WS-Eventing Advertisement of Notification Types
Version 0.5
March 27, 2009

Motivating Assumptions and Requirements
· Customers that use WS-Eventing will do so because it is a notification system that works within the context of web services, not because of its strengths as a notification system.

· WS-Eventing must be composable with other web services standards such as WS-Security, WS-ReliableMessaging, etc. It should be possible to advertise such QoS features via their respective WS-Policy assertions.

· Where possible, WS-Eventing implementations should attempt to preserve customer’s investments in existing, WSDL-based tools and development processes.
High level proposal:
· Separate the descriptions of the Event Source and the Notifications into distinct WSDLs. Use WS-Policy-based assertions to describe the characteristics of the Notifications.
· Use some mechanism (nested policy assertion or WSDL extension) to link the “Notification WSDL” to the wsdl:port of the Subscription Endpoint.
· In cases where the Event Source supports multiple policies for Notifications (e.g. signed or unsigned), use WS-PAEPR to allow Subscribers to indicate which alternative they want for their Notifications.
Not affected:

· This proposal does not affect any of basic concepts currently defined in WS-Eventing. Subscription creation/management is handled via a SOAP request/response protocol. Notifications are transmitted as SOAP one-way messages.
· This proposal neither requires nor precludes the use of “wrapped” Notifications (Notifications that use a WS-Eventing-defined sub-envelope within their SOAP Body).

Linking the Notification WSDL

As part of a separate issue in the WS-RA WG [1], there is a proposal to define a WS-Policy assertion, wsep:Eventing that indicates that the endpoint supports the WS-Eventing EventSource portType (i.e. the endpoint will accept and process wse:Subscribe messages). (Note that, in this model, the WS-Eventing messages, portTypes, and bindings are not explicitly included in the WSDL for the Event Source. This is consistent with other infrastructure specifications such as WS-RM). The Notification WSDL can be linked to this endpoint through the use of an ignorable sub-assertion as shown in Figure 1. Alternately this linkage could be defined by an extension on the wsdl:port element. Regardless of which mechanism we use, the import point is that there is a one-to-one correspondence between the Subscription Endpoint and the definition of the Notifications that may result from sending a wse:Subscribe message to this endpoint.
Note that Figure 1 includes the use of an empty portType and binding. This is because the WS-Eventing operations are implicit; WeatherSubService doesn’t support any operations other than wse:Subscribe which does not appear in the WSDL. Although it is perfectly valid to attach the wsep:WSEventing policy to “normal” endpoints (i.e. endpoints that support other, application-level portTypes/bindings), this us is not illustrated here for reasons of brevity.
Example Notification WSDL
Figure 2 shows the Notification WSDL referred to in Figure 1. Linking this Notification WSDL to the above endpoint means that, if you send a successful wse:Subscribe message to http://webservice.bea.com/WeatherConsole/soap12Sub, the EPR referenced by /wse:Subscribe/wse:Delivery/wse:NotifyTo must implement a service that is compatible with this WSDL.
There are a couple of things to note about the Notification WSDL in Figure 2:

· The WeatherNotifyInterface portType contains two operations, WeatherReport and StormWarning. This means that, by default, the Event Sink should expect to receive (and be capable of handling) either of the messages/Notifications corresponding to these operations. A Subscriber may select from the set of possible messages/Notifications defined by the portType through the use of WS-Eventing filters.

· Because there must be an unambiguous relationship between the target EPR of the wse:Subscribe message and the types of the Notification messages that will be transmitted to the Event Source, each Subscription Endpoint can only link to a single portType/binding within a Notification WSDL. In the case of Figure 2 this constraint is satisfied because the Notification WSDL only contains a single binding. If the Notification WSDL contained multiple bindings, some attribute or annotation on the linkage (for example a @binding attribute on the wsep:NotificationWSDL sub-assertion element) would be necessary to indicate which portType/binding was being linked to.

· The “WeatherNotifySOAP12Binding”in Figure 2 specifies the use of SOAP 1.2 and Doc/lit but, in practice, it could be any binding that the Event Source was capable of supporting (e.g. RPC/encoded).
· If the Event Source wanted to advertise multiple sets of Notifications (i.e. multiple portTypes) or different bindings of the same set of Notifications, it must do so through the use of multiple endpoints in the Event Source WSDL; each Subscription Endpoint (wsdl:port) would link to a different portType/binding. Subscribers can select from the Notifications sets/and bindings by directing their wse:Subscribe messages to the appropriate port.

· The Notification WSDL does not include a wsdl:service/wsdl:port because the Notification Endpoint changes with each subscription.

Event Sink Interface Supersetting
Earlier we said “the Event Sink must implement a service that is compatible with the Notification WSDL”. Just as it is possible for a web services client to constrain a provider-published WSDL by removing operations, etc. and still interoperate, it is also possible for an Event Sink to support a super-set of the operations defined in the Notification WSDL. An Event Sink may choose to do this to share a single Notification Endpoint across multiple subscriptions/Event Sources or support multiple flavors of a particular Notification stream, etc. For example, an Event Sink subscribing to an Event Source that advertises the Notification WSDL in Figure 2 may actually implement the following WSDL:

The EarthQuakeReport and VolcanoReport operations above are unknown to our weather reporting Event Source, but this doesn’t affect the ability of that Event Source to successfully send Notifications (in the form of SOAP messages that contain foo:WeatherReport or foo:StormWarning elements in their bodies) to the Event Sink’s Notification Endpoint.
WS-Policy and the Notification WSDL
The Notification WSDL may contain policy constructs as per WS-Policy [2] and WS-PolicyAttachement [3]. For example, the WSDL from Figure 2 could be expanded to include WS-SecurityPolicy [4] assertions to indicate that Notifications will signed by the Event Source.

Through the Notification WSDL in Figure 4, the Event Source is indicating that the Notifications that it will transmit as a result of a wse:Subcribe request will have the policies in #SecPolicy applied to them. Since #SecPolicy does not have an @wsp:Optional=”true”, the Event Sink either has to support this policy or refrain from subscribing to this Event Source.
Policy Alternatives and Negotiation

There may be cases in which an Event Source may wish to support more than one policy alternative for a given set of Notifications. For example, it may be willing to sign Notifications for those Event Sources that require integrity protection via WS-Security and forego singing Notifications for those Event Sources that use TLS to provide integrity. One way (mentioned previously) of supporting this optionality would be to create two Subscription Endpoints; one endpoint would reference a Notification WSDL with the above #SecPolicy, the other endpoint would reference a Notification WSDL without. As the number of policy alternative’s increased, this “manual” mechanism becomes burdensome.
Another mechanism for supporting multiple policy alternatives for the same set of Notifications is to allow the Subscriber to indicate which policy alternative it wanted for a given subscription by extending the /wse:Subscribe/wse:Delivery/wse:NotifyTo as described by WS-PAEPR [5]. For example, suppose #SecPolicy, above, had a @wsp:Optional=”true”. As defined by WS-Policy, this expresses a pair of policy alternatives, one with #SecPolicy and one without. This means that the Event Source is willing to either sign Notifications or not, depending upon what the Event Sink wants. The Event Sink indicates what it wants by including the desired policy in the wse:NotifyTo EPR.

For example, if the Event Sink wanted Notifications to be signed it would send the following wse:Subscribe request to the Event Source:
The following should be noted about this mechanism for policy alternative negotiation:

· The Event Source is expected to determine if the Event Sink’s desired policy overlaps with the policies it supports using the policy intersection algorithm defined by WS-Policy. Note that the use of this algorithm requires the Subscriber/Event Sink to include the complete policy alternative it is selecting and not merely the assertions that it is interested in.
· Because wse:NotifyTo identifies an endpoint, the granularity of this policy negotiation mechanism is that of an endpoint. The policies negotiated must therefore have an Endpoint Policy Subject. This is not to say that the Notification WSDL cannot use policies with other subjects, only that there must be a single alternative for such policies (i.e. no optionality at the operation or message level).

· The lack of a wsp:Policy or wsp:PolicyReference in the wse:Metadata element of a wsa:NotifyTo EPR indicates a willingness/ability on the part of the Event Sink to support any of the policy alternatives in the Notification WSDL.

Regardless of whether it is supported by the “manual” process of specifying multiple subscription endpoints or through the more automated process of negotiating policy at subscription time, publishing Notifications under different QoS policies is likely to have a per-Notification performance impact. This is due to the need to fork the processing of the Notification to support the different policy options. For example, suppose an Event Source had a non-optional policy of signing all Notifications. After being encoded and signed, a single copy of each Notification could transmitted to all the subscribed Event Sinks. If this policy were made optional, the processing of Notification would have to be forked into two paths, the non-signing path (for Event Sinks that chose to receive non-signed Notifications) and the signing path (for Event Sinks that chose to receive signed Notifications). Some QoS options, such as encryption or reliable messaging, could result in behavior that was unique for each Event Sink, thus amplifying this performance impact. Finally some QoS options, such as encryption, may require the Event Source to have specific information about each Event Sink such as the Event Sink’s public key or Kerberos principal name. The mechanisms whereby the Event Source obtains this information (e.g. WS-Trust) are outside the scope of this proposal.
References
[1] http://www.w3.org/Bugs/Public/show_bug.cgi?id=6402
[2] http://www.w3.org/TR/ws-policy/
[3] http://www.w3.org/TR/ws-policy-attach/
[4] http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
[5] http://www.w3.org/Submission/WS-PAEPR/
<wsdl:definitions . . .>�� <wsdl:message name=”WeatherReport”>� <wsdl:part name=”body” element=”foo:WeatherReport”/>� </wsdl:message>� <wsdl:message name=”StormWarning”>� <wsdl:part name=”body” element=”foo:StormWarning”/>

 </wsdl:message>�� <wsdl:portType name=”WeatherNotifyInterface”>� <wsdl:operation name="WeatherReport">� <wsdl:input message="tns:WeatherReport"� wsam:Action="http://.../weather/Report"/>� </wsdl:operation>� <wsdl:operation name="StormWarning">� <wsdl:input message="tns:StormWarning"� wsam:Action="http://.../weather/Warning"/>� </wsdl:operation>� </wsdl:portType>�� <wsdl:binding name=”WeatherNotifySOAP12Binding”� type=”tns:WeatherNotifyInterface”>� <soap:binding style="document"� transport="http://schemas.xmlsoap.org/soap/http"/>� <wsdl:operation name=”WeatherReport”>� <soap:operation/>� <wsdl:input>� <soap:body use=”literal”/>� </wsdl:input>� </wsdl:operation>� <wsdl:operation name=”StormWarning”>� <soap:operation/>� <wsdl:input>� <soap:body use=”literal”/>� </wsdl:input>� </wsdl:operation>� </wsdl:binding>�</wsdl:definitions>

Figure � SEQ Figure * ARABIC �2�

<wsdl:definitions . . .>�� <wsdl:message name=”WeatherReport”>� <wsdl:part name=”body” element=”foo:WeatherReport”/>� </wsdl:message>� <wsdl:message name=”StormWarning”>� <wsdl:part name=”body” element=”foo:StormWarning”/>

 </wsdl:message>� <wsdl:message name=”EarthQuakeReport”>� <wsdl:part name=”body” element=”foo:EarthQuakeReport”/>� </wsdl:message>� <wsdl:message name=”VolcanoReport”>� <wsdl:part name=”body” element=”foo:VolcanoReport”/>� </wsdl:message>�� <wsdl:portType name=”DisaterNotifyInterface”>� <wsdl:operation name="WeatherReport">� <wsdl:input message="tns:WeatherReport"� wsam:Action="http://.../weather/Report"/>� </wsdl:operation>� <wsdl:operation name="StormWarning">� <wsdl:input message="tns:StormWarning"� wsam:Action="http://.../weather/Warning"/>� </wsdl:operation>� <wsdl:operation name="EarthQuakeReport">� <wsdl:input message="tns:EarthQuakeReport"� wsam:Action="http://.../quake/Report"/>� </wsdl:operation>� <wsdl:operation name="VolcanoReport">� <wsdl:input message="tns:VolcanoReport"� wsam:Action="http://.../volcano/Report"/>� </wsdl:operation>� </wsdl:portType>�� <wsdl:binding name=”DisasterNotifySOAP12Binding”� type=”tns:WeatherNotifyInterface”>� <soap:binding style="document"� transport="http://schemas.xmlsoap.org/soap/http"/>� <wsdl:operation name=”WeatherReport”>� . . .� </wsdl:operation>� <wsdl:operation name=”StormWarning”>� . . .� </wsdl:operation>� <wsdl:operation name=”EarthQuakeReport”>� . . .� </wsdl:operation>� <wsdl:operation name=”VolcanoReport”>� . . . � </wsdl:operation>� </wsdl:binding>�</wsdl:definitions>

Figure � SEQ Figure * ARABIC �3�

<?xml version="1.0" encoding="UTF-8"?>�<wsdl:definitions targetNamespace="http://www.whoozie.org/2009/02/empty"� xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"� xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"� xmlns:tns="http://www.whoozie.org/2009/02/empty">�� <wsdl:portType name="EmptyPortType"/>�� <wsdl:binding name="EmptyBinding" type="tns:EmptyPortType"/>�� <wsdl:service name="WeatherSubService">� <wsdl:port name="subport" binding="tns:EmptyBinding">� <soap:address location="http://webservice.bea.com/WeatherConsole/soap12Sub"/>� <wsp:Policy>� <wsep:WSEventing>� <wsp:Policy>� <wsep:NotificationWSDL wsp:Ignorable="true">� http://webservice.bea.com/WeatherConsole/soap12Notify?WSDL� </wsep:NotificationWSDL>� </wsp:Policy>� </wsep:WSEventing>� </wsp:Policy>� </wsdl:port>� </wsdl:service>�</wsdl:definitions>

Figure � SEQ Figure * ARABIC �1�

<wsdl:definitions . . .>�� <wsp:Policy wsu:Id=”SecPolicy” . . .>� <sp:SymmetricBinding>� {stuff that indicates messages will be signed}� </sp:SymmetricBinding>� </wsp:Policy>�� <wsdl:message name="WeatherReport">� <wsdl:part name="body" element="foo:WeatherReport"/>� </wsdl:message>� <wsdl:message name=”StormWarning”>� <wsdl:part name=”body” element=”foo:StormWarning”/>

 </wsdl:message>�� <wsdl:portType name=”WeatherNotifyInterface”>� . . .� </wsdl:portType>�� <wsdl:binding name=”WeatherNotifySOAP12Binding”� type=”tns:WeatherNotifyInterface”>� <wsp:PolicyReference URI=”#SecPolicy”/>� <soap:binding style="document"� transport="http://schemas.xmlsoap.org/soap/http"/>� <wsdl:operation name=”WeatherReport”>� . . .� </wsdl:operation>� <wsdl:operation name=”StormWarning”>� . . .� </wsdl:operation>� </wsdl:binding>�</wsdl:definitions>

<soap:Envelope . . .>� <soap:Header>� <wsa:Action>http://www.w3.org/</wsa:Action>� <wsa:MessageID>uuid:0c84f420-0561-11de-8c30-0800200c9a66</wsa:MessageID>� <wsa:ReplyTo>� <wsa:Address>http://cranium.whoozie.org/DListener/asyncResp-0a</wsa:Address>� </wsa:ReplyTo>� <wsa:To>http://webservice.bea.com/WeatherConsole/subscribe</wsa:To>� </soap:Header>� <soap:Body>� <wse:Subscribe>� <wse:Delivery>� <wse:NotifyTo>� <wsa:Address>http://cranium.whoozie.org/DListenr/aNot-01</wsa:Address>� <wsa:ReferenceParameters>� <wse:Identifier>uuid: . . .</wse:Identifier>� </wsa:ReferenceParameters>� <wsa:Metadata>� <wsp:Policy wsu:Id=”SecPolicy” . . .>� <sp:SymmetricBinding>� {stuff that indicates messages will be signed}� </sp:SymmetricBinding>� </wsp:Policy>� </wsa:Metadata>� </wse:NotifyTo>� </wse:Delivery>� </wse:Subscribe>� </soap:Body>�</soap:Envelope>

Figure � SEQ Figure * ARABIC �5�

Figure � SEQ Figure * ARABIC �4�

1

