Web Services Transfer (WS-Transfer)

Editor's Draft $Date: 2009/09/23 20:06:57 $

Latest version:

http://www.w3.org/TR/ws-transfer
Previous version:

http://www.w3.org/TR/2009/WD-ws-transfer-20090317
Editors:

Doug Davis, IBM

Ashok Malhotra, Oracle

Katy Warr, IBM

Wu Chou, Avaya

Copyright © 2009 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply.

Abstract

This specification describes a general SOAP-based protocol for accessing XML representations of Web service-based resources.

Status of this Document

This document is an editors' copy that has no official standing.
Table of Contents

1 Introduction
 1.1 Requirements
2 Terminology and Notation
 2.1 Terminology
 2.2 XML Namespaces
 2.3 Notational Conventions
 2.4 Considerations on the Use of Extensibility Points
 2.5 Compliance
3 Resource Operations
 3.1 Get
 3.2 Put
 3.3 Delete
4 Resource Factory Operations
 4.1 Create
5 Faults
 5.1 InvalidRepresentation
 5.2 UnknownDialect
 5.3 PutDenied
6 Security Considerations
7 WS-Transfer Policy Assertion(s)
8 Acknowledgements
9 References
 9.1 Normative References
 9.2 Informative References
Appendices

A XML Schema
B WSDL
C Change Log

1 Introduction

This specification defines a mechanism for acquiring XML-based representations of entities using the Web service infrastructure. It defines two types of entities:

· Resources, which are entities addressable by an endpoint reference that provide an XML representation

· Resource factories, which are Web services that can create a new resource from an XML representation

Specifically, it defines two operations for sending and receiving the representation of a given resource and two operations for creating and deleting a resource and its corresponding representation.

Note that the state maintenance of a resource is at most subject to the "best efforts" of the hosting server. When a client receives the server's acceptance of a request to create or update a resource, it can reasonably expect that the resource now exists at the confirmed location and with the confirmed representation, but this is not a guarantee, even in the absence of any third parties. The server MAY change the representation of a resource, MAY remove a resource entirely, or MAY bring back a resource that was deleted.

For instance, the server might store resource state information on a disk drive. If that drive crashes and the server recovers state information from a backup tape, changes that occurred after the backup was made will be lost.

A server MAY have other operational processes that change resource state information. A server might run a background process that examines resources for objectionable content and deletes any such resources it finds. A server can purge resources that have not been accessed for some period of time. A server could apply storage quotas that cause it to occasionally purge resources.

In essence, the confirmation by a service of having processed a request to create, modify, or delete a resource implies a commitment only at the instant that the confirmation was generated. While the usual case is that resources are long-lived and stable, there are no guarantees, and clients are advised to code defensively.

There is no requirement for uniformity in resource representations between the messages defined in this specification. For example, the representations required by Create or Put can differ from the representation returned by Get, depending on the semantic requirements of the service. Additionally, there is no requirement that the resource content is fixed for any given endpoint reference. The resource content can vary based on environmental factors, such as the security context, time of day, configuration, or the dynamic state of the service.

As per the SOAP processing model, other specifications MAY define SOAP headers which can be optionally added to request messages to require the transfer of subsets or the application of transformations of the resource associated with the endpoint reference. When the Action URIs defined by this specification are used, such extension specifications MUST also allow the basic processing models defined herein.

1.1 Requirements

This specification intends to meet the following requirements:

· Provide a SOAP-based protocol for managing resources and their representations.

· Minimize additional mechanism beyond the current Web Services architecture.

2 Terminology and Notation

2.1 Terminology

Resource

A Web service that is addressable using an endpoint reference and can be represented by an XML Information Set. The representation can be retrieved using the Get operation and can be manipulated using the Put and Delete operations.

Resource factory

A Web service that is capable of creating new resources using the Create operation defined in this specification.

2.2 XML Namespaces

The XML Namespace URI that MUST be used by implementations of this specification is:

http://www.w3.org/2009/02/ws-tra
Table 2-1 lists XML namespaces that are used in this specification. The choice of any namespace prefix is arbitrary and not semantically significant.

	Table 2-1: Prefixes and XML Namespaces used in this specification.

	Prefix
	XML Namespace
	Specification(s)

	wst
	http://www.w3.org/2009/02/ws-tra
	This specification

	s
	Either SOAP 1.1 or 1.2
	SOAP

	s11
	http://schemas.xmlsoap.org/soap/envelope/
	[SOAP11]

	s12
	http://www.w3.org/2003/05/soap-envelope
	[SOAP12]

	wsa
	http://www.w3.org/2005/08/addressing
	[WS-Addressing]

	wsdl
	http://schemas.xmlsoap.org/wsdl/
	[WSDL11]

	xs
	http://www.w3.org/2001/XMLSchema
	XML Schema [XMLSchema - Part 1], [XMLSchema - Part 2]

The working group intends to update the value of the Web Services Transfer namespace URI each time a new version of this document is published until such time that the document reaches Candidate Recommendation status. Once it has reached Candidate Recommendation status, the working group intends to maintain the value of the Web Services Transfer namespace URI that was assigned in the Candidate Recommendation unless significant changes are made that impact the implementation or break post-CR implementations of the specification. Also see http://www.w3.org/2001/tag/doc/namespaceState.html and http://www.w3.org/2005/07/13-nsuri .

2.3 Notational Conventions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC 2119].

This specification uses the following syntax to define outlines for messages:

· The syntax appears as an XML instance, but values in italics indicate data types instead of literal values.

· Characters are appended to elements and attributes to indicate cardinality:

· "?" (0 or 1)

· "*" (0 or more)

· "+" (1 or more)

· The character "|" is used to indicate a choice between alternatives.

· The characters "(" and ")" are used to indicate that contained items are to be treated as a group with respect to cardinality or choice.

· The characters "[" and "]" are used to call out references and property names.

· Ellipsis (i.e. "...") indicate points of extensibility.

· XML namespace prefixes (see Table 2-1) are used to indicate the namespace of the element being defined.

In addition to Message Information Header properties [WS-Addressing], this specification uses the following properties to define messages:

[Headers]

Unordered message headers.

[Action]

The value to be used for the wsa:Action URI.

[Body]

A message body.

These properties bind to a SOAP Envelope as follows:

<s:Envelope>

 <s:Header>

 [Headers]
 <wsa:Action>[Action]</wsa:Action>

 ...

 </s:Header>

 <s:Body>[Body]</s:Body>

</s:Envelope>

This specification can be used in terms of XML Information Set (Infoset) [XML Infoset], even though the specification uses XML 1.0 terminology. Valid Infoset for this specification is the one serializable in XML 1.0, hence the use of XML 1.0.

2.4 Considerations on the Use of Extensibility Points

The elements defined in this specification MAY be extended at the points indicated by their outlines and schema. Implementations MAY add child elements and/or attributes at the indicated extension points but MUST NOT contradict the semantics of the parent and/or owner, respectively. If a receiver does not recognize an extension, the receiver SHOULD ignore that extension. Senders MAY indicate the presence of an extension that has to be understood through the use of a corresponding SOAP Header with a soap:mustUnderstand attribute with the value "1".

In cases where it is either desirable or necessary for the receiver of a request that has been extended to indicate that it has recognized and accepted the semantics associated with that extension, it is RECOMMENDED that the receiver add a corresponding extension to the response message. The definition of an extension SHOULD clearly specify how the extension that appears in the response correlates with that in the corresponding request.

Extension elements and attributes MUST NOT use the Web Services Transfer namespace URI.

2.5 Compliance

An implementation is not compliant with this specification if it fails to satisfy one or more of the MUST or REQUIRED level requirements defined herein. A SOAP Node MUST NOT use the XML namespace identifier for this specification (listed in 2.2 XML Namespaces) within SOAP Envelopes unless it is compliant with this specification.

Normative text within this specification takes precedence over the XML Schema and WSDL descriptions, which in turn take precedence over outlines, which in turn take precedence over examples.

All messages defined by this specification MUST be sent to a Web service that is addressable by an EPR (see [WS-Addressing]).

Unless otherwise noted, all URIs are absolute URIs and URI comparison MUST be performed according to [RFC 3986] section 6.2.1.

A compliant SOAP Node that implements a resource MUST provide the Get operation as defined in this specification, and MAY provide the Put and Delete operations.

3 Resource Operations

3.1 Get

This specification defines one Web service operation (Get) for fetching a one-time snapshot of the representation of a resource.

The Get request message MUST be of the following form:

[Action]
 http://www.w3.org/2009/02/ws-tra/Get

[Body]
 <wst:Get Dialect="xs:anyURI"? ...>

 xs:any*

 </wst:Get>

The following describes additional, normative constraints on the outline listed above:

[Body]/wst:Get

This is a REQUIRED element that has no defined child element content. However, it MAY include child element content as defined by an extension(s).

[Body]/wst:Get@Dialect

When this OPTIONAL attribute is present it contains a URI that refers to additional information for the service on how to process this element. If the attribute is present but the dialect URI is not known then the service MUST generate an UnknownDialect fault. There is no default value for the attribute. If the attribute is absent, then the base behavior is used.

[Body]/wst:Get@Dialect="http://www.w3.org/2009/02/ws-fra"

The WS-Fragment [WS-Fragment] specification defines this dialect URI. Use of this URI indicates that the contents of the Get element MUST be processed as specified by the WS-Fragment [WS-Fragment] specification.

A Get request MUST be targeted at the resource whose representation is desired as described in 2 Terminology and Notation of this specification.

If the resource accepts a Get request, it MUST reply with a response of the following form:

[Action]
 http://www.w3.org/2009/02/ws-tra/GetResponse

[Body]
 <wst:GetResponse ...>

 xs:any*

 </wst:GetResponse>

The following describes additional, normative constraints on the outline listed above:

[Body]/wst:GetResponse

This REQUIRED element MUST have as its first child element, an element that comprises the representation of the resource. Additional extension elements MAY be included after the element representing the resource.

Other components of the outline above are not further constrained by this specification.

This operation is safe; it will not result in any side effect imputable to the requester. This means that in case of an underlying protocol error that might get unnoticed, resending the same request can be done automatically.

The following shows a sample SOAP envelope containing a Get request:

<s:Envelope

 xmlns:s="http://www.w3.org/2003/05/soap-envelope"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:xxx="http://fabrikam123.example.com/resource-model" >

 <s:Header>

 <wsa:ReplyTo>

 <wsa:Address>

 http://www.fabrikam123.example.org/pullport

 </wsa:Address>

 </wsa:ReplyTo>

 <wsa:To>http://www.example.org/repository</wsa:To>

 <xxx:CustomerID wsa:IsReferenceParameter="true">

 732199

 </xxx:CustomerID>

 <xxx:Region wsa:IsReferenceParameter="true">

 EMEA

 </xxx:Region>

 <wsa:Action>

 http://www.w3.org/2009/02/ws-tra/Get

 </wsa:Action>

 <wsa:MessageID>

 uuid:00000000-0000-0000-C000-000000000046

 </wsa:MessageID>

 </s:Header>

 <s:Body>

 <wst:Get/>

 </s:Body>

</s:Envelope>

The following shows the corresponding response message:

<s:Envelope

 xmlns:s="http://www.w3.org/2003/05/soap-envelope"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:xxx="http://fabrikam123.example.com/resource-model" >

 <s:Header>

 <wsa:To>http://www.fabrikam123.example.org/pullport</wsa:Address>

 <wsa:Action>

 http://www.w3.org/2009/02/ws-tra/GetResponse

 </wsa:Action>

 <wsa:MessageID>

 uuid:0000010e-0000-0000-C000-000000000046

 </wsa:MessageID>

 <wsa:RelatesTo>

 uuid:00000000-0000-0000-C000-000000000046

 </wsa:RelatesTo>

 </s:Header>

 <s:Body>

 <wst:GetResponse>

 <xxx:Customer>

 <xxx:first>Roy</xxx:first><xxx:last>Hill</xxx:last>

 <xxx:address>123 Main Street</xxx:address>

 <xxx:city>Manhattan Beach</xxx:city>

 <xxx:state>CA</xxx:state>

 <xxx:zip>90266</xxx:zip>

 </xxx:Customer>

 </wst:GetResponse>

 </s:Body>

</s:Envelope>

In this example, the representation of the resource is the following XML element:

 <xxx:Customer>

 <xxx:first>Roy</xxx:first><xxx:last>Hill</xxx:last>

 <xxx:address>123 Main Street</xxx:address>

 <xxx:city>Manhattan Beach</xxx:city>

 <xxx:state>CA</xxx:state>

 <xxx:zip>90266</xxx:zip>

 </xxx:Customer>

3.2 Put

This specification defines one Web service operation (Put) for updating a resource by providing a replacement representation. A resource MAY accept updates that provide different XML representations than that returned by the resource; in such a case, the semantics of the update operation is defined by the resource.

This operation will replace the entire XML representation of the resource. Any optional values (elements or attributes) not specified in the Put request message will be set to some resource specific default value.

The Put request message MUST be of the following form:

[Action]
 http://www.w3.org/2009/02/ws-tra/Put

[Body]
 <wst:Put Dialect="xs:anyURI"? ...>

 xs:any*

 </wst:Put>

The following describes additional, normative constraints on the outline listed above:

[Body]/wst:Put

This REQUIRED element MUST have as its first child element, an element that comprises the representation of the resource that is to be replaced. Additional extension elements MAY be included after the element representing the resource.

[Body]/wst:Put@Dialect

When this OPTIONAL attribute is present it contains a URI that refers to additional information for the service on how to process this element. If the attribute is present but the dialect URI is not known then the service MUST generate an UnknownDialect fault. There is no default value for the attribute. If the attribute is absent, then the base behavior is used.

[Body]/wst:Put@Dialect="http://www.w3.org/2009/02/ws-fra"

The WS-Fragment [WS-Fragment] specification defines this dialect URI. Use of this URI indicates that the contents of the Put element MUST be processed as specified by the WS-Fragment [WS-Fragment] specification.

A Put request MUST be targeted at the resource whose representation is desired to be replaced, as described in 2 Terminology and Notation of this specification.

Implementations MAY use the fault code wst:InvalidRepresentation if the presented representation is invalid for the target resource. The replacement representation could be considered to be invalid if it does not conform to the schema(s) for the target resource or otherwise violates some cardinality or type constraint. If an implementation detects that the presented representation is invalid it MUST generate a wst:InvalidRepresentation fault.

The replacement representation could contain within it element or attribute values that are different than their corresponding values in the current representation. Such changes could affect elements or attributes that, for whatever reason, the implementation does wish to allow the client to change. An implementation MAY choose to ignore such elements or attributes, or it MAY generate a wst:PutDenied fault. See 5 Faults.

Other components of the outline above are not further constrained by this specification.

A successful Put operation updates the current representation associated with the targeted resource. An unsuccessful Put operation does not affect the resource.

If the resource accepts a Put request and performs the requested update, it MUST reply with a response of the following form:

[Action]
 http://www.w3.org/2009/02/ws-tra/PutResponse

[Body]
 <wst:PutResponse ...>

 xs:any*

 </wst:PutResponse>

[Body]/wst:PutResponse

This REQUIRED element, if it contains any child elements, MUST have as its first child element, an element that comprises the representation of the resource that has been updated. Additional extension elements MAY be included after the element representing the resource.

As an optimization and as a service to the requester, if there are no extension elements this element SHOULD be empty if the updated representation does not differ from the representation sent in the Put request message; that is, if the service accepted the new representation verbatim.

Such a response (an empty wst:PutResponse) implies that the update request was successful in its entirety (assuming no intervening mutating operations are performed). A service MAY return the current representation of the resource as the child of the wst:PutResponse element even in this case, however.

Other components of the outline above are not further constrained by this specification.

The following shows a sample SOAP envelope containing a Put request:

<s:Envelope

 xmlns:s="http://www.w3.org/2003/05/soap-envelope"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:xxx="http://fabrikam123.example.com/resource-model" >

 <s:Header>

 <wsa:ReplyTo>

 <wsa:Address>

 http://www.fabrikam123.example.org/sender

 </wsa:Address>

 </wsa:ReplyTo>

 <wsa:To>http://www.example.org/pushport</wsa:To>

 <xxx:CustomerID wsa:IsReferenceParameter="true">

 732199

 </xxx:CustomerID>

 <xxx:Region wsa:IsReferenceParameter="true">

 EMEA

 </xxx:Region>

 <wsa:Action>

 http://www.w3.org/2009/02/ws-tra/Put

 </wsa:Action>

 <wsa:MessageID>

 uuid:00000000-0000-0000-C000-000000000047

 </wsa:MessageID>

 </s:Header>

 <s:Body>

 <wst:Put>

 <xxx:Customer>

 <xxx:first>Roy</xxx:first><xxx:last>Hill</xxx:last>

 <xxx:address>321 Main Street</xxx:address>

 <xxx:city>Manhattan Beach</xxx:city>

 <xxx:state>CA</xxx:state>

 <xxx:zip>90266</xxx:zip>

 </xxx:Customer>

 </wst:Put>

 </s:Body>

</s:Envelope>

The following shows the corresponding response message indicating success:

<s:Envelope

 xmlns:s="http://www.w3.org/2003/05/soap-envelope"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:xxx="http://fabrikam123.example.com/resource-model" >

 <s:Header>

 <wsa:To>http://www.fabrikam123.example.org/sender</wsa:Address>

 <wsa:Action>

 http://www.w3.org/2009/02/ws-tra/PutResponse

 </wsa:Action>

 <wsa:MessageID>

 uuid:0000010e-0000-0000-C000-000000000047

 </wsa:MessageID>

 <wsa:RelatesTo>

 uuid:00000000-0000-0000-C000-000000000047

 </wsa:RelatesTo>

 </s:Header>

 <s:Body>

 <wst:PutResponse/>

 </s:Body>

</s:Envelope>

3.3 Delete

This specification defines one Web service operation (Delete) for deleting a resource in its entirety.

The Delete request message MUST be of the following form:

[Action]
 http://www.w3.org/2009/02/ws-tra/Delete

[Body]
 <wst:Delete Dialect="xs:anyURI"? ...>

 xs:any*

 </wst:Delete>

The following describes additional, normative constraints on the outline listed above:

[Body]/wst:Delete

This is a REQUIRED element that has no defined child element content. However, it MAY include child element content as defined by an extension(s).

[Body]/wst:Delete@Dialect

When this OPTIONAL attribute is present it contains a URI that refers to additional information for the service on how to process this element. If the attribute is present but the dialect URI is not known then the service MUST generate an UnknownDialect fault. There is no default value for the attribute. If the attribute is absent, then the base behavior is used.

[Body]/wst:Delete@Dialect="http://www.w3.org/2009/02/ws-fra"

The WS-Fragment [WS-Fragment] specification defines this dialect URI. Use of this URI indicates that the contents of the Delete element MUST be processed as specified by the WS-Fragment [WS-Fragment] specification.

A Delete request MUST be targeted at the resource to be deleted as described in 2 Terminology and Notation of this specification.

Implementations MAY respond with a fault message using the standard fault codes defined in WS-Addressing (e.g., wsa:ActionNotSupported). Other components of the outline above are not further constrained by this specification.

A successful Delete operation invalidates the current representation associated with the targeted resource.

If the resource accepts a Delete request, it MUST reply with a response of the following form:

[Action]
 http://www.w3.org/2009/02/ws-tra/DeleteResponse

[Body]
 <wst:DeleteResponse ...>

 xs:any*

 </wst:DeleteResponse>

[Body]/wst:DeleteResponse

This REQUIRED element MAY contain extension elements.

Other components of the outline above are not further constrained by this specification.

The following shows a sample SOAP envelope containing a Delete request:

<s:Envelope

 xmlns:s="http://www.w3.org/2003/05/soap-envelope"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:xxx="http://fabrikam123.example.com/resource-model" >

 <s:Header>

 <wsa:ReplyTo>

 <wsa:Address>

 http://www.fabrikam123.example.org/sender

 </wsa:Address>

 </wsa:ReplyTo>

 <wsa:To>http://www.example.org/pushport</wsa:To>

 <xxx:CustomerID wsa:IsReferenceParameter="true">

 732199

 </xxx:CustomerID>

 <xxx:Region wsa:IsReferenceParameter="true">

 EMEA

 </xxx:Region>

 <wsa:Action>

 http://www.w3.org/2009/02/ws-tra/Delete

 </wsa:Action>

 <wsa:MessageID>

 uuid:00000000-0000-0000-C000-000000000049

 </wsa:MessageID>

 </s:Header>

 <s:Body>

 <wst:Delete/>

 </s:Body>

</s:Envelope>

The following shows the corresponding response message indicating success:

<s:Envelope

 xmlns:s="http://www.w3.org/2003/05/soap-envelope"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:xxx="http://fabrikam123.example.com/resource-model" >

 <s:Header>

 <wsa:To>http://www.fabrikam123.example.org/sender</wsa:Address>

 <wsa:Action>

 http://www.w3.org/2009/02/ws-tra/DeleteResponse

 </wsa:Action>

 <wsa:MessageID>

 uuid:0000010e-0000-0000-C000-000000000049

 </wsa:MessageID>

 <wsa:RelatesTo>

 uuid:00000000-0000-0000-C000-000000000049

 </wsa:RelatesTo>

 </s:Header>

 <s:Body>

 <wst:DeleteResponse/>

 </s:Body>

</s:Envelope>

4 Resource Factory Operations

4.1 Create

This specification defines one Web service operation (Create) for creating a resource and providing its initial representation. In some cases, the initial representation MAY constitute the representation of a logical constructor for the resource and can thus differ structurally from the representation returned by Get or the one required by Put. This is because the parameterization requirement for creating a resource is often distinct from the steady-state representation of the resource. Implementations SHOULD provide metadata which describes the use of the representation and how it relates to the resource which is created, but such mechanisms are beyond the scope of this specification. The resource factory that receives a Create request will allocate a new resource that is initialized from the presented representation. The new resource will be assigned a service-determined endpoint reference that is returned in the response message.

The Create request message MUST be of the following form:

[Action]
 http://www.w3.org/2009/02/ws-tra/Create

[Body]
 <wst:Create Dialect="xs:anyURI"? ...>

 xs:any*

 </wst:Create>

The following describes additional, normative constraints on the outline listed above:

[Body]/wst:Create

This REQUIRED element MAY contain zero or more child elements. If this element does not contain a child element then the resource will be created using default values. The first child element, if present, MUST be the literal resource representation, a representation of the constructor for the resource, or other instructions for creating the resource. Additional extension elements MAY be included only after the mandated first child element.

[Body]/wst:Create@Dialect

When this OPTIONAL attribute is present it contains a URI that refers to additional information for the service on how to process this element. If the attribute is present but the dialect URI is not known then the service MUST generate an UnknownDialect fault. There is no default value for the attribute. If the attribute is absent, then the base behavior is used.

[Body]/wst:Create@Dialect="http://www.w3.org/2009/02/ws-fra"

The WS-Fragment [WS-Fragment] specification defines this dialect URI. Use of this URI indicates that the contents of the Create element MUST be processed as specified by the WS-Fragment [WS-Fragment] specification.

A Create request MUST be targeted at a resource factory capable of creating the desired new resource. This factory is distinct from the resource being created (which by definition does not exist prior to the successful processing of the Create request message).

In addition to the standard fault codes defined in WS-Addressing, implementations MAY use the fault code wst:InvalidRepresentation if the presented representation is invalid for the target resource. See 5 Faults.

Other components of the outline above are not further constrained by this specification.

If the resource factory accepts a Create request, it MUST reply with a response of the following form:

[Action]
 http://www.w3.org/2009/02/ws-tra/CreateResponse

[Body]
 <wst:CreateResponse ...>

 <wst:ResourceCreated>endpoint-reference</wst:ResourceCreated>

 xs:any*

 </wst:CreateResponse>

[Body]/wst:CreateResponse

This REQUIRED element MUST have as its first child element an Endpoint Reference (wst:ResourceCreated element) to the newly created resource.

A service MUST also return the current representation of the new resource as the second child of the wst:CreateResponse element if the created representation logically differs from the representation sent in the Create request message. That is, the initial representation is returned if one or more values present in Create message was specifically overridden with a different value during resource creation. If default values are used to complete a resource creation which were not present in the Create message, then this does not constitute a logical difference.

As an optimization and as a service to the requestor, the wst:CreateResponse element of the response message SHOULD be empty, other than the ResourceCreated element, if the created representation does not logically differ from the representation sent in the Create request message and there are no extension elements; that is, if the service accepted the new representation or creation instructions verbatim. Such a response indicates that the request was completely successful (assuming no intervening mutating operations are performed). A service MAY return the current representation of the resource as the second child of the wst:CreateResponse element even in this case, however.

Additional extension elements MAY be included after the element representing the resource.

[Body]/wst:CreateResponse/wst:ResourceCreated

This required element MUST contain a resource reference for the newly created resource. This resource reference, represented as an endpoint reference as defined in WS-Addressing, MUST identify the resource for future Get, Put, and Delete operations.

Other components of the outline above are not further constrained by this specification.

The following shows a sample SOAP envelope containing a Create request:

<s:Envelope

 xmlns:s="http://www.w3.org/2003/05/soap-envelope"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:xxx="http://fabrikam123.example.com/resource-model" >

 <s:Header>

 <wsa:ReplyTo>

 <wsa:Address>

 http://www.fabrikam123.example.org/sender

 </wsa:Address>

 </wsa:ReplyTo>

 <wsa:To>http://www.example.org/pushport/CustomerSpace</wsa:To>

 <wsa:Action>

 http://www.w3.org/2009/02/ws-tra/Create

 </wsa:Action>

 <wsa:MessageID>

 uuid:00000000-0000-0000-C000-000000000048

 </wsa:MessageID>

 </s:Header>

 <s:Body>

 <wst:Create>

 <xxx:Customer>

 <xxx:first>Roy</xxx:first><xxx:last>Hill</xxx:last>

 <xxx:address>123 Main Street</xxx:address>

 <xxx:city>Manhattan Beach</xxx:city>

 <xxx:state>CA</xxx:state>

 <xxx:zip>90266</xxx:zip>

 </xxx:Customer>

 </wst:Create>

 </s:Body>

</s:Envelope>

The following shows the corresponding response message indicating success:

<s:Envelope

 xmlns:s="http://www.w3.org/2003/05/soap-envelope"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:wst="http://www.w3.org/2009/02/ws-tra"

 xmlns:xxx="http://fabrikam123.example.com/resource-model" >

 <s:Header>

 <wsa:To>http://www.fabrikam123.example.org/sender</wsa:Address>

 <wsa:Action>

 http://www.w3.org/2009/02/ws-tra/CreateResponse

 </wsa:Action>

 <wsa:MessageID>

 uuid:0000010e-0000-0000-C000-000000000048

 </wsa:MessageID>

 <wsa:RelatesTo>

 uuid:00000000-0000-0000-C000-000000000048

 </wsa:RelatesTo>

 </s:Header>

 <s:Body>

 <wst:CreateResponse>

 <wst:ResourceCreated>

 <wsa:Address>http://www.example.org/pushport</wsa:Address>

 <wsa:ReferenceParameters>

 <xxx:CustomerID>732199</xxx:CustomerID>

 <xxx:Region>EMEA</xxx:Region>

 </wsa:ReferenceParameters>

 </wst:ResourceCreated>

 </wst:CreateResponse>

 </s:Body>

</s:Envelope>

5 Faults

All fault messages defined in this specification MUST be sent according to the rules and usage described in [WS-Addressing 1.0 SOAP Binding] Section 6 for encoding SOAP 1.1 and SOAP 1.2 faults. The [Action] property below MUST be used for faults defined in this specification:

http://www.w3.org/2009/02/ws-tra/fault

The definitions of faults in this section use the following properties:

[Code] The fault code.
[Subcode] The fault subcode.
[Reason] The English language reason element.
[Detail] The detail element. If absent, no detail element is defined for the fault.

For SOAP 1.2, the [Code] property MUST be either "Sender" or "Receiver". These properties are serialized into text XML as follows:

	SOAP Version
	Sender
	Receiver

	SOAP 1.2
	s12:Sender
	s12:Receiver

The properties above bind to a SOAP 1.2 fault as follows:

<s12:Envelope>

 <s12:Header>

 <wsa:Action> [Action] </wsa:Action>

 <!-- Headers elided for brevity. -->

 </s12:Header>

 <s12:Body>

 <s12:Fault>

 <s12:Code>

 <s12:Value>[Code]</s12:Value>

 <s12:Subcode>

 <s12:Value>[Subcode]</s12:Value>

 </s12:Subcode>

 </s12:Code>

 <s12:Reason>

 <s12:Text xml:lang="en">[Reason]</s12:Text>

 </s12:Reason>

 <s12:Detail>

 [Detail]
 ...

 </s12:Detail>

 </s12:Fault>

 </s12:Body>

</s12:Envelope>

The properties bind to a SOAP 1.1 fault as follows:

<s11:Envelope>

 <s11:Body>

 <s11:Fault>

 <faultcode>[Subcode]</faultcode>

 <faultstring xml:lang="en">[Reason]</faultstring>

 <detail>

 [Detail]
 ...

 </detail>

 </s11:Fault>

 </s11:Body>

</s11:Envelope>

5.1 InvalidRepresentation

This fault is generated when an incorrect representation is sent in a wst:Put or wst:Create message.

	[Code]
	s:Sender

	[Subcode]
	wst:InvalidRepresentation

	[Reason]
	The supplied representation is invalid

	[Detail]
	none

5.2 UnknownDialect

This fault is generated when a service detects an unknown Dialect URI in a request message.

	[Code]
	s:Sender

	[Subcode]
	wst:UnknownDialect

	[Reason]
	The specified Dialect URI is not known.

	[Detail]
	The unknown URI if specified

5.3 PutDenied

This fault is generated when a Put request message attempts to modify a portion of a resource but is not allowed to do so.

	[Code]
	s:Sender

	[Subcode]
	wst:UpdateDenied

	[Reason]
	One or more elements or attributes cannot be updated.

	[Detail]
	An optional list of the QNames of the elements or attributes that are not allowed to be updated.

6 Security Considerations

It is strongly RECOMMENDED that the communication between services be secured using the mechanisms described in [WS-Security].

In order to properly secure messages, the body (even if empty) and all relevant headers need to be included in the signature. Specifically, the WS-Addressing header blocks, WS-Security timestamp, and any header blocks resulting from a <wsa:ReferenceParameters> in references need to be signed along with the body in order to "bind" them together and prevent certain types of attacks.

If a requestor is issuing multiple messages to a resource reference, then it is RECOMMENDED that a security context be established using the mechanisms described in WS-Trust and WS-SecureConversation. It is further RECOMMENDED that if shared secrets are used, message-specific derived keys also be used to protect the secret from crypto attacks.

The access control semantics of resource references is out-of-scope of this specification and are specific to each resource reference. Similarly, any protection mechanisms on resource references independent of transfer (e.g. embedded signatures and encryption) are also out-of-scope.

It is RECOMMENDED that the security considerations of WS-Security also be considered.

While a comprehensive listing of attacks is not feasible, the following list summarizes common classes of attacks that apply to this protocol and identifies the mechanism(s) to prevent/mitigate the attacks.

· Replay - Messages, or portions of messages, can be replayed in an attempt to gain access or disrupt services. Freshness checks such as timestamps, digests, and sequences can be used to detect duplicate messages.

· Invalid tokens - There are a number of token attacks including certificate authorities, false signatures, and PKI attacks. Care SHOULD be taken to ensure each token is valid (usage window, digest, signing authority, revocation, ...), and that the appropriate delegation policies are in compliance.

· Man-in-the-middle - The message exchanges in this specification could be subject to man-in-the-middle attacks so care SHOULD be taken to reduce possibilities here such as establishing a secure channel and verifying that the security tokens user represent identities authorized to speak for, or on behalf of, the desired resource reference.

· Message alteration - Alteration is prevented by including signatures of the message information using WS-Security. Care SHOULD be taken to review message part references to ensure they haven't been forged (e.g. ID duplication).

· Message disclosure - Confidentiality is preserved by encrypting sensitive data using WS-Security.

· Key integrity - Key integrity is maintained by using the strongest algorithms possible (by comparing secured policies - see [WS-Policy] and [WS-SecurityPolicy] and by using derived keys ([WS-SecureConversation]).

· Authentication - Authentication is established using the mechanisms described in WS-Security and WS-Trust. Each message is authenticated using the mechanisms described in WS-Security.

· Accountability - Accountability is a function of the type of and string of the key and algorithms being used. In many cases, a strong symmetric key provides sufficient accountability. However, in some environments, strong PKI signatures are required.

· Availability - All reliable messaging services are subject to a variety of availability attacks. Replay detection is a common attack and it is RECOMMENDED that this be addressed by the mechanisms described in WS-Security. Other attacks, such as network-level denial of service attacks are harder to avoid and are outside the scope of this specification. That said, care SHOULD be taken to ensure that minimal state is saved prior to any authenticating sequences.

7 WS-Transfer Metadata
7.1 Annotating the WS-Transfer WSDL

While the WS-Transfer operations are not exposed in an endpoint's WSDL (i.e. the WSDL available by using a WS-MetadataExchange GetMetadata with a Dialect URI of http://schemas.xmlsoap.org/wsdl/), an endpoint MAY choose to expose its own version of the WS-Transfer WSDL by using the following WS-MetadataExchange Dialect URI:

http://www.w3.org/2009/02/ws-tra/TransferWSDL

This version of the WS-Transfer WSDL can be annotated to indicate any endpoint specific metadata that might be needed by clients interacting with this service. For example, the WSDL MAY have policy assertions to indicate that a certain security algorithm is needed to use the WS-Transfer operations.

7.2 WS-Transfer Policy Assertion

An endpoint MAY indicate that it supports WS-Transfer, or its features, by including the WS-Transfer Policy assertion(s) within its WSDL. By doing so the endpoint is indicating that the corresponding WS-Transfer operations are supported by that endpoint even though they do not explicitly appear in its WSDL.
8 Acknowledgements

This specification has been developed as a result of joint work with many individuals and teams, including: Ashok Malhotra (Oracle Corp.), Asir Vedamuthu (Microsoft Corp.), Bob Freund (Hitachi, Ltd.), Doug Davis (IBM), Fred Maciel (Hitachi, Ltd.), Geoff Bullen (Microsoft Corp.), Gilbert Pilz (Oracle Corp.), Greg Carpenter (Microsoft Corp.), Jeff Mischkinsky (Oracle Corp.), Katy Warr (IBM), Li Li (Avaya Communications), Mark Little (Red Hat), Prasad Yendluri (Software AG), Ram Jeyaraman (Microsoft Corp.), Sreedhara Narayanaswamy (CA), Sumeet Vij (Software AG), Vikas Varma (Software AG), Wu Chou (Avaya Communications), Yves Lafon (W3C).

9 References

9.1 Normative References

RFC 2119

Key words for use in RFCs to Indicate Requirement Levels , S. Bradner, Author. Internet Engineering Task Force, March 1997. Available at http://www.ietf.org/rfc/rfc2119.txt.

RFC 3986

Uniform Resource Identifier (URI): Generic Syntax , T. Berners-Lee, R. Fields and L. Masinter, Authors. Network Working Group, January 2005. Available at http://www.ietf.org/rfc/rfc3986.txt.

SOAP11

W3C Note, "Simple Object Access Protocol (SOAP) 1.1" , D. Box, et al, Editors. World Wide Web Consortium (W3C), 8 May 2000. Available at http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

SOAP12

W3C Recommendation, "SOAP Version 1.2 Part 1: Messaging Framework" , M. Gudgin, M. Hadley, N. Mendelsohn, J-J. Moreau, H. Frystyk Nielson, Editors. World Wide Web Consortium (W3C), 27 April 2007. Available at http://www.w3.org/TR/soap12-part1/.

WS-Addressing

W3C Recommendation, "Web Services Addressing 1.0 (WS-Addressing)" , M. Gudgin, M. Hadley, T. Rogers, Editors. World Wide Web Consortium (W3C), 9 May 2006. Available at http://www.w3.org/TR/ws-addr-core.

WS-Addressing 1.0 SOAP Binding

W3C Recommendation, "Web Services Addressing 1.0 - SOAP Binding" , M. Gudgin, M. Hadley, T. Rogers, Editors. World Wide Web Consortium (W3C), 9 May 2006. Available at http://www.w3.org/TR/ws-addr-soap.

WS-Policy

W3C Recommendation, "Web Services Policy (WS-Policy) 1.5 - Framework" , A. Vedamuthu, et al., Editors. World Wide Web Consortium (W3C), 4 September 2007. Available at http://www.w3.org/TR/ws-policy/.

WSDL11

W3C Note, "Web Services Description Language (WSDL) 1.1" , E. Christensen, et al., Editors. World Wide Web Consortium (W3C), 15 March 2001 Available at http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

XML Infoset

W3C Recommendation, "XML Information Set (Second Edition)" , J. Cowan, R. Tobin, Editors. World Wide Web Consortium (W3C), 4 February 2004. Available at http://www.w3.org/TR/xml-infoset.

XMLSchema - Part 1

W3C Recommendation, "XML Schema Part 1: Structures (Second Edition)" , H. Thompson, et al., Editors. World Wide Web Consortium (W3C), 28 October 2004. Available at http://www.w3.org/TR/xmlschema-1/.

XMLSchema - Part 2

W3C Recommendation, "XML Schema Part 2: Datatypes (Second Edition)" , P. Biron, A. Malhotra, Editors. World Wide Web Consortium (W3C), 28 October 2004. Available at http://www.w3.org/TR/xmlschema-2/.

9.2 Informative References

WS-Fragment

W3C Working Group Draft, "Web Services Fragment (WS-Fragment) 1.0" , D. Davis, et al., Editors. World Wide Web Consortium (W3C), 15 September 2009. Available at http://www.w3.org/TR/ws-fragment.

WS-SecureConversation

OASIS Standard, "Web Services Secure Conversation (WS-SecureConversation) 1.4" , A. Nadalin, et al., Editors. Organization for the Advancement of Structured Information Standards (OASIS), 2 February 2009. Available at http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.doc.

WS-Security

OASIS Standard, "Web Services Security: SOAP Message Security 1.1" , K. Lawrence, C. Kaler, Editors. Organization for the Advancement of Structured Information Standards (OASIS), 1 February 2006. Available at http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf.

WS-SecurityPolicy

OASIS Standard, "Web Services Security Policy (WS-SecurityPolicy) 1.3, Version 1.1" , K. Lawrence, C. Kaler, Editors. Organization for the Advancement of Structured Information Standards (OASIS), 2 February 2009. Available at http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/os/ws-securitypolicy-1.3-spec-os.doc.

A XML Schema

A normative copy of the XML Schema [XMLSchema - Part 1], [XMLSchema - Part 2] description for this specification can be retrieved from the following address:

http://www.w3.org/2009/02/ws-tra/transfer.xsd
A non-normative copy of the XML schema is listed below for convenience.

<xs:schema

 targetNamespace="http://www.w3.org/2009/02/ws-tra"

 xmlns:tns="http://www.w3.org/2009/02/ws-tra"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 elementFormDefault="qualified"

 blockDefault="#all" >

 <xs:import

 namespace="http://www.w3.org/2005/08/addressing"

 schemaLocation="http://www.w3.org/2006/03/addressing/ws-addr.xsd" />

 <xs:element name="Get">

 <xs:complexType>

 <xs:sequence>

 <xs:any minOccurs="0" maxOccurs="unbounded" namespace="##other" processContents="lax" />

 </xs:sequence>

 <xs:attribute name="Dialect" type="xs:anyURI" use="optional" />

 <xs:anyAttribute namespace="##other" processContents="lax" />

 </xs:complexType>

 </xs:element>

 <xs:element name="GetResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:any minOccurs="1" maxOccurs="unbounded" namespace="##other" processContents="lax" />

 </xs:sequence>

 <xs:anyAttribute namespace="##other" processContents="lax" />

 </xs:complexType>

 </xs:element>

 <xs:element name="Put">

 <xs:complexType>

 <xs:sequence>

 <xs:any minOccurs="1" maxOccurs="unbounded" namespace="##other" processContents="lax" />

 </xs:sequence>

 <xs:attribute name="Dialect" type="xs:anyURI" use="optional" />

 <xs:anyAttribute namespace="##other" processContents="lax" />

 </xs:complexType>

 </xs:element>

 <xs:element name="PutResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:any minOccurs="1" namespace="##other" processContents="lax" />

 </xs:sequence>

 <xs:anyAttribute namespace="##other" processContents="lax" />

 </xs:complexType>

 </xs:element>

 <xs:element name="Delete">

 <xs:complexType>

 <xs:sequence>

 <xs:any minOccurs="0" maxOccurs="unbounded" namespace="##other" processContents="lax" />

 </xs:sequence>

 <xs:attribute name="Dialect" type="xs:anyURI" use="optional" />

 <xs:anyAttribute namespace="##other" processContents="lax" />

 </xs:complexType>

 </xs:element>

 <xs:element name="DeleteResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:any minOccurs="0" namespace="##other" processContents="lax" />

 </xs:sequence>

 <xs:anyAttribute namespace="##other" processContents="lax" />

 </xs:complexType>

 </xs:element>

 <xs:element name="Create">

 <xs:complexType>

 <xs:sequence>

 <xs:any minOccurs="0" maxOccurs="unbounded" namespace="##other" processContents="lax" />

 </xs:sequence>

 <xs:attribute name="Dialect" type="xs:anyURI" use="optional" />

 <xs:anyAttribute namespace="##other" processContents="lax" />

 </xs:complexType>

 </xs:element>

 <xs:element name="CreateResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="ResourceCreated" type="wsa:EndpointReferenceType" />

 <xs:any minOccurs="0" namespace="##other" processContents="lax" />

 </xs:sequence>

 <xs:anyAttribute namespace="##other" processContents="lax" />

 </xs:complexType>

 </xs:element>

</xs:schema>

B WSDL

A normative copy of the WSDL [WSDL11] description for this specification can be retrieved from the following address:

http://www.w3.org/2009/02/ws-tra/transfer.wsdl
A non-normative copy of the WSDL description is listed below for convenience.

<wsdl:definitions

 targetNamespace="http://www.w3.org/2009/02/ws-tra"

 xmlns:tns="http://www.w3.org/2009/02/ws-tra"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <wsdl:types>

 <xs:schema>

 <xs:import

 namespace="http://www.w3.org/2009/02/ws-tra"

 schemaLocation="http://www.w3.org/2009/02/ws-tra/transfer.xsd"

 />

 </xs:schema>

 </wsdl:types>

 <wsdl:message name="GetMessage">

 <wsdl:part name="Body" element="tns:Get"/>

 </wsdl:message>

 <wsdl:message name="GetResponseMessage">

 <wsdl:part name="Body" element="tns:GetResponse"/>

 </wsdl:message>

 <wsdl:message name="PutMessage">

 <wsdl:part name="Body" element="tns:Put"/>

 </wsdl:message>

 <wsdl:message name="PutResponseMessage">

 <wsdl:part name="Body" element="tns:PutResponse"/>

 </wsdl:message>

 <wsdl:message name="DeleteMessage">

 <wsdl:part name="Body" element="tns:Delete"/>

 </wsdl:message>

 <wsdl:message name="DeleteResponseMessage">

 <wsdl:part name="Body" element="tns:DeleteResponse"/>

 </wsdl:message>

 <wsdl:message name="CreateMessage">

 <wsdl:part name="Body" element="tns:Create"/>

 </wsdl:message>

 <wsdl:message name="CreateResponseMessage">

 <wsdl:part name="Body" element="tns:CreateResponse"/>

 </wsdl:message>

 <wsdl:portType name="Resource">

 <wsdl:documentation>

 This port type defines a resource that can be read,

 written, and deleted.

 </wsdl:documentation>

 <wsdl:operation name="Get">

 <wsdl:input

 message="tns:GetMessage"

 wsam:Action="http://www.w3.org/2009/02/ws-tra/Get"/>

 <wsdl:output

 message="tns:GetResponseMessage"

 wsam:Action="http://www.w3.org/2009/02/ws-tra/GetResponse" />

 </wsdl:operation>

 <wsdl:operation name="Put">

 <wsdl:input

 message="tns:PutMessage"

 wsam:Action="http://www.w3.org/2009/02/ws-tra/Put" />

 <wsdl:output

 message="tns:PutResponseMessage"

 wsam:Action="http://www.w3.org/2009/02/ws-tra/PutResponse" />

 </wsdl:operation>

 <wsdl:operation name="Delete">

 <wsdl:input

 message="tns:DeleteMessage"

 wsam:Action="http://www.w3.org/2009/02/ws-tra/Delete" />

 <wsdl:output

 message="tns:DeleteResponseMessage"

 wsam:Action="http://www.w3.org/2009/02/ws-tra/DeleteResponse" />

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="ResourceFactory">

 <wsdl:documentation>

 This port type defines a Web service that can create new

 resources.

 </wsdl:documentation>

 <wsdl:operation name="Create">

 <wsdl:input

 message="tns:CreateMessage"

 wsam:Action="http://www.w3.org/2009/02/ws-tra/Create" />

 <wsdl:output

 message="tns:CreateResponseMessage"

 wsam:Action="http://www.w3.org/2009/02/ws-tra/CreateResponse" />

 </wsdl:operation>

 </wsdl:portType>

</wsdl:definitions>

C Change Log

	Data
	Author
	Description

	2009/03/04
	DD
	Added resolution of issue 6391

	2009/03/04
	DD
	Added resolution of issue 6588

	2009/03/04
	DD
	Added resolution of issue 6519

	2009/03/09
	DD
	Added resolution of issue 6398

	2009/03/11
	DD
	Added change log

	2009/03/11
	DD
	Added resolution of issue 6641

	2009/03/11
	DD
	Added resolution of issue 6425

	2009/03/23
	DD
	Added resolution of issue 6666

	2009/03/24
	DD
	Added resolution of issue 6648

	2009/04/20
	DD
	Added resolution of issue 6730

	2009/04/22
	KW
	Added resolution of issue 6739

	2009/05/12
	DD
	Added resolution of issue 6433

	2009/05/13
	DD
	Added resolution of issues 6672, 6673, 6594

	2009/05/19
	DD
	Added resolution of issue 6849

	2009/05/19
	DD
	Added resolution of issue 6907

	2009/05/21
	DD
	Added resolution of issue 6674

	2009/05/27
	DD
	Added resolution of issue 6906

	2009/06/10
	DD
	Added resolution of issue 6712

	2009/06/10
	DD
	Added resolution of issue 6924

	2009/07/07
	DD
	Added resolution of issues 7014, 6975, 6413

	2009/08/05
	DD
	Added resolution of issue 7159

	2009/08/18
	DD
	Added resolution of issue 7206

	2009/08/18
	DD
	Added resolution of issue 7191

	2009/08/25
	DD
	Added resolution of issue 7365

	2009/08/25
	DD
	Added resolution of issue 7270

	2009/09/01
	DD
	Added resolution of issue 6704

	2009/09/02
	DD
	Added resolution of issue 6694

	2009/09/02
	DD
	Added resolution of issue 6533

	2009/09/16
	DD
	Added resolution of issue 7486

	2009/09/23
	DD
	Added resolution of issue 6572

