource>

 <wse:FormatName uri="http://.../Unwrap">

 <wsdl:definitions>

 ... Notification WSDL for Unwrapped ...

 </wsdl:definitions>

 </wse:FormatName>

 <wse:EventDescriptions>
 ...
 <wse:eventType name="sq" element="sq:Quote" actionURI="urn:Quote"/>

 </wse:EventDescriptions>
 </wse:EventSource>

 </wsp:Policy>

 </wsdl:port>

 </wsdl:service>
</wsdl:definitions>

WSDL + EventSource + EventDescriptions + Notification WSDL + Dedicated endpoint for Eventing Ops:
This WSDL is for a StockQuote service that also support WS-Eventing.

It only supports Unwrapped delivery format.

The description of the format of the events is included - just one Event is generated.

The WSDL for the Unwrapped Notifications is included.

The WS-Eventing protocol messages are sent to a different endpoint than the GetQuote message as indicated in the embedded WS-Eventing WSDL.
<wsdl:definitions targetNamespace="http://sq.com" xmlns:tns="http://sq.com">
 ...

 <wsdl:portType name="sqPort">

 <wsdl:operation name="GetQuote"> ... </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="sqBinding" type="tns:sqPort">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="GetQuote"> ... </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="sqService">

 <wsdl:port binding="tns:sqBinding" name="sq">

 <soap:address location="http://sq.com"/>

 <wsa:EndpointReference>

 <wsa:Address> http://sq.com </wsa:Address>

 </wsa:EndpointReference>

 <wsp:Policy>

 <wse:EventSource>

 <wse:FormatName uri="http://.../Unwrap">

 <wsdl:definitions>

 ... Notification WSDL for Unwrapped ...

 </wsdl:definitions>

 </wse:FormatName>

 <wse:EventDescriptions>
 ...
 <wse:eventType name="sq" element="sq:Quote" actionURI="urn:Quote"/>

 </wse:EventDescriptions>
 <wsdl:definitions>

 <wsdl:import namespace="http://www.w3.org/2009/09/ws-evt"

 location="http://www.w3.org/2009/09/ws-evt/eventing.wsdl"/>

 ...

 <wsdl:service name="SQEventing">

 <wsdl:port binding="tns:SQEBinding" name="sqEventing">

 <soap:address location="http://sq.com/Eventing"/>

 </wsdl:port>

 </wsdl:service>

 </wsdl:definitions>

 </wse:EventSource>

 </wsp:Policy>

 </wsdl:port>

 </wsdl:service>
</wsdl:definitions>

WSDL + EventSource + EventDescriptions + Notification WSDL + Dedicated endpoint for Eventing Ops:

This WSDL is for a StockQuote service that also support WS-Eventing.

It only supports Unwrapped delivery format.

The description of the format of the events is referenced - just one Event is generated.

The WSDL for the Unwrapped Notifications is referenced.

The WS-Eventing protocol messages are sent to a different endpoint than the GetQuote message as indicated in the referenced WS-Eventing WSDL.

The WS-Eventing metadata is referenced instead of embedded.

<wsdl:definitions targetNamespace="http://sq.com" xmlns:tns="http://sq.com">
 ...

 <wsdl:portType name="sqPort">

 <wsdl:operation name="GetQuote"> ... </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="sqBinding" type="tns:sqPort">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="GetQuote"> ... </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="sqService">

 <wsdl:port binding="tns:sqBinding" name="sq">

 <soap:address location="http://sq.com"/>

 <wsa:EndpointReference>

 <wsa:Address> http://sq.com </wsa:Address>

 </wsa:EndpointReference>

 <wsp:Policy>

 <wse:EventSource>

 <wse:FormatName uri="http://.../Unwrap">

 <mex:Location Dialect=".../wsdl" uri="http://sq.com/Notification_WSDL"/>

 </wse:FormatName>

 <mex:Reference Dialect=".../EventDescriptions">

 <wsa:Address> http://sq.com/Evd </wsa:Address>

 </mex:Reference>
 <mex:Location Dialect=".../wsdl" uri="http://sq.com/EventingWSDL"/>
 </wse:EventSource>

 </wsp:Policy>

 </wsdl:port>

 </wsdl:service>
</wsdl:definitions>

EPR + RM:

This is a NotifyTo EPR that might appear in a wse:Subscribe.

It indicates that RM is required when sending the Notifications.

<wse:NotifyTo>

 <wsa:Address> http://sink.com </wsa:Address>

 <wsa:Metadata>

 <wsp:Policy>

 <wsrmp:RMAssertion/>

 </wsp:Policy>

 </wsa:Metadata>

</wse:NotifyTo>

EPR + RM + Dedicated endpoint for RM Ops:

This is a NotifyTo EPR that might appear in a wse:Subscribe.

It indicates that RM is required when sending the Notifications.

The RM lifecycle messages are sent to a separate endpoint as indicated by the embedded RM WSDL.

<wse:NotifyTo>

 <wsa:Address> http://sink.com </wsa:Address>

 <wsa:Metadata>

 <wsp:Policy>

 <wsrmp:RMAssertion>
 <wsdl:definitions>

 <wsdl:import namespace="http://docs.oasis-open.org/ws-rx/wsrm/200702/wsdl"

 location="http://.../wsrm/200702/wsrm-1.1-wsdl-200702.wsdl"/>

 ...

 <wsdl:service name="SQRM">

 <wsdl:port binding="tns:SQRMBinding" name="sqRM">

 <soap:address location="http://sq.com/RM"/>

 </wsdl:port>

 </wsdl:service>

 </wsdl:definitions>

 </wsrmp:RMAssertion>
 </wsp:Policy>

 </wsa:Metadata>

</wse:NotifyTo>

EPR + RM + Dedicated endpoint for RM Ops:

This is a NotifyTo EPR that might appear in a wse:Subscribe.

It indicates that RM is required when sending the Notifications.

The RM lifecycle messages are sent to a separate endpoint as indicated by the embedded RM WSDL.

The RM metadata is referenced instead of embedded.

<wse:NotifyTo>

 <wsa:Address> http://sink.com </wsa:Address>

 <wsa:Metadata>

 <wsp:Policy>

 <wsrmp:RMAssertion>
 <mex:Reference Dialect=".../wsdl" uri="http://sq.com/RM_WSDL"/>

 </wsrmp:RMAssertion>
 </wsp:Policy>

 </wsa:Metadata>

</wse:NotifyTo>

Summary:
Below are a summary of the changes that would be needed to the specs:

· Modify WS-MEX to explain this pattern of exposing "Feature Metadata" (e.g. "Feature WSDL") under the appropriate Policy assertion and about how it can be used to customize the base WSDL either for QoS properties or to specify a dedicated endpoint for those Feature operations. And give an example of how it can be used for some non-WSRA spec - like WS-RM. This will replace section 9 of WS-MEX.

· Modify all specs that have Feature Metadata to mention that the Metadata appears as an optional element in the xs:any extensibility point. Include a concrete example to demonstrate it:
<wse:EventSource ...>
 <wse:DateTimeSupported .../>
 <wse:FilterDialect ...> xs:anyURI </wse:FilterDialect>
 <wse:MaxExpires ...> xs:duration </wse:MaxExpires>
 <wse:FormatName ...> xs:anyURI </wse:FormatName>
 <wsdl:definitions> ... </wsdl:definitions> ?
</wse:EventSource>

Do the same thing for other WSDL docs - for example "Notification WSDL" would go under the <wse:FormatName> element. Note: we need to make it clear that while we're using WSDL in the examples, this applies to all kinds of metadata, not just WSDL. Including the EventDescription metadata in an example will help.

· Modify any policy assertion that would preclude us from being able to place Metadata under it if needed. For example, WS-Eventing's <wse:FormatURI> would need to be modified so that its children allow an xs:any instead of just a URI. So, in this case move the URI to be an attribute.

· Rename <mex:MetadataReference> to <mex:Reference>

· Define <mex:Reference> and <mex:Location> as stand-alone elements and in those cases give them @Dialect and @Identifier attributes. When these elements appear under a <mex:MetadataSection> they would not have these attributes. Add text that explains that these element can be used in place of "embedded" metadata for either brevity or convenience (e.g. to have multiple refs to the same piece of data).

· Modify WS-MEX to show how Policy assertions go into an EPR and define what it means (endpoint subject...). And give a concrete example:
<wse:NotifyTo>
 <wsa:Address> http://sink.com </wsa:Address>
 <wsa:Metadata>
 <wsp:Policy>
 <wsrmp:RMAssertion/>
 </wsp:Policy>
 </wsa:Metadata>
</wse:NotifyTo>

· Consider modifying <mex:Location> so the URI is an attribute instead of a child - to enable better extensibility.
If adopted, this proposal should close the following issues:

· 6463: MEX: Attaching Policy to WS-Mex GetMetadata
This can be solved by the following:
<wsa:EndpointReference>
 <wsa:Address> http://sink.com </wsa:Address>
 <wsa:Metadata>
 <wsp:Policy>
 <wmex:MetadataExchange/>
 </wsp:Policy>
 </wsa:Metadata>
</wsa:EndpointReference>
This means that the endpoint supports MEX.

To indicate that MEX is supported with a certain set of QoS:
<wsa:EndpointReference>
 <wsa:Address> http://sink.com </wsa:Address>
 <wsa:Metadata>
 <wsp:Policy>
 <mex:MetadataExchange>
 <wsdl:definitions> ... </wsdl:definitions>
 </mex:MetadataExchange>
 </wsp:Policy>
 </wsa:Metadata>
</wsa:EndpointReference>

· 8301: WS-Mex: Distinguishing the 'main' metadata
By removing the notion of anything but 'main' metadata when asking for WSDL.

· 7728: MEX: Attaching Policy to Indicate MEX/MEX Features Supported

