4. Versioning Policy Language

	Editorial note
	

	The WG is contemplating moving some or all of this material into a non-normative appendix of the framework or attachment document. User feedback is solicited

Over time, the Policy WG or third parties can version or extend the Policy Language with new or modified constructs. These constructs may be compatible or incompatible with previous versions. Some of the possible new constructs that have been mentioned previously are: new operators, operator cardinality, policy identification, compact syntax, Policy Inclusion, security, referencing, attachment points, alternative priority, effective dating, negotiation.

WS-Policy provides extensibility points on 6 elements with a combination of attribute and/or element extensibility. The possible extensibility points are:

1. Policy: element from ##other namespace and any attribute

2. PolicyReference: any attribute and any element

3. ExactlyOne, All: element from ##other namespace, no attribute extensibility

4. PolicyAttachment: element from ##other namespace and any attribute

5. AppliesTo: any element and any attribute

4.1 Policy Framework

WS-Policy Framework 1.5 specifies that any child element that is not known inside a Policy, ExactlyOne or All will be treated as an assertion.
The WS-Policy Framework 1.5 also specifies that omitting the optional attribute is semantically equivalent to including it with a value of false. Attempts to extend the policy language defined by the WS-Policy Framework may therefore be interpreted as new policy assertions with the optional attribute whose value is false. After normalization, such an element will be inside an ExactlyOne/All operator.

Let us show an example with a hypothetical new operator that is a Choice with a minOccurs and a maxOccurs attributes, ala XSD:Choice, in a new namespace. We use the wsp16 prefix to indicate a hypothetical Policy Language 1.6 that is intended to be compatible with Policy Language 1.5. This policy example in Example 4-1 contains both assertions that conform to the specification[add reference], i.e, sp:Transport Binding and a new element “wsp.16:Choice”.
Example 4-1. Policy containing 1.5 and 1.6 Policies.
<wsp:Policy>

 <wsp:ExactlyOne>

 <wsp16:Choice wsp16:minOccurs="1" wsp16:maxOccurs="2">

 ...

 </wsp16:Choice>

 <wsp:All>

<sp:TransportBinding>….</sp:TransportBinding>

 </wsp:All>

 </wsp:ExactlyOne>

</wsp:Policy>

The normalization algorithm would interpret the wsp16:Choice element as an assertion, yielding the following expression:

Example 4-2. Normalized Policy containing 1.5 and 1.6 Policies
<wsp:Policy>

 <wsp:ExactlyOne>

 <wsp:ExactlyOne>

 <wsp:All>

 <wsp16:Choice wsp16:minOccurs="1" wsp16:maxOccurs="2">

 ...

 </wsp16:Choice>

 </wsp:All>

 </wsp:ExactlyOne>

 <wsp:All>

<sp:TransportBinding>….</sp:TransportBinding>
 </wsp:All>

 </wsp:ExactlyOne>

</wsp:Policy>

This normalization process yields two assertions. Intersections between two policy expressions would need to have a wsp16:Choice assertion in at least one alternative in each policy expression to succeed.

If the expression were to contain a wsp:Optional attribute set to "true" on the choice, as in:

Example 4-3. Policy containing explicit wsp:Optional="true"
<wsp:Policy>

 <wsp16:Choice wsp16:minOccurs="1" wsp16:maxOccurs="2"
wsp:Optional="true">
 ...

 </wsp16:Choice>
 <wsp:All>

 <sp:TransportBinding>….</sp:TransportBinding>

 </wsp:All>
</wsp:Policy>

The normalization algorithm step 3B [ref to spec] would interpret the “wsp16:Choice” as an optional assertion yielding the following policy expression:

Example 4-4. Normalized policy
<wsp:Policy>

 <wsp:ExactlyOne>

 <wsp:All>

 <wsp16:Choice wsp16:minOccurs="1" wsp16:maxOccurs="2">
 ...

 </wsp16:Choice>

 <sp:TransportBinding>….</sp:TransportBinding>

 </wsp:All>

 <wsp:All>

 <sp:TransportBinding>….</sp:TransportBinding>

 </wsp:All>

 </wsp:ExactlyOne>

</wsp:Policy>

Because the wsp16:Choice becomes an assertion in the policy expression, any semantics of a new “operator” isn’t understood by the policy framework.Policy intersection may be more difficult with such compatible extensions. For example, the previous example will appear to have a new “wsp16:Choice” assertion. There is an alternative that does not have the wsp16:Choice assertion, so requestors with implementations of the Polciy Framework 1.5 framework could select the alternative without the choice assertion. For a requestor that was aware of the extension, they could intersect and select the wsp16:Choice assertion, but it would require domain specific processing to override any semantics in the intersection algorithm.
Given the extensibility of the Web Services Policy 1.5 schema, it is possible to add new element names to the existing namespace, but these elements are also treated as assertions in the examples above.
Example 4-5. Policy containing 1.5 and 1.6 Policies all in the 1.5 namespace
<wsp:Policy>

 <wsp:ExactlyOne>

 <wsp:Choice wsp:minOccurs="1" wsp:maxOccurs="2">

 ...

 </wsp:Choice>

 <wsp:All>

 ...

 </wsp:All>

 </wsp:ExactlyOne>

</wsp:Policy>

Notice that using a new namespace can result in backwards and forwards compatibility if normalization results in an optional alternative.

Best practice: insert new elements in an optional alternative or mark with wsp:Optional="true".

Incompatible versions of the Policy language may be indicated by a new namespace name for at least the new and/or incompatible elements or attributes. Imagine that the Choice operator is required by a future version of Policy, then there will be a new namespace for the Policy element. We use the wsp20 prefix to indicate a hypothetical Policy Language 2.0 that is intended to be incompatible with Policy Language 1.5:

Example 4-6. Policy containing 2.0 only Policies.
<wsp20:Policy>

 <wsp20:ExactlyOne>

 <wsp20:Choice wsp:minOccurs="1" wsp:maxOccurs="2">

 ...

 </wsp20:Choice>

 ...

 </wsp20:ExactlyOne>

</wsp20:Policy>

The new Policy operator could be embedded inside an existing Policy element:

Example 4-7. Policy containing 2.0 (incompatible with 1.5) Policies embedded in wsp 1.5 Policy.
<wsp:Policy>

 <wsp20:Choice wsp:minOccurs="1" wsp:maxOccurs="2">

 ...

 </wsp20:Choice>

 ...

</wsp20:Policy>

This will be treated as an Assertion for normalization and intersection computation. This will result in only one alternative that requires the wsp20:Choice, the intended behaviour for incompatible changes.

Best practice: use a new namespace for new incompatible construct and insert inside either: new Policy element OR existing All for future incompatible policy extensions.

A future version of WS-Policy could support the current operators in the existing namespace, such as:

Example 4-8. Policy containing 1.5 operator in 2.0 Policy
<wsp20:Policy>

 <wsp:ExactlyOne>

 <wsp20:Choice wsp:minOccurs="1" wsp:maxOccurs="2">

 ...

 </wsp20:Choice>

 ...

 </wsp:ExactlyOne>

</wsp20:Policy>

It is difficult to predict whether this functionality would be useful. The future version of WS-Policy doesn't appear to be precluded from doing this.

