High level proposal:
· Use a policy assertion to indicate that an endpoint supports WS-Eventing.
· Use nested policy assertions to indicate which features of WS-Eventing are supported.
·
· Define the Notifications as in-only operations in a WSDL that must be supported by the Event Sink and which is referenced by the policy assertion.

The WS-Eventing Policy assertion would be defined as follows. Note the use of “application defined” namespaces for some the nested policy assertion elements. These are used to enable WS-Policy’s intersection algorithm, which is based on QName matching (and does not factor in element values), to correctly determine if an Event Source supports the desired filter dialect and delivery mode.
<wsep:WSEventing [wsp:Optional="true"]? ...>

 <wsp:Policy>

 <wsep:EventSinkWSDL [binding="xs:QName"]
 wsp:Ignorable="true">
 xs:anyURI
 </wsep:EventSinkWSDL> ?

 <x:FilterDialect xmlns:x="xs:anyURI" wsp:Optional="true"/> *

 <x:DeliveryMode xmlns:x="xs:anyURI" [wsp:Optional="true"]?/> *

 </wsp:Policy>

</wsep:WSEventing>

/wsep:WSEventing

A policy assertion that specifies that WS-Eventing protocol MUST be used when communicating with this endpoint. This assertion has Endpoint Policy Subject.

/wsep:WSEventing/wsp:Optional

Per WS-Policy, this is compact notation for two policy alternatives, one with and one without the assertion. The intuition is that the behavior indicated by the assertion is optional, or in this case, that WS-Eventing MAY be used.
/wsep:WSEventing/wsp:Policy

This required element allows for the inclusion of nested policy assertions.
/wsep:WSEventing/wsp:Policy/wsep:EventSinkWSDL

When present, this assertion defines the requirement that the Event Sink MUST support the operations defined by the WSDL referenced by this element. Doing an HTTP GET to this URI SHOULD return the WSDL. It is RECOMMENDED that the Event Source also support retrieval of this WSDL through a Metadata Exchange GetMetadata operation - see below.
/wsep:WSEventing/wsp:Policy/wsep:EventSinkWSDL@binding

When present, this attribute defines the binding within the specified WSDL document to use. If there is only one binding within the event sink WSDL then this attribute MAY be omitted.
/wsep:WSEventing/wsp:Policy/wsep:EventSinkWSDL@wsp:Ignoreable

When present, this attribute specifies that the assertion is ignorable per WS-Policy.
/wsep:WSEventing/wsp:Policy/x:FilterDialect

When present, this assertion defines the requirement that the Subscriber, if it chooses to include a filter in the wse:Subscribe request, MUST use the filter dialect associated with the namespace URI of this element. Note: the namespace of this element is application defined, but the Local Name MUST be "FilterDialect".
/wsep:WSEventing/wsp:Policy/x:FilerDialect@wsp:Optional
This attribute specifies that the assertion is optional per WS-Policy. This attribute MUST be present since the inclusion of a Filter dialect in a Subscribe request is optional.
/wsep:WSEventing/wsp:Policy/x:DeliveryMode

When present, this assertion defines the requirement that the Subscriber MUST use the delivery mode associated with the namespace URI of this element when Subscribing to this Event Source. Note: the namespace of this element is application defined, but the Local Name MUST be "DeliveryMode".
/wsep:WSEventing/wsp:Policy/x:DeliveryMode@wsp:Optional
When present, this attribute specifies that the assertion is optional per WS-Policy. Note, in practice if there is just one Delivery Mode specified then it would not be marked as optional. Likewise, if the Event Source supports more than one Delivery Mode then all of them would be marked as optional - although exactly one will be used in the Subscribe request.
If an Event Source supports the use of WS-MetadataExchange to retrieve the Event Sink WSDL, the following Metadata Dialect URI MUST be used to identify that metadata/WSDL:

http://www.w3c.org/.../eventing/EventSinkWSDL

For example:

<wsp:WSEventing>

 <wsp:Policy>

 <wsep:EventSinkWSDL wsp:Ignorable="true">
 http://webservice.bea.com/WeatherConsole/soap12Notify?WSDL
 </wsep:EventSinkWSDL>
 <x:FilterDialect xmlns:x=http://www.w3c.org/.../eventing/XPath
 wsp:Optional="true"/>

 <x:DeliveryMode xmlns:x="http://www.w3c.org/.../eventing/Push"/>

 </wsp:Policy>

</wsep:WSEventing>

The above example defines:

· The WSDL that the Event Sink needs to support can be retrieved at http://webservice.bea.com/WeatherConsole/soap12Notify?WSDL. The lack of a “binding” attribute means that this WSDL MUST define only one binding.
· The Event Source supports the XPath filer dialect but since specifying a Filter Dialect is optional, this policy assertion is optional.

· The Event Source only supports the Push delivery mode - thus it is not optional.

An abbreviated version of what the WSDL that is referenced by the EventSinkWSDL element (http://.../soap12Notify?WSDL) might look like is:
<wsdl:definitions

 targetNamespace="http://.../weather"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xs="http://www.w3.org/2001/XMLSchema" >
 <wsdl:message name="WeatherReport">

 <wsdl:part name="body" element="foo:WeatherReport" />
 </wsdl:message>
 <wsdl:portType name=”WeatherNotifyInterface”>

 <wsdl:operation name="WeatherReport">

 <wsdl:input message="tns:WeatherReport"
 wsam:Action="http://.../weather/Report"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name=”WeatherNotifySOAP12Binding”

 type=”tns:WeatherNotifyInterface”>

 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name=”WeatherReport”>
 <soap:operation/>

 <wsdl:input>

 <soap:body use=”literal”/>

 </wsdl:input>
 </wsdl:operation>
 </wsdl:binding>
</wsdl:definitions>
