Choreography of things: Process involved in 2 unrelated choreographies not a composition (intersection).

Choreography of related choreographies: Process ties them together. Includes more than one choreography and one or more processes. Enables specifying the choreography made of other choreography components, and supports reuse and segmentation.

Bounded by the definition of a choreography and if it only includes a web service.

Composition: Adds the glue between two interacting choreographies. However, the team needs to resolve at what level to address: MEP, protocol message or business message?

Choreography composition: Exists where a relationship is established between a choreography and the Web service that "encapsulates" it. For example, a "relationship" between these choreographies only occurs when they are brought together by a single area of "management control" (e.g. the supplier). Whether composed process becomes another choreography or not is dependent on whether the resultant choreography needs to be published and shared because other (non-supplier) roles need to know the complete picture.

Web services composition: Is where a web service encapsulates other web services where the web service provider (not the role of the service offered) and each incorporated service are included. There could be a choreography between the service offered role and a service user.

Hierarchical or layered composition: Enables the building of an MEP from a set of messages and then a higher-level MEP from that.

Recursive composition: Occurs when a choreography is itself a web service, and could cover an additional role that starts the web service choreography. Recursive composition ends at a web service instead of a message. However, although this definition grounds recursive composition, it leaves unclear the differences between web service and choreography composition.

Note, we have a conflict between definitions of a choreography:

1. Starts by sending a message where the role is not covered in the choreography – from an externally accessible entry point.

2. Based on externally observable behavior defined by communication between web services and externally observed behavioral changes of a web service.

Background for Reference:

Arkin: A choreography as I understand if is a Web service only if it has an entry point that is used by someone outside the choreography to start it. If the choreography starts when A sends a message to B (A and B being roles covered by the choreography), then it's not a Web service. But if the choreography starts by someone sending a message to A, where that role is not otherwise covered by the choreography, then that choreography is a Web service. It has an externally accessible entry point, or any other term we may opt to use.

Ugo: Since it's a Web service, it can further be used in a larger choreography that may or may not be a Web service. Such a choreography would cover that additional role that starts the Web service choreography. If that choreography is itself a Web service, we have recursive composition.

It seems to me that, since choreographies are "made" of Web services, establishing this relationship between a choreography and the Web service that "encapsulates" that same choreography (if any) would provide a way of talking about choreographies composition.

Talbot: A web service choreography, as distinct from any other choreography, is based on externally observable behaviour where this behaviour is defined in terms of communications between web services and externally observed behavioral changes of a web service.

Goland: The first requirement is to support hierarchy (awful word I know). This

enables one to specify a choreography as being made up of other choreography

components. This requirement is critical for re-use and I expect the ability

to re-use choreography components will be one of the biggest value adds

WS-Chor will provide as it will give choreography developers easy access to

ready made (and tested) libraries of choreographies to re-use.

The second requirement is to support multi-party global view. The classic

example is the travel scenario where the traveler sends a request to the

travel agency who sends a request to the airline who sends a confirmation to

the traveler. In order to validate that the system will work properly

end-to-end it is necessary to be able to model all the states of all the

participants and how they change due to externally visible behavior. If we

break the description up into three separate choreographies (Traveler to

Travel Agency, Travel Agency to Airline and Airline to Traveler) then we

lose the connection between the states and so cannot properly validate that

the system will work.

This then leads to a third requirement, segmentation. Segmentation allows us

to take a multi-party global view and break it up into pieces which only

contain a subset of the parties. For example, at run time we probably only

want to feed the travelers software the choreography information for

communications with the travel agency and from the airline. There is no

point in programming it with information about the travel agencies

communications with the airline as none of this will be visible at run time

to the traveler.

15 July 2003 minutes:

Chapman: Build choreographies on top of web services

Fletcher: summary - 1 - two systems and a single message between them is elemental chor, 2 - adding messages before or after v. adding a new role - latter is core comp

Hendler: Where does recursion ground

Fletcher's model of how to ground a chor makes sense to me -- if the recursion (composition) ends at a WS instead of a message, then WS Comp == Chor Comp

Burdett: This means that we ground at a minimal system that has two service that run in parallel and have some message exchange

Burdett: Ties into composition -- the higher level can refer to "states" of the underlying protocol - and this means same chor could ground in multiple ways

Goland: Surface things that could be "messages" even if they're not a message per se

Chapman: important - this ground differently -- i.e. a chor doesn't ground to a WS, but to something else (message or whatever)

SRT: Composition adds the glue between two interacting choreographies.

What level are we addressing: MEP, protocol message or business message?

Fletcher: Another approach is to allow hierarchal (or layered) composition within

the language as David (Burdett) has been suggesting, such that we can

build an MEP from a set of messages and then a (higher level) MEP from

MEPs and so on. And I agree we could use the term an 'interaction' to

mean a single message or a single MEP. So I think that the distinction

that Steve mentioned in another email between a business message and a

protocol message is not helpful - it is just a question of the 'layer'

you are focused on (consider which is the real business message in SOAP

embedded in HTTP embedded in TCP embedded in IP until eventually you do

ground in photons or electrons!!)

Burdett: A "relationship" between these choreographies only occurs when they are

brought together by a single area of "management control" (e.g. the

supplier). Whether composed process becomes another choreography or not is

dependent on whether the resultant choreography needs to be published and

shared because other (non-supplier) roles need to know the complete picture.

For example, if you want to provide the description of the combined

choreography to the purchaser so that they have the complete picture of the

actions that the *purchaser* will have with the bank for invoicing and the

shipper for scheduling and shipping then it would be valid to call it a

choreography.

Cummins:

	Composition of web services I see as fundamentally composition of

	a web service where a web service may incorporate and thus encapsulate

	other web services in the performance of its offering. In this case,

	there is choreography between the web service provider (not the role

	of the service offered) and each of the incorporated services. There

	will then be a choreography between the service offered role and

	a user of the service.

