
Section 2.9, Primer

 1

Formatted: Right: 18 pt

In the previous sections, we considered two security policy assertions. In this
section, let us look at one of the security policy assertions in a little more detail.

As you would expect, securing messages can be a complex usage scenario. If
Company-X uses the sp:TransportBinding policy assertion to indicate the use of
transport-level security for protecting messages just indicating the use of
transport-level security for protecting messages may not be sufficient. To
successfully interact with Company-X’s Web services, the developer must also
know what transport token to use, what particular secure transport to use, what
specific algorithm suite to use for performing cryptographic operations, etc. The
sp:TransportBinding policy assertion can represent these dependent behaviors.
In this section, let us look at how to capture these dependent behaviors in a
machine-readable form.

A policy assertion – like the sp:TransportBinding - identifies a visible domain
specific behavior that is a requirement. Given an assertion, there may be other
dependent behaviors that need to be enumerated for a Web Service interaction.
In the case of the sp:TransportBinding policy assertion, Company-X needs to
identify the use of a transport token, a secure transport, an algorithm suite for
performing cryptographic operations, etc. A nested policy expression can be
used to enumerate such dependent behaviors.

What is a nested policy expression? A nested policy expression is a policy
expression that is a child element of a parent policy assertion element. A nested
policy expression further qualifies the behavior of its parent policy assertion. The
qualification may indicate a relationship or context between the parent policy
assertion and a nested policy expression [link to section 3.1 in Framework].

In the example below, the child Policy element is a nested policy expression and
further qualifies the behavior of the sp:TransportBinding policy assertion within
the security domain. The sp:TransportToken is a nested policy assertion of the
sp:TransportBinding policy assertion. The sp:TransportToken assertion requires
the use of a specific transport token and further qualifies the behavior of the
sp:TransportBinding policy assertion (which already requires the use of transport-
level security for protecting messages).

Example 2-13. Transport Security Policy Assertion

<sp:TransportBinding>

 <Policy>

 <sp:TransportToken>

 <Policy>

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Deleted: is

Deleted: . J

Deleted: is

Deleted: not

Section 2.9, Primer

 2

Formatted: Right: 18 pt

 <sp:HttpsToken>

 <wsp:Policy/>

 </sp:HttpsToken>

 </Policy>

 </sp:TransportToken>

 <sp:AlgorithmSuite>

 <Policy>

 <sp:Basic256Rsa15/>

 </Policy>

 </sp:AlgorithmSuite>

 …

 </Policy>

</sp:TransportBinding>

The sp:AlgorithmSuite is a nested policy assertion of the sp:TransportBinding
policy assertion. The sp:AlgorithmSuite assertion requires the use of the
algorithm suite identified by its nested policy assertion (sp:Basic256Rsa15 in the
example above) and further qualifies the behavior of the sp:TransportBinding
policy assertion.

Setting aside the details of using transport-level security, Web service developers
can use a policy-aware client that recognizes this policy assertion and engages
transport-level security and its dependent behaviors automatically. That is, the
complexity of security usage is absorbed by a policy-aware client and hidden
from these Web service developers.

In another example, WS-Security Policy defines a sp:HttpToken assertion to
contain three possible nested elements, sp:HttpBasicAuthentication,
sp:HttpDigestAuthentication and sp:RequireClientCertificate. When the
HttpToken is used with an empty nested policy in a policy expression by a
provider, it will indicate that none of the dependent behaviors namely
authentication or client certificate is required. A non-anonymous client who
requires authentication or client certificate will not be able to use this provider
solely on the basis of Framework intersection algorithm alone.

Formatted: Highlight

Section 2.9, Primer

 3

Formatted: Right: 18 pt

Example 2-14. Empty Nested Assertion

<sp:TransportToken>

 <wsp:Policy>

 <sp:HttpsToken>

 <wsp:Policy/>

 </sp:HttpsToken>

 </wsp:Policy>

</sp:TransportToken>

…

3.3 Policy Data Model

...considered nested policy expressions in the context of a security usage
scenario. Let us look at its shape in the policy data model. In the normal form, a
nested policy is a policy that has at most one policy alternative and is related to
or has a context when it exists in its parent policy assertion. The policy
alternative in a nested policy represents a collection of associated or dependent
behaviors or requirements or conditions that qualify the behavior of its parent
policy assertion….

3.4 Compatible Policies

For this interaction, the developer’s policy-aware client can use policy alternative
(a) to satisfy Company-X’s conditions or requirements.

Similarly, policy intersection can be used to check if providers expose endpoints
that conform to a standard policy. For example, a major retailer might require all
their supplier endpoints to be compatible with an agreed upon policy.

Policy assertions and nested policy expressions are evaluated in context for
compatibility matching during intersection processing. Where they exist, nested
policy expressions are evaluated in the context of their parent policy assertions
relative to the policy alternatives.

In compatibility matching, a nested policy expression has a different context if it
exists in two different places and is related to two QNames within two policy
alternatives evaluated.

Formatted: Highlight

Formatted: Highlight

Deleted: owned by

Section 2.9, Primer

 4

Formatted: Right: 18 pt

NOTE: An example may be required here and we have one if needed.

Formatted: Font: Bold, Highlight

Formatted: Highlight

Formatted: Font: Bold

