
Understanding Web Services Policy 
July 6, 2006 

Version 1.0 

Authors 

Asir S Vedamuthu (Editor), Microsoft 

Daniel Roth, Microsoft 

Summary 
Understanding Web Services Policy is an introductory description of the Web Services 
Policy language. This document describes the policy language features using 
numerous examples. The associated Web Services Policy Framework and Web 
Services Policy Attachment specifications provide the complete normative description 
of the Web Services Policy language. 

 

Contents 
1. Introduction 
2. Basic Concepts: Policy Expression 
3. Advanced Concepts I: Policy Expression 
4. Advanced Concepts II: Policy Assertion Design 
5. Conclusion 
Appendix A. Security Considerations
 

1. Introduction 
This document, Understanding Web Services Policy, provides an introductory 
description of the Web Services Policy language and should be read alongside the 
formal descriptions contained in the WS-Policy and WS-PolicyAttachment 
specifications. 

 

This document is: 

o for policy expression authors who need to understand the syntax of the language 
and understand how to build consistent policy expressions, 

o for policy implementers whose software modules read and write policy 
expressions and 

o for policy assertion authors who need to know the features of the language and 
understand the requirements for describing policy assertions. 

This document assumes a basic understanding of XML 1.0, Namespaces in XML, 
WSDL 1.1 and SOAP. 
 

Each major section of this document introduces the features of the policy language 
and describes those features in the context of concrete examples. 
 

  Page 1 of 39 



Section 2 - Basic Concepts: Policy Expression - covers the basic mechanisms of Web 
Services Policy. It describes how to declare and combine capabilities and 
requirements of a Web service as policy expressions, attach policy expressions to 
WSDL constructs such as endpoint and message, and re-use policy expressions. 
 

Section 3 - Advanced Concepts I: Policy Expression – this is the first advanced 
section that provides more in-depth materials for policy implementers and assertion 
authors. It explains the basics of normalizing policy expressions, merging policies, 
determining the compatibility (intersection) of policies, the policy data model, the 
policy expression and the extensibility points built into the Web Services Policy 
language. 
 

Section 4 - Advanced Concepts II: Policy Assertion Design - this is the second 
advanced section that walks through the dimensions of a policy assertion for 
assertion authors. This section describes the role of policy assertions, parts of a 
policy assertion, when to design policy assertions, outlines guidelines for designing 
policy assertions and enumerates the minimum requirements for describing policy 
assertions in specifications. 

 

This is a non-normative document and does not provide a definitive specification of 
the Web Services Policy language. Appendix C lists all the XML Namespaces that are 
used in this document. (XML elements without a namespace prefix are from the Web 
Services Policy XML Namespace.) 

2. Basic Concepts: Policy Expression 

2.1 Web Services Policy 
Web services are being successfully used for interoperable solutions across various 
industries. One of the key reasons for interest and investment in Web services is that 
they are well-suited to enable service-oriented systems. XML-based technologies 
such as SOAP, XML Schema and WSDL provide a broadly-adopted foundation on 
which to build interoperable Web services. The WS-Policy and WS-PolicyAttachment 
specifications extend this foundation and offer mechanisms to represent the 
capabilities and requirements of Web services as Policies. 

 

Service metadata is an expression of the visible aspects of a Web service, and 
consists of a mixture of machine- and human-readable languages. Machine-readable 
languages enable tooling. For example, tools that consume service metadata can 
automatically generate client code to call the service. Service metadata can describe 
different parts of a Web service and thus enable different levels of tooling support. 

 

First, service metadata can describe the format of the payloads that a Web service 
sends and receives. Tools can use this metadata to automatically generate and 
validate data sent to and from a Web service. The XML Schema language is 
frequently used to describe the message interchange format within the SOAP 
message construct, i.e. to represent SOAP Body children and SOAP Header blocks. 
 

Second, service metadata can describe the ‘how’ and ‘where’ a Web service 
exchanges messages, i.e. how to represent the concrete message format, what 
headers are used, the transmission protocol, the message exchange pattern and the 

  Page 2 of 39 



list of available endpoints. The Web Services Description Language is currently the 
most common language for describing the ‘how’ and ‘where’ a Web service 
exchanges messages. WSDL has extensibility points that can be used to expand on 
the metadata for a Web service. 
 

Third, service metadata can describe the capabilities and requirements of a Web 
service, i.e. representing whether and how a message must be secured, whether and 
how a message must be delivered reliably, whether a message must flow a 
transaction, etc. Exposing this class of metadata about the capabilities and 
requirements of a Web service enables tools to generate code modules for engaging 
these behaviors. Tools can use this metadata to check the compatibility of requestors 
and providers. Web Services Policy can be used to represent the capabilities and 
requirements of a Web service.  
 

Web Services Policy is a machine-readable language for representing the capabilities 
and requirements of a Web service. These are called ‘policies’. Web Services Policy 
offers mechanisms to represent consistent combinations of capabilities and 
requirements, to determine the compatibility of policies, to name and reference 
policies and to associate policies with Web service metadata constructs such as 
service, endpoint and operation. Web Services Policy is a simple language that has 
four elements - Policy, All, ExactlyOne and PolicyReference - and one attribute 
- wsp:Optional.  

2.2 Simple Message 
Let us start by considering a SOAP Message in the example below. 

SOAP Message 

<soap:Envelope> 
  <soap:Header> 
    <wsa:To>http://stock.contoso.com/realquote</wsa:To> 
    <wsa:Action>http://stock.contoso.com/GetRealQuote</wsa:Action> 
  </soap:Header> 
  <soap:Body>...</soap:Body> 
</soap:Envelope> 

 

This message uses message addressing headers. The wsa:To and wsa:Action header 
blocks identify the destination and the semantics implied by this message 
respectively. (The prefix wsa is used here to denote the Web Services Addressing 
XML Namespace. Appendix C lists all the XML Namespaces and prefixes that are used 
in this document.)  
 

Let us look at a fictitious scenario used in this document to illustrate the features of 
the policy language. Tony is a Web service developer. He is building a client 
application that retrieves real time stock quote information from Contoso, Ltd. 
Contoso supplies real time data using Web services. Tony has Contoso’s advertised 
WSDL description of these Web services. Contoso requires the use of addressing 
headers for messaging. Just the WSDL description is not sufficient for Tony to enable 
the interaction between his client and these Web services. WSDL constructs do not 
indicate requirements such as the use of addressing. 

  Page 3 of 39 



 

(The example companies, organizations, products, domain names, e-mail addresses, 
logos, people, places, and events depicted herein are fictitious.  No association with 
any real company, organization, product, domain name, email address, logo, person, 
places, or events is intended or should be inferred.) 

 

Providers have the option to convey requirements, such as the use of addressing, 
through word-of-mouth and documentation – as they always have. To interact 
successfully with this service, Tony may have to read any related documentation, call 
someone at Contoso to understand the service metadata, or look at sample SOAP 
messages and infer such requirements or behaviors. 
 

Web Services Policy is a machine-readable language for representing these Web 
service capabilities and requirements as policies. Policy makes it possible for 
providers to represent such capabilities and requirements in a machine-readable 
form. For example, Contoso may augment the service WSDL description with a policy 
that requires the use of addressing. Tony can use a policy-aware client that 
understands this policy and engages addressing automatically. 

 

How does Contoso use policy to represent the use of addressing? The example below 
illustrates a policy expression that requires the use of addressing. 

Policy Expression 

<Policy> 
  <wsap:UsingAddressing /> 
</Policy> 

 

The policy expression in the above example consists of a Policy main element and a 
child element wsap:UsingAddressing. Child elements of the Policy element are 
policy assertions. Contoso attaches the above policy expression to a WSDL binding 
description.

 

The wsap:UsingAddressing element is a policy assertion. (The prefix wsap is used 
here to denote the Web Services Addressing – WSDL Binding XML Namespace.) This 
assertion identifies the use of Web Services Addressing information headers. A 
policy-aware client can recognize this policy assertion, engage addressing 
automatically, and use headers such as wsa:To and wsa:Action in SOAP Envelopes. 

 

It is important to understand the association between the SOAP message and policy 
expression in the above example. As you can see by careful examination of the 
message, there is no reference to any policy expression. Just as WSDL does not 
require a message to reference WSDL constructs (such as port, binding and 
portType), Web Services Policy does not require a message to reference a policy 
expression though the policy expression describes the message. 

2.3 Secure Message 
In addition to requiring the use of addressing, Contoso requires the use of transport-
level security for protecting messages. 

  Page 4 of 39 



Secure Message 

<soap:Envelope> 
  <soap:Header> 
    <wss:Security soap:mustUnderstand="1" > 
      <wsu:Timestamp u:Id="_0"> 
        <wsu:Created>2006-01-19T02:49:53.914Z</u:Created> 
        <wsu:Expires>2006-01-19T02:54:53.914Z</u:Expires> 
      </wsu:Timestamp> 
    </wss:Security> 
    <wsa:To>http://real.contoso.com/quote</wsa:To> 
    <wsa:Action>http://real.contoso.com/GetRealQuote</wsa:Action> 
  </soap:Header> 
  <soap:Body>...</soap:Body> 
</soap:Envelope> 

 

The SOAP message in the example above includes security timestamps that express 
creation and expiration times of this message. Contoso requires the use of security 
timestamps and transport-level security - such as HTTPS – for protecting messages. 
(The prefixes wss and wsu are used here to denote the Web Services Security and 
Utility namespaces.) 

 

Similar to the use of addressing, Contoso indicates the use of transport-level security 
using a policy expression. The example below illustrates a policy expression that 
requires the use of addressing and transport-level security for securing messages. 

Addressing and Security Policy Expression 

<Policy> 
  <wsap:UsingAddressing /> 
  <sp:TransportBinding>...</sp:TransportBinding> 
</Policy> 

 

The sp:TransportBinding element is a policy assertion. (The prefix sp is used here 
to denote the Web Services Security Policy XML Namespace.) This assertion identifies 
the use of transport-level security – such as HTTPS - for protecting messages. Policy-
aware clients can recognize this policy assertion, engage transport-level security for 
protecting messages and include security timestamps in SOAP Envelopes. 

 

Tony can use a policy-aware client that recognizes this policy expression and 
engages both addressing and transport-level security automatically. 
 

For the moment, let us set aside the contents of the sp:TransportBinding policy 
assertion and consider its details in a later section. 

2.4 Other Assertions 
Thus far, we explored how Contoso uses policy expressions and assertions for 
representing behaviors that must be engaged for a Web service interaction. What is 
a policy assertion? What role does it play? In brief, a policy assertion is a piece of 

  Page 5 of 39 



service metadata, and it identifies a domain (such as messaging, security, reliability 
and transaction) specific behavior that is a requirement. Contoso uses a policy 
assertion to convey a condition under which they offer a Web service. A policy-aware 
client can recognize policy assertions and engage these behaviors automatically. 
 

Providers, like Contoso, have the option to combine behaviors for an interaction from 
domains such as messaging, security, reliability and transactions. Using policy 
assertions, providers can represent these behaviors in a machine-readable form. 
Web service developers, like Tony, can use policy-aware clients that recognize these 
assertions and engage these behaviors automatically. 

 

Who defines policy assertions? Where are they? Policy assertions are defined by Web 
services developers, product designers, protocol authors and users. Like XML 
Schema libraries, policy assertions are a growing collection. Several WS-* protocol 
specifications and applications define policy assertions: 
 

o Web Services Security Policy 

o Web Services Reliable Messaging Policy  

o Web Services Atomic Transaction  

o Web Services Business Activity Framework  

o Devices Profile for Web Services  

o A Technical Reference for Windows CardSpace  

o ... 

2.5 Combining Policy Assertions 
Policy assertions can be combined in different ways to express consistent 
combinations of behaviors (capabilities and requirements). There are three policy 
operators for combining policy assertions: Policy, All and ExactlyOne (the Policy 
operator is a synonym for All). 

 

Let us consider the All operator first. The policy expression in the example below 
requires the use of addressing and transport-level security. There are two policy 
assertions. These assertions are combined using the All operator. Combining policy 
assertions using the Policy or All operator means that all the behaviors 
represented by these assertions are required. 

Addressing and Security Policy Expression 

<All> 
  <wsap:UsingAddressing /> 
  <sp:TransportBinding>...</sp:TransportBinding> 
</All> 

 

In addition to requiring the use of addressing, Contoso allows either the use of 
transport- or message-level security for protecting messages. Web Services Policy 
language can indicate this choice of behaviors in a machine-readable form. To 
indicate the use of message-level security for protecting messages, Contoso uses the 
sp:AsymmetricBinding policy assertion (see the example below). 

  Page 6 of 39 

http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://schemas.xmlsoap.org/ws/2004/10/wsba/
http://schemas.xmlsoap.org/ws/2006/02/devprof/
http://download.microsoft.com/download/5/4/0/54091e0b-464c-4961-a934-d47f91b66228/infocard-techref-beta2-published.pdf


Asymmetric Binding Security Policy Assertion 

<sp:AsymmetricBinding>...</sp:AsymmetricBinding> 

 

The sp:AsymmetricBinding element is a policy assertion. (The prefix sp is used here 
to denote the Web Services Security Policy namespace.) This assertion identifies the 
use of message-level security – such as WS-Security 1.0 - for protecting messages. 
Policy-aware clients can recognize this policy assertion, engage message-level 
security for protecting messages and use headers such as wss:Security in SOAP 
Envelopes. 

 

To allow the use of either transport- or message-level security, Contoso uses the 
ExactlyOne policy operator. Policy assertions combined using the ExactlyOne 
operator requires exactly one of the behaviors represented by the assertions. The 
policy expression in the example below requires the use of either transport- or 
message-level security for protecting messages. 

Transport- or Message-Level Security Policy Expression 

<ExactlyOne> 
   <sp:TransportBinding>...</sp:TransportBinding> 
   <sp:AsymmetricBinding>...</sp:AsymmetricBinding > 
</ExactlyOne> 

 

Contoso requires the use of addressing and requires the use of either transport- or 
message-level security for protecting messages. They represent this combination 
using the All and ExactlyOne operators. Policy operators can be mixed to represent 
different combinations of behaviors (capabilities and requirements). The policy 
expression in the example below requires the use of addressing and one of 
transport- or message-level security for protecting messages. 

Addressing and Transport- OR Message-Level Security Policy Expression 

<All> 
  <wsap:UsingAddressing /> 
  <ExactlyOne> 
     <sp:TransportBinding>...</sp:TransportBinding> 
     <sp:AsymmetricBinding>...</sp:AsymmetricBinding > 
  </ExactlyOne> 
</All> 

 

Using this policy expression, Contoso gives the choice of mechanisms for protecting 
messages to clients (or requestors). 

2.6 Optional Policy Assertion 
Through a customer survey program, Contoso learns that a significant number of 
their customers prefer to use the Optimized MIME Serialization (as defined in the 
MTOM specification) for sending and receiving messages. Contoso adds optional 
support for the Optimized MIME Serialization and expresses this optional behavior in 
a machine-readable form. 

 

  Page 7 of 39 



To indicate the use of optimization using the Optimized MIME Serialization, Contoso 
uses the mtom:OptimizedMimeSerialization policy assertion (see the example 
below). 

Optimized MIME Serialization Policy Assertion 

<mtom:OptimizedMimeSerialization /> 

 

The mtom:OptimizedMimeSerialization element is a policy assertion. (The prefix 
mtom is used here to denote the Optimized MIME Serialization Policy namespace.) 
This assertion identifies the use of MIME Multipart/Related serialization for messages. 
Policy-aware clients can recognize this policy assertion and engage Optimized MIME 
Serialization for messages. The semantics of this assertion are reflected in 
messages: they use an optimized wire format (MIME Multipart/Related serialization). 

 

Like Contoso’s optional support for Optimized MIME Serialization, there are behaviors 
that may be engaged (in contrast to must be engaged) for a Web service interaction. 
A service provider will not fault if these behaviors are not engaged. Policy assertions 
can be marked optional to represent behaviors that may be engaged for an 
interaction. A policy assertion is marked as optional using the wsp:Optional 
attribute. Optional assertions represent the capabilities of the service provider as 
opposed to the requirements of the service provider. 

 

In the example below, the Optimized MIME Serialization policy assertion is marked 
optional. This policy expression allows the use of optimization and requires the use of 
addressing and one of transport- or message-level security. 

Optional MIME Serialization, Addressing and Transport- OR Message-Level Security Policy 
Expression 

<All> 
  <mtom:OptimizedMimeSerialization wsp:Optional=”true”/> 
  <wsap:UsingAddressing /> 
  <ExactlyOne> 
     <sp:TransportBinding>...</sp:TransportBinding> 
     <sp:AsymmetricBinding>...</sp:AsymmetricBinding > 
  </ExactlyOne> 
</All> 

 

Contoso is able to meet their customer needs by adding optional support for the 
Optimized MIME Serialization. An optional policy assertion represents a behavior that 
may be engaged. 

2.7 Nested Policy Expressions 
In the previous sections, we considered two security policy assertions. In this section, 
let us look at one of the security policy assertions in little more detail. 
 

As you would expect, securing messages is a complex usage scenario. Contoso uses 
the sp:TransportBinding policy assertion to indicate the use of transport-level 
security for protecting messages. Just indicating the use of transport-level security 
for protecting messages is not sufficient. To successfully interact with Contoso’s Web 

  Page 8 of 39 



services, Tony must know what transport token to use, what secure transport to use, 
what algorithm suite to use for performing cryptographic operations, etc. The 
sp:TransportBinding policy assertion can represent these dependent behaviors. In 
this section, let us look at how to capture these dependent behaviors in a machine-
readable form. 

  

A policy assertion – like the sp:TransportBinding - identifies a visible domain 
specific behavior that is a requirement. Given an assertion, there may be other 
dependent behaviors that need to be enumerated for a Web Service interaction. In 
the case of the sp:TransportBinding policy assertion, Contoso needs to identify the 
use of a transport token, a secure transport, an algorithm suite for performing 
cryptographic operations, etc. A nested policy expression can be used to enumerate 
such dependent behaviors. 

 

What is a nested policy expression? A nested policy expression is a policy expression 
that is a child element of a policy assertion element. A nested policy expression 
further qualifies the behavior of its parent policy assertion. 

 

In the example below, the child Policy element is a nested policy expression and 
further qualifies the behavior of the sp:TransportBinding policy assertion. The 
sp:TransportToken is a nested policy assertion of the sp:TransportBinding policy 
assertion. The sp:TransportToken assertion requires the use of a specific transport 
token and further qualifies the behavior of the sp:TransportBinding policy 
assertion (which already requires the use of transport-level security for protecting 
messages). 

Transport Security Policy Assertion 

<sp:TransportBinding> 
  <Policy> 
    <sp:TransportToken> 
      <Policy> 
        <sp:HttpsToken RequireClientCertificate="false" /> 
      </Policy> 
    </sp:TransportToken> 
    <sp:AlgorithmSuite> 
      <Policy> 
        <sp:Basic256Rsa15 /> 
      </Policy> 
    </sp:AlgorithmSuite> 
    … 
  </Policy> 
</sp:TransportBinding> 

 

The sp:AlgorithmSuite is a nested policy assertion of the sp:TransportBinding 
policy assertion. The sp:AlgorithmSuite assertion requires the use of the algorithm 
suite identified by its nested policy assertion (sp:Basic256Rsa15 in the example 
above) and further qualifies the behavior of the sp:TransportBinding policy 
assertion. 

  Page 9 of 39 



 

Setting aside the details of using transport-level security, Web service developers, 
like Tony, can use a policy-aware client that recognizes this policy assertion and 
engages transport-level security and its dependent behaviors automatically. That is, 
the complexity of security usage is absorbed by a policy-aware client and hidden 
from these Web service developers. 

2.8 Referencing Policy Expressions 
Contoso has numerous Web service offerings that provide different kinds of real-time 
quotes and book information on securities such as GetRealQuote, GetRealQuotes 
and GetExtendedRealQuote. To accommodate the diversity of Contoso’s customers, 
Contoso supports multiple WSDL bindings for these Web services. Contoso provides 
consistent ways to interact with their services and wants to represent these 
capabilities and requirements consistently across all of their offerings without 
duplicating policy expressions multiple times. How? It is simple - a policy expression 
can be named and referenced for re-use. 
   

A policy expression may be identified by a URI and referenced for re-use as a 
standalone policy or within another policy expression. There are two mechanisms to 
identify a policy expression: the wsu:Id and Name attributes. A PolicyReference 
element can be used to reference a policy expression identified using either of these 
mechanisms. 

Common Policy Expression  

<Policy wsu:Id=”common”> 
  <mtom:OptimizedMimeSerialization wsp:Optional=”true”/> 
  <wsap:UsingAddressing /> 
</Policy> 

 

In the example above, the wsu:Id attribute is used to identify a policy expression. 
The value of the wsu:Id attribute is an XML ID. The relative URI for referencing this 
policy expression (within the same document) is #common. If the policy document URI 
is http://real.contoso.com/policy.xml then the absolute URI for referencing this 
policy expression is http://real.contoso.com/policy.xml#common. (The absolute 
URI is formed by combining the document URI, # and the value of the wsu:Id 
attribute.) 

 

For re-use, a PolicyReference element can be used to reference a policy 
expression as a standalone policy or within another policy expression. The example 
below is a policy expression that re-uses the common policy expression above. 

PolicyReference to Common Policy Expression 

<PolicyReference URI=”#common”/> 

 

For referencing a policy expression within the same XML document, Contoso uses the 
wsu:Id attribute for identifying a policy expression and a URI to this ID value for 
referencing this policy expression using a PolicyReference element. 

 

  Page 10 of 39 



The example below is a policy expression that re-uses the common policy expression 
within another policy expression. This policy expression requires the use of 
addressing, one of transport- or message-level security for protecting messages and 
allows the use of optimization. 

Secure Policy Expression 

<Policy wsu:Id=”secure”> 
  <All> 
    <PolicyReference URI=”#common”/> 
    <ExactlyOne> 
      <sp:TransportBinding>...</sp:TransportBinding> 
      <sp:AsymmetricBinding>...</sp:AsymmetricBinding > 
    </ExactlyOne> 
  </All> 
</Policy> 

 

The Name attribute is an alternate mechanism to identify a policy expression. The 
value of the Name attribute is an absolute URI and is independent of the location of 
the XML document where the identified policy expression resides in. As such, 
referencing a policy expression using the Name attribute relies on additional out of 
band information. In the example below, the Name attribute identifies the policy 
expression. The URI of this policy expression is 
http://real.contoso.com/policy/common. 

Common Policy Expression 

<Policy Name=”http://real.contoso.com/policy/common”> 
  <mtom:OptimizedMimeSerialization wsp:Optional=”true”/> 
  <wsap:UsingAddressing /> 
</Policy> 

 

The example below is a policy expression that re-uses the common policy expression 
above. 

PolicyReference to Common Policy Expression 

<PolicyReference URI=”http://real.contoso.com/policy/common”/> 

2.9 Attaching Policy Expressions to WSDL 
A majority of Contoso’s customers use WSDL for building their client applications. 
Contoso leverages this usage by attaching policy expressions to the WSDL binding 
descriptions.  

 

In the example below, the SecureBinding WSDL binding description defines a 
binding for an interface that provides real-time quotes and book information on 
securities. (The prefixes wsdl and tns are used here to denote the Web Services 
Description language XML namespace and target namespace of this WSDL 
document.) To require the use of security for these offerings, Contoso attaches the 
secure policy expression in the previous section to this binding description. The 
WSDL binding element is a common policy attachment point. The secure policy 
expression attached to the SecureBinding WSDL binding description applies to any 

  Page 11 of 39 



message exchange associated with any port that supports this binding description. 
This includes all the message exchanges described by operations in the 
RealTimeDataInterface. 

Secure Policy Expression Attached to WSDL Binding  

<wsdl:binding name="SecureBinding" type="tns:RealTimeDataInterface" > 
  <PolicyReference URI="#secure" /> 
  <wsdl:operation name="GetRealQuote" >…</wsdl:operation> 
  … 
</wsdl:binding> 

 

In addition to providing real-time quotes and book information on securities, Contoso 
provides other kinds of data through Web services such as quotes delayed by 20 
minutes and security symbols through Web services (for example GetDelayedQuote, 
GetDelayedQuotes, GetSymbol and GetSymbols). Contoso does not require the use 
of security for these services, but requires the use of addressing and allows the use 
of optimization. 

Open Policy Expression Attached to WSDL Binding  

<wsdl:binding name="OpenBinding" type="tns:DelayedDataInterface" > 
  <PolicyReference URI="#common" /> 
  <wsdl:operation name="GetDelayedQuote" >…</wsdl:operation> 
  … 
</wsdl:binding> 

 

In the example above, the OpenBinding WSDL binding description defines a binding 
for an interface that provides other kinds of data such as quotes delayed by 20 
minutes and security symbols. To require the use of addressing and allow the use of 
optimization, Contoso attaches the common policy expression in the previous section 
to this binding description. As we have seen in the SecureBinding case, the common 
policy expression attached to the OpenBinding WSDL binding description applies to 
any message exchange associated with any port that supports this binding 
description. This includes all the message exchanges described by operations in the 
DelayedDataInterface. 

 

As mentioned earlier, providers have the option to convey requirements, such as the 
use of addressing or security, through word-of-mouth and documentation – as they 
always have. The absence of policy expressions in a WSDL document does not 
indicate anything about the capabilities and requirements of a service. The service 
may have capabilities and requirements that can be expressed as policy expressions, 
such as the use of addressing, security and optimization. Or, the service may not 
have such capabilities and requirements. A policy aware client should not conclude 
anything (other than ‘no claims’) about the absence of policy expressions. 

 

Service providers, like Contoso, can preserve and leverage their investments in 
WSDL and represent the capabilities and requirements of a Web service as policies. A 
WSDL document may specify varying behaviors across Web service endpoints. Web 
service developers, like Tony, can use a policy-aware client that recognizes these 
policy expressions in WSDL documents and engages behaviors automatically for each 

  Page 12 of 39 



of these endpoints. Any complexity of varying behaviors across Web service 
endpoints is absorbed by a policy-aware client or tool and hidden from these Web 
service developers. 

2.10 Policy Automates Web Services Interaction 
As you have seen, Web Services Policy is a simple language that has four elements - 
Policy, All, ExactlyOne and PolicyReference - and one attribute - wsp:Optional. 
In practice, service providers, like Contoso, use policy expressions to represent 
combinations of capabilities and requirements. Web service developers, like Tony, 
use policy-aware clients that understand policy expressions and engage the 
behaviors represented by providers automatically. A sizable amount of complexity is 
absorbed by policy-aware clients (or tools) and is invisible to these Web service 
developers. 
 

Web Services Policy extends the foundation on which to build interoperable Web 
services, hides complexity from developers and automates Web service interactions. 

3. Advanced Concepts I: Policy Expression 
In Section 2, we covered the basics of Web Services Policy language. This is the first 
advanced section that provides more in-depth materials for Web Services Policy 
implementers and assertion authors. This section covers the following topics: 
 

o What is a policy expression? 

o What is the normal form of a policy expression and how to normalize policy 
expressions? 

o What is the policy data model? 

o How to select a compatible policy alternative? 

o How to attach policy expressions to WSDL constructs? 

o How to combine policies? 

o What are the extensibility points? 

3.1 Policy Expression 
A policy expression is the XML representation and interoperable form of a Web 
Services Policy. A policy expression consists of a Policy wrapper element and a 
variety of child and descendent elements. Child and descendent elements from the 
policy language are Policy, All, ExactlyOne and PolicyReference. Other child 
elements of Policy, All and ExactlyOne are policy assertions. (The Policy element 
plays two roles: wrapper element and operator.)  Policy assertions can contain a 
nested policy expression. Policy assertions can also be marked optional to represent 
behaviors that may be engaged (capabilities) for an interaction. The optional marker 
is the wsp:Optional attribute which is placed on a policy assertion element. 

 

Let us take a closer look at Contoso’s policy expression (see below) from the 
previous section. 

Contoso’s Secure Policy Expression  

<Policy> 
  <All> 
    <mtom:OptimizedMimeSerialization wsp:Optional=”true”/> 

  Page 13 of 39 



    <wsap:UsingAddressing /> 
    <ExactlyOne> 
      <sp:TransportBinding>...</sp:TransportBinding> 
      <sp:AsymmetricBinding>...</sp:AsymmetricBinding > 
    </ExactlyOne> 
  </All> 
</Policy> 

 

The Policy element is the wrapper element. The All and ExactlyOne elements are 
the policy operators. All other child elements of the All and ExactlyOne elements 
are policy assertions from domains such as messaging, addressing, security, 
reliability and transactions. 

3.2 Normal Form for Policy Expressions 
Web Services Policy language defines two forms of policy expressions: compact and 
normal form. Up to this point, we have used the compact form. The compact form is 
less verbose than the normal form. The compact form is useful for authoring policy 
expressions. The normal form is an intuitive representation of the policy data model. 
We will look into the policy data model in the next section. 

 

The normal form uses a subset of constructs used in the compact form and follows a 
simple outline for its XML representation: 

Normal Form for Policy Expressions 

<Policy> 
  <ExactlyOne> 
    <All> 
      <x:AssertionA>…</x:AssertionA> 
      <y:AssertionB>…</y:AssertionB> 
      … 
    </All> 
    <All> 
      <x:AssertionA>…</x:AssertionA> 
      <z:AssertionC>…</z:AssertionC> 
      … 
    </All> 
   …    
  </ExactlyOne> 
<Policy/> 

 

The normal form consists of a Policy wrapper element and has one child 
ExactlyOne element. This ExactlyOne element has zero or more All child elements. 
Each of these All elements has zero or more policy assertions. The 
PolicyReference element and wsp:Optional attribute are not used in the normal 
form. And, a nested policy expression in the normal form has at most one policy 
alternative. 

 

  Page 14 of 39 



The normal form represents a policy as a collection of policy alternatives and a policy 
alternative as a collection of policy assertions in a straight-forward manner. 
 

The example below is a policy expression in the normal form. This expression 
contains two policy alternatives: one that requires the use of transport-level security 
and the other that requires the use of message-level security for protecting 
messages. 

Transport- or Message-Level Security Policy Expression in Normal Form 

<Policy> 
  <ExactlyOne> 
    <All> 
      <sp:TransportBinding>...</sp:TransportBinding> 
    </All> 
    <All> 
      <sp:AsymmetricBinding>...</sp:AsymmetricBinding > 
    </All> 
  </ExactlyOne> 
</Policy> 

 

A policy expression in the compact form can be converted to the normal form. Web 
Services Policy language describes the algorithm for this conversion. 

 

Let us re-consider Contoso’s policy expression (see the example below). Contoso 
requires the use of addressing and either transport- or message-level security and 
allows the use of optimization. This policy expression is in the compact form and has 
four policy alternatives for requestors: 
 

(a) Requires the use of addressing and transport-level security 

(b) Requires the use of addressing and message-level security 

(c) Requires the use of optimization, addressing and transport-level security and 

(d) Requires the use of optimization, addressing and message-level security. 

Contoso’s Secure Policy Expression in Compact Form 

<Policy wsu:Id=”secure”> 
  <All> 
    <PolicyReference URI=”#common”/> 
    <ExactlyOne> 
      <sp:TransportBinding>...</sp:TransportBinding> 
      <sp:AsymmetricBinding>...</sp:AsymmetricBinding > 
    </ExactlyOne> 
  </All> 
</Policy> 
 
<Policy wsu:Id=”common”> 
  <mtom:OptimizedMimeSerialization wsp:Optional=”true”/> 
  <wsap:UsingAddressing /> 

  Page 15 of 39 



</Policy> 

 

Let us look at the normal form for this policy expression. The example below is 
Contoso’s policy expression in the normal form. As you can see, the compact form is 
less verbose than the normal form. The normal form represents a policy as a 
collection of policy alternatives. Each of the All operators is a policy alternative.  
There are four policy alternatives in the normal form. These alternatives map to 
bullets (a) through (d) above. 

Contoso’s Policy Expression in Normal Form 

<Policy> 
  <ExactlyOne> 
    <All> <!-- - - - - - - - - - - - - - Policy Alternative (a) --> 
       <wsap:UsingAddressing /> 
       <sp:TransportBinding>...</sp:TransportBinding> 
    </All> 
    <All> <!-- - - - - - - - - - - - - - Policy Alternative (b) --> 
      <wsap:UsingAddressing /> 
      <sp:AsymmetricBinding>...</sp:AsymmetricBinding > 
    </All> 
    <All> <!-- - - - - - - - - - - - - - Policy Alternative (c) --> 
       <mtom:OptimizedMimeSerialization /> 
       <wsap:UsingAddressing /> 
       <sp:TransportBinding>...</sp:TransportBinding> 
    </All> 
    <All> <!-- - - - - - - - - - - - - - Policy Alternative (d) --> 
       <mtom:OptimizedMimeSerialization /> 
       <wsap:UsingAddressing /> 
       <sp:AsymmetricBinding>...</sp:AsymmetricBinding > 
    </All> 
  </ExactlyOne> 
</Policy> 

 

The wsp:Optional attribute, nested policy expression and PolicyReference element 
are converted to their corresponding normal form. The wsp:Optional attribute 
converts to two alternatives, one with and the other without the assertion. A policy 
alternative containing an assertion with a nested policy expression that has multiple 
policy alternatives converts to multiple policy alternatives where the assertion 
contains a nested policy expression that has at most one policy alternative. 
 

The PolicyReference element is replaced with its referenced policy expression. Just 
as other service metadata languages, Web Services Policy does not mandate any 
specific policy retrieval mechanism. Any combination of any retrieval mechanisms in 
any order may be used for referencing policy expressions. Example retrieval 
mechanisms are: 

o Do nothing. A policy expression with the referenced URI is already known to be 
available in a local cache or chip (embedded systems). 

  Page 16 of 39 



o Use the referenced URI and retrieve an existing policy expression from the 
containing XML document: a policy element with an XML ID. 

o Use the referenced URI and retrieve a policy expression from some policy 
repository (local or remote) or catalog. Policy tools may use any protocols (say 
Web Services Metadata Exchange) for such metadata retrieval. These protocols 
may require additional out of band information. 

o Attempt to resolve the referenced URI on the Web. This may resolve to a policy 
element or a resource that contains a policy element. 

If the referenced policy expression is in the same XML document as the reference, 
then the policy expression should be identified using the wsu:Id (XML ID) attribute 
and referenced using a URI reference to this XML ID value. 

3.3 Policy Data Model 
In the previous section, we considered the normal form for policy expressions. As we 
discussed, the normal form represents a policy as a collection of policy alternatives. 
In this section, let us look at the policy data model. 
 

Contoso uses a policy to convey the conditions for an interaction. Policy-aware 
clients, like the one used by Tony (as explained earlier in Section 2), view policy as 
an unordered collection of zero or more policy alternatives. A policy alternative is an 
unordered collection of zero or more policy assertions. A policy alternative represents 
a collection of behaviors or requirements or conditions for an interaction. In simple 
words, each policy alternative represents a set of conditions for an interaction. The 
diagram below describes the policy data model. 

 

  Page 17 of 39 



Policy

Policy 
Alternative

Policy 
Alternative

Policy Assertion

Policy Alternative

Policy 
Alternative

Policy 
Alternative

Policy Assertion Parameters

QName

WS-Policy Data Model

Policy is an unordered 
collection of Policy 

Alternatives

Policy Alternative is 
an unordered 
collection of Policy 
Assertions

Policy Assertion is identified by 
a QName and may contain 
Parameters and a Nested Policy

Policy Assertion 
Parameters are the 

opaque payload of a 
Policy Assertion

Nested Policy

Policy 
Alternative

Policy 
Assertion

 
 

A policy-aware client uses a policy to determine whether one of these policy 
alternatives (i.e. the conditions for an interaction) can be met in order to interact 
with the associated Web Service. Such clients may choose any of these policy 
alternatives and must choose exactly one of them for a successful Web service 
interaction. Clients may choose a different policy alternative for a subsequent 
interaction. It is important to understand that a policy is a useful piece of metadata 
in machine-readable form that enables tooling, yet is not required for a successful 
Web service interaction. Why? Web service developers, like Tony, could use the 
documentation, talk to the service providers, or look at message traces to infer these 
conditions for an interaction. Developers continue to have these options, as they 
always had. 
 

As we discussed, a policy assertion identifies a domain specific behavior or 
requirement or condition. A policy assertion has a QName that identifies its behavior 

  Page 18 of 39 



or requirement or condition. In the XML representation, the QName of the assertion 
element is the QName of the policy assertion. A policy assertion may contain 
assertion parameters and a nested policy. 

 

The assertion parameters are the opaque payload of an assertion. Parameters carry 
additional useful pieces of information necessary for engaging the behavior described 
by an assertion. In the XML representation, the child elements and attributes of an 
assertion are the assertion parameters. 
 

We considered nested policy expressions in the context of a security usage scenario. 
Let us look at its shape in the policy data model. In the normal form, a nested policy 
is a policy that has at most one policy alternative and is owned by its parent policy 
assertion. The policy alternative in a nested policy represents a collection of 
dependent behaviors or requirements or conditions that qualify the behavior of its 
parent policy assertion. 
 

A policy-aware client supports a policy assertion if the client engages the behavior or 
requirement or condition indicated by the assertion. A policy-aware client supports a 
policy alternative if the client engages the behaviors represented by all the 
assertions in the alternative. A policy-aware client supports a policy if the client 
engages the behaviors represented by at least one of the policy alternatives. 

 

In the previous section, we saw how the normal form of a policy expression 
represents a policy as a collection of policy alternatives. By policy language design, 
the normal form of a policy expression directly maps to the policy data model: 

o Each child element of Policy/ExactlyOne/All maps to a policy assertion. 

o Each Policy/ExactlyOne/All element and policy assertions which correspond to 
its children map to a policy alternative. 

o The Policy/ExactlyOne element maps to a collection of policy alternatives. 

o The Policy wrapper element and policy alternatives which correspond to the 
Policy/ExactlyOne element map to a policy. 

The diagram below describes this mapping from the normal form of a policy 
expression to the policy data model. 

 

  Page 19 of 39 



 

3.4 Compatible Policies 
A provider, like Contoso, and a requestor, like Tony’s policy-aware client, may 
represent their capabilities and requirements for an interaction as policies and want 
to limit their message exchanges to mutually compatible policies. Web Services 
Policy defines an intersection mechanism for selecting compatible policy alternatives 
when there are two or more policies. 

  Page 20 of 39 



 

The example below is a copy of Contoso’s policy expression (from Section 3.2). As 
we saw before, Contoso offers four policy alternatives. Of them, one of the policy 
alternatives requires the use of addressing and transport-level security. 

Contoso’s Policy Expression 

<Policy> 
  <ExactlyOne> 
    <All> <!-- - - - - - - - - -   Contoso’s Policy Alternative (a) --> 
       <!-- - - - - - - - - - - - - - - - - - Policy Assertion (c1) --> 
       <wsap:UsingAddressing />  
       <!-- - - - - - - - - - - - - - - - - - Policy Assertion (c2) --> 
       <sp:TransportBinding>...</sp:TransportBinding>  
    </All> 
    … 
  </ExactlyOne> 
</Policy> 

 

Tony’s organization requires the use of addressing and transport-level security for 
any interaction with Contoso’s Web services. Tony represents these behaviors using 
a policy expression illustrated in the example below in normal form. This policy 
expression contains one policy alternative that requires the use of addressing and 
transport-level security. 

Tony’s Policy Expression in Normal Form 

<Policy> 
  <ExactlyOne> 
    <All> <!-- - - - - - - - - - - - - -  Tony’s Policy Alternative --> 
       <!-- - - - - - - - - - - - - - - - - - Policy Assertion (t1) --> 
      <sp:TransportBinding>...</sp:TransportBinding> 
       <!-- - - - - - - - - - - - - - - - - - Policy Assertion (t2) --> 
      <wsap:UsingAddressing /> 
    </All> 
  </ExactlyOne> 
</Policy> 

 

Tony lets his policy-aware client select a compatible policy alternative in Contoso’s 
policy. How does this client select a compatible policy alternative? It is simple – it 
uses the policy intersection. That is, Tony’s policy-aware client uses these two policy 
expressions (Tony’s and Contoso’s) and the policy intersection to select a compatible 
policy alternative for this interaction. Let us look at the details of policy intersection. 

 

For two policy assertions to be compatible they must have the same QName. And, if 
either assertion has a nested policy, both assertions must have a nested policy and 
the nested policies must be compatible. For example, policy assertions (c2) and (t1) 
have the same QName, sp:TransportBinding. For this discussion, let us assume 
that these two assertions have compatible nested policies. These two assertions are 

  Page 21 of 39 



compatible because they have the same QName and their nested policies are 
compatible. 
 

Two policy alternatives are compatible if each policy assertion in one alternative is 
compatible with a policy assertion in the other and vice-versa. For example, policy 
assertions (c1) and (c2) in Contoso’s policy alternative are compatible with policy 
assertions (t2) and (t1) in Tony’s policy alternative. Contoso’s policy alternative (a) 
and Tony’s policy alternative are compatible because assertions in these two 
alternatives are compatible. 

 

Two policies are compatible if a policy alternative in one is compatible with a policy 
alternative in the other. For example, Contoso’s policy alternative (a) is compatible 
with Tony’s policy alternative. Contoso’s policy and Tony’s policy are compatible 
because one of Contoso’s policy alternative is compatible with Tony’s policy 
alternative. 
 

For this interaction, Tony’s policy-aware client can use policy alternative (a) to 
satisfy Contoso’s conditions or requirements. 

 

Similarly, policy intersection can be used to check if providers expose endpoints that 
conform to a standard policy. For example, a major retailer might require all their 
supplier endpoints to be compatible with an agreed upon policy. 

3.5 Attaching Policy Expressions to WSDL 
In Section 2, we looked into how Contoso attached their policy expressions to the 
WSDL binding element. In addition to the WSDL binding element, a policy 
expression can be attached to other WSDL elements such as service, port, 
operation and message. These elements are the WSDL policy attachment points in a 
WSDL document. 

 

The WSDL attachment points are partitioned (as illustrated below) into four policy 
subjects: message, operation, endpoint and service. When attached, capabilities and 
requirements represented by a policy expression apply to a message exchange or 
message associated with (or described by) a policy subject. 
 

  Page 22 of 39 



 
 

The WSDL service element represents the service policy subject. Policy expressions 
associated with a service policy subject apply to any message exchange using any of 
the endpoints offered by that service. 

 

The WSDL port, binding and portType elements collectively represent the endpoint 
policy subject. Policy expressions associated with an endpoint policy subject apply to 
any message exchange made using that endpoint. 

 

  Page 23 of 39 



The WSDL binding/operation and portType/operation elements collectively 
represent the operation policy subject. Policy expressions associated with an 
operation policy subject apply to the message exchange defined by that operation. 

 

The WSDL binding/operation/input, portType/operation/input, and message 
element collectively represent the message policy subject for the input message. The 
WSDL binding/operation/output, portType/operation/output, and message 
element collectively represent the message policy subject for the output message. 
The WSDL binding/operation/fault, portType/operation/fault, and message 
element collectively represent the message policy subject for the fault message. 
Policy expressions associated with a message policy subject apply only to that 
message. 

 

In the example below, the policy expression is attached to an endpoint policy subject. 

Contoso’s Policy Expression Attached to WSDL binding Element 

<wsdl:binding name="SecureBinding" type="tns:RealTimeDataInterface" > 
  <PolicyReference URI="#secure" /> 
  <wsdl:operation name="GetRealQuote" >…</wsdl:operation> 
  … 
</wsdl:binding> 

 

If multiple policy expressions are attached to WSDL elements that collectively 
represent a policy subject then the effective policy of these policy expressions 
applies. The effective policy is the combination of the policy expressions that are 
attached to the same policy subject. For example, the effective policy of an endpoint 
policy subject is the combination of policy expressions attached to a WSDL port 
element, policy expressions attached to the binding element referenced by this port, 
and policy expressions attached to the portType element that is supported by this 
port. Let us consider how to combine policy expressions in the next section. 

 

Most of the policy assertions are designated for the endpoint, operation or message 
policy subject. The commonly used WSDL attachment points are: 

 

Policy Subject Commonly used attachment point (s) 

Endpoint binding element 

Operation binding/operation element 

Message binding/operation/input and 

binding/operation/output elements 

3.6 Combine Policies 
Multiple policy expressions may be attached to WSDL constructs. Let us consider how 
Contoso could have used multiple policy expressions in a WSDL document. In the 
example below, there are two policy expressions #common2 and #secure2 attached to 
the SecureBinding WSDL binding and RealTimeDataPort WSDL port descriptions.  

  Page 24 of 39 



Multiple Policy Expressions Attached to Endpoint Policy Subject  

<Policy wsu:Id=”common2”> 
  <mtom:OptimizedMimeSerialization wsp:Optional=”true”/> 
  <wsap:UsingAddressing /> 
</Policy> 
 
<Policy wsu:Id=”secure2”> 
  <ExactlyOne> 
    <sp:TransportBinding>...</sp:TransportBinding> 
    <sp:AsymmetricBinding>...</sp:AsymmetricBinding > 
  </ExactlyOne> 
</Policy> 
 
<wsdl:binding name="SecureBinding" type="tns:RealTimeDataInterface" > 
  <PolicyReference URI="#secure2" /> 
  <wsdl:operation name="GetRealQuote" >…</wsdl:operation> 
  … 
</wsdl:binding> 
 
<wsdl:service name=”RealTimeDataService”> 
  <wsdl:port name=”RealTimeDataPort” binding=”tns:SecureBinding”> 
    <PolicyReference URI="#common2" /> 
    … 
  </wsdl:port> 
</wsdl:service> 

 

As we discussed before, the WSDL port, binding and portType elements 
collectively represent the endpoint policy subject. In the example above, the 
#common2 and #secure2 policy expressions attached to the SecureBinding WSDL 
binding and RealTimeDataPort WSDL port descriptions collectively apply to any 
message exchange associated with the RealTimeDataPort WSDL port. 

 

As in the example above, multiple policy expressions may be attached to Web 
service constructs that collectively represent a single policy subject. When there are 
multiple policy expressions attached to the same policy subject then the effective 
policy or combination of these policy expressions apply to the associated policy 
subject. 
 

The effective policy is the combination of two or more policy expressions attached to 
the same policy subject. The combination of two policy expressions, also known as 
the merged policy expression, is a new policy expression that combines these two 
policy expressions using the All policy operator. 

 

The policy expression below is the combination of the two policy expressions 
attached to the SecureBinding WSDL binding and RealTimeDataPort WSDL port 
descriptions. The #common2 policy expression has two policy alternatives. The 

  Page 25 of 39 



#secure2 policy expression has two policy alternatives. The combination of these 
two policies is equivalent to Contoso’s secure policy in Section 2 and has four policy 
alternatives. In other words, the combination of two policies is the cross product of 
alternatives in these two policies. 

Effective Policy of the Endpoint Policy Subject in the Previous Example 

<Policy> 
  <All> 
    <Policy> 
      <mtom:OptimizedMimeSerialization wsp:Optional=”true”/> 
      <wsap:UsingAddressing /> 
    </Policy> 
    <Policy> 
      <ExactlyOne> 
        <sp:TransportBinding>...</sp:TransportBinding> 
        <sp:AsymmetricBinding>...</sp:AsymmetricBinding > 
      </ExactlyOne> 
    </Policy> 
  </All> 
</Policy> 

 

Of course, the above policy expression can be normalized. There are four policy 
alternatives in the normal form. As we have seen in the policy data model, a policy is 
an unordered collection of policy alternatives. That is, the order of policy alternatives 
is insignificant. Therefore, the order of combining these policy expressions is 
insignificant. 

3.7 Extensibility and Versioning 
Web Services Policy language is an extensible language by design. The Policy, 
ExactlyOne, All and PolicyReference elements are extensible. The Policy, 
ExactlyOne and All elements allow child element and attribute extensibility. The 
PolicyReference element allows attribute extensibility. Extensions must not use the 
policy language XML namespace name. A consuming processor processes known 
attributes and elements, ignores unknown attributes and treats unknown elements 
as policy assertions. 

 

Web Services Policy language enables simple versioning practices that allow 
requestors to continue the use of any older policy alternatives in a backward 
compatible manner. This allows service providers, like Contoso, to deploy new 
behaviors using additional policy assertions without breaking compatibility with 
clients that rely on any older policy alternatives. 

 

The example below represents a Contoso version 1 policy expression. This 
expression requires the use of addressing and transport-level security for protecting 
messages.  

Contoso’s Version 1 Policy Expression 

<Policy> 
  <ExactlyOne> 

  Page 26 of 39 



    <All> 
      <wsap:UsingAddressing /> 
      <sp:TransportBinding>...</sp:TransportBinding> 
    </All> 
  </ExactlyOne> 
</Policy> 

 

Over time, Contoso adds support for advanced behaviors: requiring the use of 
addressing and message-level security for protecting messages. They added this 
advanced support without breaking compatibility with requestors that rely on 
addressing and transport-level security. The example below is Contoso’s version 2 
policy expression. In this version, Contoso’s adds a new policy alternative that 
requires the use of addressing and message-level security. The clients that rely on 
addressing and transport-level security may continue to interact with Contoso’s using 
the old policy alternative. Of course, these clients have the option to migrate from 
using old policy alternatives to new policy alternatives. 

Contoso’s Version 2 Policy Expression 

<Policy> 
  <ExactlyOne> 
    <All> 
      <wsap:UsingAddressing /> 
      <sp:TransportBinding>...</sp:TransportBinding> 
    </All> 
    <All> <!-- - - - - - - - - - - - - - - - NEW Policy Alternative --> 
      <wsap:UsingAddressing /> 
      <sp:AsymmetricBinding>...</sp: AsymmetricBinding > 
    </All> 
  </ExactlyOne> 
</Policy> 

 

When Contoso added support for advanced behaviors, they spent time to plan for the 
continued support for existing clients, the smooth migration from using current to 
advanced behaviors, and the switch to use only the advanced behaviors in the near 
future (i.e. sun-setting current behaviors). In this versioning scenario, policy can be 
used to represent current and advanced behaviors in a non-disruptive manner: no 
immediate changes to existing clients are required and these clients can smoothly 
migrate to new functionality when they choose to. This level of versioning support in 
policy enables the same class of versioning best practices built into WSDL constructs 
such as service, port and binding. 

 

Let us look at tooling for unknown policy assertions. As service providers, like 
Contoso, incrementally deploy advanced behaviors, some requestors may not 
recognize these new policy assertions. As discussed before, these requestors may 
continue to interact using old policy alternatives. New policy assertions will emerge 
to represent new behaviors and slowly become part of everyday interoperable 
interaction between requestors and providers. Today, most tools use a practical 
tolerant strategy to process new or unrecognized policy assertions. These tools 
consume such unrecognized assertions and designate these for user intervention. As 

  Page 27 of 39 



you would recognize, there is nothing new in this practice. This is similar to how a 
proxy generator that generates code from WSDL creates code for all the known 
WSDL constructs and allows Web service developers to fill in code for custom or 
unknown constructs in the WSDL. 

4. Advanced Concepts II: Policy Assertion Design 
In the previous section, we covered in-depth materials for Web Services Policy 
implementers. This is the second advanced section that walks through the 
dimensions of a policy assertion for assertion authors. This section covers the 
following topics: 
 

o What is the role of policy assertions? 

o What are the parts of a policy assertion? 

o When to design policy assertions? 

o What are the guidelines for designing policy assertions? 

o What are the minimum requirements for describing policy assertions? 

4.1 Role of Policy Assertions 
As you have seen, Web Services Policy is a simple language that has four elements -
Policy, All, ExactlyOne and PolicyReference - and one attribute - wsp:Optional. 
Policy is a flexible language to represent consistent combinations of behaviors using 
policy operators: Policy, All and ExactlyOne. Policy is an expressive language 
and capable of representing behaviors from a variety of domains. Let us look for the 
key parts that unlock this potential. 

 

Service providers combine behaviors for an interaction from domains such as 
messaging, security, reliability and transactions. To enable clients to engage these 
behaviors, services require some way to advertise these behaviors. Providers require 
machine readable metadata pieces that identify these behaviors. A policy assertion is 
a machine-readable metadata piece that requires the use of a behavior identified by 
the assertion. Web service developers can use policy-aware clients that recognize 
these assertions and engage their corresponding behaviors automatically. 

 

Policy assertions are the key parts and play a central role to unlock the potential 
offered by the Web Services Policy language. Assertions are defined by product 
designers, protocol authors, protocol implementers and Web service developers. 

  

Policy assertion authors identify behaviors required for Web services interactions and 
represent these behaviors as policy assertions. By designing policy assertions, 
assertion authors make a significant contribution to automate Web services 
interactions and enable advanced behaviors. 

4.2 Parts of a Policy Assertion 
As we discussed, a policy assertion identifies a domain specific behavior or 
requirement or condition. A policy assertion has a QName that identifies its behavior 
or requirement or condition. A policy assertion may contain assertion parameters and 
a nested policy. 
 

  Page 28 of 39 



Let us look at the anatomy of a policy assertion from the security domain. The policy 
expression in the diagram below uses the sp:IssuedToken policy assertion. This 
assertion illustrates the use of assertion parameters and nested policy. 

 

 

 

The sp:IssuedToken element is a policy assertion that identifies the use of a security 
token – such as SAML token - issued by a third party for protecting messages. A 
policy assertion is an XML element. The QName of this element represents the 
behavior identified by this policy assertion. 

 

The sp:IssuedToken policy assertion has three parameters: @sp:IncludeToken, 
sp:Issuer and sp:RequestSecurityTokenTemplate. 

 

The sp:IncludeToken attribute is a parameter that contains information on whether 
a security token should be included in messages or an external reference to the key 
of this security token should be used. The sp:Issuer parameter is an endpoint 
reference to a security token issuer. The sp:RequestSecurityTokenTemplate 
parameter contains the necessary information to request a security token from the 
specified issuer. Parameters are the opaque payload of a Policy Assertion, carry 
useful information for engaging the behavior described by an assertion and are 

  Page 29 of 39 



preserved through policy processing such as normalize, merge and intersection. 
Requestors may use policy intersection to select a compatible policy alternative for 
an interaction. Assertion parameters do not affect the outcome of policy intersection. 

 

For the sp:Issuer policy assertion parameter, the assertion author uses the natural 
XML structural relationships (the child elements and attributes) and encodes the 
relationship between an assertion and its parameters in a machine readable form. 
Assertion parameters may be represented as child XML elements or attributes of an 
assertion. The policy language allows assertion authors to strongly tie the 
relationship between an assertion and its parameters using the natural XML 
structural relationships. 
 

The sp:IssuedToken policy assertion has a nested policy expression. The 
sp:RequireInternalReference element is a nested policy assertion of the 
sp:IssuedToken policy assertion. The sp:RequireInternalReference assertion 
requires the use of an internal reference for referencing the issued token. A nested 
policy assertion further qualifies a dependent behavior of its parent policy assertion. 
As mentioned earlier, requestors may use policy intersection to select a compatible 
policy alternative for an interaction. Nested policy assertions affect the outcome of 
policy intersection. 
 

The sp:IssuedToken security policy assertion identifies a visible domain specific 
behavior: the use of a security token – such as SAML token - issued by a third party 
for protecting messages. This behavior is relevant to a Web service interaction. For 
the sake of discussion, let us assume that Contoso requires the use of a SAML token 
issued by a third party. Service providers, like Contoso, must convey this usage and 
all the necessary information to obtain this security token for Web service developers. 
This is a key piece of metadata for a successful interaction with Contoso’s Web 
services. 

4.3 When to design policy assertions? 
As we illustrated in the previous section, requiring the use of a security token issued 
by a third party is represented as a policy assertion. In simple words, a policy 
assertion identifies a domain specific behavior: 
o That is a requirement 

o That is relevant to an interoperable Web service interaction 

o That is relevant to an interaction that involves two or more Web service 
participants 

o That applies to its associated policy subject such as service, endpoint, operation 
and message. 

 

Given that interoperability and automation are the motivations, policy assertions that 
represent opt-in, shared and visible behaviors are useful pieces of metadata. Such 
assertions enable tooling and improve interoperability. The key to understanding 
when to design policy assertions is to have clarity on the characteristics of a behavior 
represented by a useful policy assertion: opt-in, shared and visible. 

  Page 30 of 39 



Opt-in behavior  

An opt-in behavior refers to a requirement that providers and requestors must 
deliberately choose to engage for a successful web service interaction. Examples of 
such behaviors are the use of optimization, message-level security, reliable 
messaging and atomic transaction. Policy assertions are not necessary to 
interoperate on widespread assumed behaviors. An example of an assumed behavior 
is the use of UTF-8 or UTF-16 text encoding for XML messages.  

Shared behavior 

A shared behavior refers to a requirement that is relevant to an interoperable Web 
service interaction and involves two or more participants. If an assertion only 
describes one participant’s behavior (non-shared behavior) then the assertion is not 
relevant to an interoperable interaction. Non-shared behaviors do not add any value 
for tooling or interoperability. An example of a non-shared behavior is the use of 
logging or auditing by the provider. 

 

Requestors may use the policy intersection to select a compatible policy alternative 
for a Web service interaction. If an assertion only describes one participant’s 
behavior then this assertion will not be present in the other participants’ policy and 
the policy intersection will unnecessarily produce false negatives. 

Visible behavior 

A visible behavior refers to a requirement that manifests on the wire. Web services 
provide interoperable machine-to-machine interaction among disparate systems. 
Web service interoperability is the capability of disparate systems to exchange data 
using common data formats and protocols such as messaging, security, reliability 
and transaction. Such data formats and protocols manifest on the wire. Providers 
and requestors only rely on these wire messages that conform to such formats and 
protocols for interoperability. If an assertion describes a behavior that does not 
manifest on the wire then the assertion is not relevant to an interoperable interaction. 

 

For example, say an assertion describes the privacy notice information of a provider 
and there is an associated regulatory safeguard in place on the provider’s side. Such 
assertions may represent business or regulatory level metadata but do not add any 
value to interoperability. 

 

If an assertion has no wire- or message-level visible behavior, then the interacting 
participants may require some sort of additional non-repudiation mechanism to 
indicate compliance with the assertion. Introducing an additional non-repudiation 
mechanism adds unnecessary complexity to processing a policy assertion. 

4.4 Guidelines for Designing Assertions 
The policy language allows assertion authors to invent their own XML dialects to 
represent policy assertions. The policy language builds on natural XML nesting and 
leverages XML Schema validation. The policy language relies only on the QName of 
the policy assertion XML element. Everything else is left for the policy assertion 
authors to design. The policy language offers plenty of options to assertion authors 
such as independent assertions, dependent assertions, nested policies and assertion 
parameters. 

 

  Page 31 of 39 



The description of a policy assertion should identify a single domain specific behavior 
in an objective manner and answer the following questions: 
 

o What is the behavior? (In the previous section, we discussed the characteristics 
of a behavior represented by a useful policy assertion.) 

o What are the assertion parameters? 

o Are there any dependent behaviors, and how are they represented? 

o What is the assertion’s QName and XML information set representation? 

o What is the policy subject of this behavior? 

o What are the attachment points? 

 

As you would have expected, the policy assertion design is more than a technical 
design. Given that interoperability and automation are the motivations, policy 
assertion design is a business process to reach agreements with relevant 
stakeholders for interoperability and tooling. Setting aside the business aspects of 
the design, the rest of this section walks through a few tradeoffs or dimensions to 
consider and provides technical guidelines for designing policy assertions. 

4.4.1 Optional Behaviors 

A policy assertion identifies a domain specific behavior that is a requirement relevant 
to a Web Service interaction. Policy assertions can be marked optional using the 
wsp:Optional attribute marker to represent behaviors that may be engaged 
(capabilities) for an interaction. It is important to note that behavior (policy 
assertion) and optional representation (wsp:Optional attribute) are distinct ideas of 
the Web Services Policy language. Conflating these distinct ideas unnecessarily 
disrupts scenarios that depend on the policy intersection: if an assertion indicates an 
optional behavior and this assertion is not present in the other participants’ policy 
then the policy intersection will unnecessarily produce false negatives. 

 

Best practice: use the wsp:Optional attribute to indicate optional behaviors. 

4.4.2 Assertion vs. assertion parameter 

Policy assertion parameters are the opaque payload of an assertion. Parameters 
carry additional useful information for engaging the behavior described by an 
assertion and are preserved through policy processing such as normalize, merge and 
policy intersection. Requestors may use policy intersection to select a compatible 
policy alternative for an interaction. Assertion parameters do not affect the outcome 
of policy intersection. 

 

In the example below, sp:Body and sp:Header elements are the two assertion 
parameters of the sp:SignedParts policy assertion (this assertion requires the parts 
of a message to be protected). These two parameters identify the parts of a wire 
message that should be protected. These parameters carry additional useful 
information for engaging the behavior that is irrelevant to compatibility tests. 

Policy Assertion with Assertion Parameters 

<Policy> 
  <sp:SignedParts> 
    <sp:Body /> 

  Page 32 of 39 



    <sp:Header /> 
  </sp:SignedParts> 
  … 
</Policy> 

 

Best practice: represent useful (or additional) information necessary for engaging the 
behavior represented by a policy assertion as assertion parameters. 

4.4.3 Leveraging Nested Policy 

As we have seen before, a nested policy expression further qualifies the dependent 
behaviors of its parent policy assertion. When we consider nested policy there is 
always two or more policy assertions involved. The following design questions below 
can help you to determine when to use nested policy expressions: 
 

Are these assertions designed for the same policy subject?  

Do these assertions represent dependent behaviors? 

 

If the answers are yes to both of these questions then leveraging nested policy 
expressions is a good idea. Keep in mind that a nested policy expression participates 
in the policy intersection algorithm. If a requestor uses policy intersection to select a 
compatible policy alternative then the assertions in a nested policy expression play a 
first class role in the outcome. There is one caveat to watch out for: policy assertions 
with deeply nested policy can greatly increase the complexity of a policy and should 
be avoided when they are not needed. 
 

Best practice: represent dependent behaviors that apply to the same policy subject 
using nested policy assertions. 

4.4.4 Minimal approach 

How big should an assertion be? How many assertion parameters should the 
assertion enumerate? How many dependent behaviors should the assertion 
enumerate? It is always good to start with a simple working policy assertion that 
allows extensibility. As your design work progresses, you may add more parameters 
or nested policy assertions to meet your interoperability needs.  

 

Best practice: start with a simple working assertion that allows extensibility. 

4.4.5 QName and XML Information Set representation 

As mentioned before, Web Services Policy language allows assertion authors to 
invent their own XML dialects to represent policy assertions. The policy language 
relies only on the policy assertion XML element QName. This QName is unique and 
identifies the behavior represented by a policy assertion. Assertion authors have the 
option to represent an assertion parameter as a child element (by leveraging natural 
XML nesting) or an attribute of an assertion. The general guidelines on when to use 
XML elements versus attributes apply. 

 

The syntax of an assertion can be represented using an XML outline (plus an XML 
schema document). If the assertion has a nested policy expression then the 
assertion XML outline can enumerate the nested assertions that are allowed. 

  Page 33 of 39 



 

Best practice: use a unique QName to identify the behavior and provide an XML 
outline (plus an XML schema document) to specify the syntax of an assertion. 

4.4.6 Policy subject and attachment points 

A behavior identified by a policy assertion applies to the associated policy subject. If 
a policy assertion is to be used with WSDL, policy assertion authors must specify a 
WSDL policy subject. What is the policy subject of this behavior? 
 

o If the behavior applies to any message exchange using any of the endpoints 
offered by a service then the subject is the service policy subject. 

o If the behavior applies to any message exchange made using an endpoint then 
the subject is the endpoint policy subject. 

o If the behavior applies to any message exchange defined by an operation then 
the subject is the operation policy subject. 

o If the behavior applies to an input message then the subject is the message 
policy subject - similarly for output and fault message policy subjects. 

 

For a given WSDL policy subject, there may be several attachment points. For 
example, there are three attachment points for the endpoint policy subject: the port, 
binding and portType element. Policy assertion authors should identify the relevant 
attachment point when defining a new assertion. To determine the relevant 
attachment points, authors should consider the scope of the attachment point. For 
example, an assertion should only be allowed in the portType element if the 
assertion reasonably applies to any endpoint that ever references that portType. 
Most of the known policy assertions are designed for the endpoint, operation or 
message policy subject. The commonly used attachment points for these policy 
subjects are outlined in Section 3.7 - Attaching Policy Expressions to WSDL. 

 

The service policy subject is a collection of endpoint policy subjects. The endpoint 
policy subject is a collection of operation policy subjects and etc. As you can see, the 
WSDL policy subjects compose naturally. It is quite tempting to associate the 
identified behavior to a broader policy subject than to a fine granular policy subject. 
For instance, it is convenient to attach a supporting token assertion (defined by the 
Web Services Security Policy specification) to an endpoint policy subject instead of a 
message policy subject. For authoring convenience, an assertion author may allow 
the association of an assertion to multiple policy subjects. If an assertion is allowed 
to be associated with multiple policy subjects then the assertion author has the 
burden to describe the semantics of multiple instances of the same assertion 
attached to multiple policy subjects at the same time. The best practice is to choose 
the most granular policy subject that the behavior applies to. 

 

Best practice: specify a policy subject, choose the most granular policy subject that 
the behavior applies to and specify a preferred attachment point. 

4.4.7 Versioning behaviors 

Over time, there may be multiple equivalent behaviors emerging in the Web Service 
interaction space. Examples of such multiple equivalent behaviors are WSS: SOAP 
Message Security 1.0 vs. 1.1 and WS-Addressing August 2004 version vs. WS-
Addressing W3C Recommendation. These equivalent behaviors are mutually 

  Page 34 of 39 



exclusive for an interaction. Such equivalent behaviors can be modeled as 
independent assertions. The policy expression in the example below requires the use 
of WSS: SOAP Message Security 1.0. 

Message-level Security and WSS: SOAP Message Security 1.0 

<Policy> 
  <sp:Wss10>...</sp:Wss10> 
</Policy> 

 

The policy expression in the example below requires the use of WSS: SOAP Message 
Security 1.1. These are multiple equivalent behaviors and are represented using 
distinct policy assertions. 

Message-level Security and WSS: SOAP Message Security 1.1 

<Policy> 
  <sp:Wss11>…</sp:Wss11> 
</Policy> 

 

Best practice: use independent assertions for modeling multiple equivalent behaviors. 

4.5 Describing Policy Assertions 
Thus far, we walked through the dimensions of a policy assertion and guidelines for 
authoring policy assertions. Let us look at what are the minimum requirements for 
describing policy assertions in specifications: 

 

1. Description must clearly and completely specify the syntax (plus an XML Schema 
document) and semantics of a policy assertion. 

2. If there is a nested policy expression, description must declare it and enumerate 
the nested policy assertions that are allowed.  

3. A policy alternative may contain multiple instances of the same policy assertion. 
Description must specify the semantics of parameters and nested policy (if any) 
when there are multiple instances of a policy assertion in the same policy 
alternative.  

4. If a policy assertion is to be used with WSDL, description must specify a WSDL 
policy subject – such as service, endpoint, operation and message. 

5. Conclusion 
Service providers use Web Services Policy to represent combinations of behaviors 
(capabilities and requirements). Web service developers use policy-aware clients that 
understand policy expressions and engage the behaviors represented by providers 
automatically. These behaviors may include security, reliability, transaction, message 
optimization, etc. Web Services Policy is a simple language, hides complexity from 
developers, automates Web service interactions, and enables secure, reliable and 
transacted Web Services. 

Appendix A – Security Considerations 
This appendix describes the security considerations that service providers, 
requestors, policy authors, policy assertion authors, and policy implementers need to 

  Page 35 of 39 



consider when exposing, consuming and designing policy expressions, authoring 
policy assertions or implementing policy. 
 

Information Disclosure Threats 

A policy is used to represent the capabilities and requirements of a Web Service. 
Policies may include sensitive information. Malicious consumers may acquire 
sensitive information, fingerprint the service and infer service vulnerabilities. These 
threats can be mitigated by requiring authentication for sensitive information, by 
omitting sensitive information from the policy or by securing access to the policy. For 
securing access to policy metadata, policy providers can use mechanisms from other 
Web Services specifications such as WS-Security and WS-MetadataExchange. 

 

Spoofing and Tampering Threats 

If a policy expression is unsigned it could be easily tampered with or replaced. To 
prevent tampering or spoofing of policy, requestors should discard a policy unless it 
is signed by the provider and presented with sufficient credentials. Requestors should 
also check that the signer is actually authorized to express policies for the given 
policy subject. 

 

Downgrade Threats 

A policy may offer several alternatives that vary from weak to strong set of 
requirements. An adversary may interfere and remove all the alternatives except the 
weakest one (say no security requirements). Or, an adversary may interfere and 
discard this policy and insert a weaker policy previously issued by the same provider. 
Policy authors or providers can mitigate these threats by sun-setting older or weaker 
policy alternatives. Requestors can mitigate these threats by discarding policies 
unless they are signed by the provider. 
 

Repudiation Threats 

Malicious providers may include policy assertions in its policy whose behavior cannot 
be verified by examining the wire message from the provider to requestor. In 
general, requestors have no guarantee that a provider will behave as described in 
the provider’s policy expression. The provider may not and perform a malicious 
activity. For example, say the policy assertion is privacy notice information and the 
provider violates the semantics by disclosing private information. Requestors can 
mitigate this threat by discarding policy alternatives which include assertions whose 
behavior cannot be verified by examining the wire message from the provider to 
requestor. Assertion authors can mitigate this threat by not designing assertions 
whose behavior cannot be verified using wire messages. 
 

Denial of Service Threats 

Malicious providers may provide a policy expression with a large number of 
alternatives, a large number of assertions in alternatives, deeply nested policy 
expressions or chains of PolicyReference elements that expand exponentially (see 
the chained sample below; this is similar to the well-known DTD entity expansion 
attack). Policy implementers need to anticipate these rogue providers and use a 

  Page 36 of 39 



configurable bound with defaults on number of policy alternatives, number of 
assertions in an alternative, depth of nested policy expressions, etc. 

Chained Policy Reference Elements 

<Policy wsu:Id=”p1”> 
  <PolicyReference URI=”#p2”/ > 
  <PolicyReference URI=”#p2”/> 
</Policy> 
 
<Policy wsu:Id=”p2” > 
  <PolicyReference URI=”#p3”/> 
  <PolicyReference URI=”#p3”/> 
</Policy> 
 
<Policy wsu:Id=”p3” > 
  <PolicyReference URI=”#p4”/> 
  <PolicyReference URI=”#p4”/> 
</Policy> 
 
<!-- Policy/@wsu:Id p4 through p99 --> 
 
<Policy wsu:Id=”p100” > 
  <PolicyReference URI=”#p101”/> 
  <PolicyReference URI=”#p101”/> 
</Policy> 
 
<Policy wsu:Id=”p101” > 
  <mtom:OptimizedMimeSerialization /> 
</Policy> 

 

Malicious providers may provide a policy expression that includes multiple 
PolicyReference elements that use a large number of different internet addresses. 
These may require the consumers to establish a large number of TCP connections. 
Policy implementers need to anticipate such rogue providers and use a configurable 
bound with defaults on number of PolicyReference elements per policy expression. 

 

General XML Considerations 

Implementers of Web Services policy language should be careful to protect their 
software against general XML threats like deeply nested XML or XML that contains 
malicious content. 

Appendix B – Acknowledgements 
This document has been developed as a result of joint work with many individuals 
and teams, including: Paul Cotton, Colleen Evans, Kirill Gavrylyuk, Martin Gudgin, 
Ram Jeyaraman, Andrew Layman, Jonathan Marsh, Jeffrey Schlimmer, Jorgen Thelin, 
and Kyle Young. 

  Page 37 of 39 



Appendix C – XML Namespaces 
Table 1 lists XML namespaces that are used in this document. The choice of any 
namespace prefix is arbitrary and not semantically significant. 

Table 1: Prefixes and XML Namespaces used in this specification. 

Prefix XML Namespace Specification(s) 

 http://schemas.xmlsoap.org/ws/2004/09
/policy

[WS-Policy, WS-
PolicyAttachment] 

mtom http://schemas.xmlsoap.org/ws/2004/09
/policy/optimizedmimeserialization

[WS-
OptimizedSerializationPolicy] 

soap http://www.w3.org/2003/05/soap-
envelope

[SOAP 1.2] 

sp http://schemas.xmlsoap.org/ws/2005/07
/securitypolicy  

[WS-SecurityPolicy] 

wsa http://www.w3.org/2005/08/addressing [WS-Addressing] 

wsap http://www.w3.org/2006/05/addressing/
wsdl

[WS-AddressingPolicy] 

wsdl http://schemas.xmlsoap.org/wsdl/ [WSDL 1.1] 

wsp http://schemas.xmlsoap.org/ws/2004/09
/policy

[WS-Policy, WS-
PolicyAttachment] 

wss http://docs.oasis-
open.org/wss/2004/01/oasis-200401-
wss-wssecurity-secext-1.0.xsd

[WS-Security 2004] 

wst http://schemas.xmlsoap.org/ws/2005/02
/trust

[WS-Trust] 

wsu http://docs.oasis-
open.org/wss/2004/01/oasis-200401-
wss-wssecurity-utility-1.0.xsd

[WS-Security 2004] 

Appendix D – References 
[MTOM] 

M. Gudgin, et al, "SOAP Message Transmission Optimization," January 2005. (See 
http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/.) 

[SOAP 1.1] 
D. Box, et al, "Simple Object Access Protocol (SOAP) 1.1," May 2000. (See 
http://www.w3.org/TR/2000/NOTE-SOAP-20000508.)  

[SOAP 1.2] 
M. Gudgin, et al, "SOAP Version 1.2 Part 1: Messaging Framework," June 2003. 
(See http://www.w3.org/TR/2003/REC-soap12-part1-20030624/.) 

[XOP] 
M. Gudgin, et al, "XML-binary Optimized Packaging," January 2005. (See 
http://www.w3.org/TR/2005/REC-xop10-20050125/.) 

[WS-Addressing] 

  Page 38 of 39 

http://schemas.xmlsoap.org/ws/2004/09/policy
http://schemas.xmlsoap.org/ws/2004/09/policy
http://schemas.xmlsoap.org/ws/2004/09/policy/optimizedmimeserialization
http://schemas.xmlsoap.org/ws/2004/09/policy/optimizedmimeserialization
http://131.107.72.15/MTOM_Service_Indigo/
http://131.107.72.15/MTOM_Service_Indigo/
http://www.w3.org/2003/05/soap-envelope
http://www.w3.org/2003/05/soap-envelope
http://schemas.xmlsoap.org/ws/2005/07/securitypolicy
http://schemas.xmlsoap.org/ws/2005/07/securitypolicy
http://www.w3.org/2005/08/addressing
http://www.w3.org/2006/05/addressing/wsdl
http://www.w3.org/2006/05/addressing/wsdl
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/ws/2004/09/policy
http://schemas.xmlsoap.org/ws/2004/09/policy
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
http://schemas.xmlsoap.org/ws/2005/02/trust
http://schemas.xmlsoap.org/ws/2005/02/trust
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.w3.org/TR/2005/REC-xop10-20050125/


M. Gudgin, et al, "Web Services Addressing 1.0 - Core," May 2006. (See 
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/.)  

[WS-AddressingPolicy] 
M. Gudgin, et al, "Web Services Addressing 1.0 – WSDL Binding," May 2006. 
(See http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/. The latest 
version of this specification is available at http://www.w3.org/TR/ws-addr-wsdl/.) 

[WS-MetadataExchange] 

K. Ballinger, et al, "Web Services Metadata Exchange (WS-Metadata Exchange)," 
September 2004. (See http://schemas.xmlsoap.org/ws/2004/09/mex/.) 

[WSDL 1.1] 
E. Christensen, et al, "Web Services Description Language (WSDL) 1.1," March 
2001. (See http://www.w3.org/TR/2001/NOTE-wsdl-20010315.)  

[WS-Policy] 
S. Bajaj, et al, "Web Services Policy Framework (WS-Policy)," March 2006. (See 
http://schemas.xmlsoap.org/ws/2004/09/policy.)  

[WS-PolicyAttachment] 
S. Bajaj, et al, "Web Services Policy Attachment (WS-PolicyAttachment)," March 
2006. (See http://schemas.xmlsoap.org/ws/2004/09/policy.) 

[WS-Security 2004] 
A. Nadalin, et al, "Web Services Security: SOAP Message Security 1.0 (WS-
Security 2004)," March 2004. (See http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf.) 

[WS-SecurityPolicy] 
G. Della-Libera, et al, "Web Services Security Policy Language (WS-
SecurityPolicy)," July 2005. (See 
http://schemas.xmlsoap.org/ws/2005/07/securitypolicy.) 

[WS-Trust] 

S.Anderson, et al, "Web Services Trust Language (WS-Trust)," February 2005. 
(See http://schemas.xmlsoap.org/ws/2005/02/trust.) 

  Page 39 of 39 

http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/TR/ws-addr-wsdl/
http://schemas.xmlsoap.org/ws/2004/09/mex/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://schemas.xmlsoap.org/ws/2004/09/policy
http://schemas.xmlsoap.org/ws/2004/09/policy
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://schemas.xmlsoap.org/ws/2005/07/securitypolicy
http://schemas.xmlsoap.org/ws/2005/02/trust

	1. Introduction
	2. Basic Concepts: Policy Expression
	2.1 Web Services Policy
	2.2 Simple Message
	2.3 Secure Message
	2.4 Other Assertions
	2.5 Combining Policy Assertions
	2.6 Optional Policy Assertion
	2.7 Nested Policy Expressions
	2.8 Referencing Policy Expressions
	2.9 Attaching Policy Expressions to WSDL
	2.10 Policy Automates Web Services Interaction

	3. Advanced Concepts I: Policy Expression
	3.1 Policy Expression
	3.2 Normal Form for Policy Expressions
	3.3 Policy Data Model
	3.4 Compatible Policies
	3.5 Attaching Policy Expressions to WSDL
	3.6 Combine Policies
	3.7 Extensibility and Versioning

	4. Advanced Concepts II: Policy Assertion Design
	4.1 Role of Policy Assertions
	4.2 Parts of a Policy Assertion
	4.3 When to design policy assertions?
	4.4 Guidelines for Designing Assertions
	4.4.1 Optional Behaviors
	4.4.2 Assertion vs. assertion parameter
	4.4.3 Leveraging Nested Policy
	4.4.4 Minimal approach
	4.4.5 QName and XML Information Set representation
	4.4.6 Policy subject and attachment points
	4.4.7 Versioning behaviors

	4.5 Describing Policy Assertions

	5. Conclusion

