

Monica J. Martin Sun Microsystems

WS-Choreography F2F Cambridge, United Kingdom 17 December 2003





### **ebXML BPSS Summary Outline**

- Business collaboration
  - Role in eBusiness and Business Process Management
  - Role in ebXML architecture
  - Metamodel
- Business semantics
  - Binary and multi-party collaboration
  - Business transaction protocol
  - Business message and signal exchange
  - Logical business documents
- Message controls and choreography
  - Rules and conditions
  - State synchronization
- Relevance to WS-Choreography and its output

# **Business Integration Today**



- Collaboration: Business semantics
  - Two or more peers
  - Business-oriented goals
- Choreography: Interface and active monitor
  - Message sequencing "interface"
    - Service operations and externally observable behavior
  - Message exchange patterns with timeouts
  - Can be client/server
    - Constrains client using the Service
- Orchestration: Domain actors
  - Run business processes under central control or from one partner's view
    - Stateful
    - Invokes and offers Services
    - Conforms to Choreography for Services used



#### **BPSS Basics**

- Business collaboration
  - Comprised of business transaction patterns and business semantics:
    - Binary and multi-party collaboration
    - Business messages and signals
    - Business transaction protocol
      - Business transactions
      - Business transaction activities
      - Business signals
    - Message controls and choreography
      - Business state synchronization
      - Conditions
      - Transitions





### **BPSS Role in Business Process Management**





#### **BPSS** in the ebXML Architecture



# **Metamodel for BPSS**

 Borne from UML profile for business process (UMM)

> Process model defined by UML activity diagrams

- Computable schema
- Geared towards eBusiness
  - Business process description as part of loosely coupled, highly aligned ebXML architecture
  - Used with CPP/A



MultiParyCollaboration

name(DrGUID

goits: Famus

eathfuled String



#### **Business Semantics**

- Binary and multi-party collaboration: A special type of business process or activity conducted between two or more parties to achieve a commonly defined goal or outcome. Can be decomposed into one or more business transactions
  - Business transactions: An atomic message exchange of electronic business documents between 2 abstract roles (initiator/responder)
    - Follows specific business message exchange patterns based on business transaction purpose (notification, commitment, etc)
    - Represents choreography definition state (i.e. the choreography is in the state of executing this business transaction). The business activity is an abstract kind of business state





# **Business Semantics [2]**

 Business transaction activities: Roles of the binary collaboration are assigned to the execution of the business transaction

• The abstract roles
(of the binary
collaboration and
business transaction)
become explicit when
the transaction is used
within a business
transaction activity
within a binary
collaboration





# **Business Semantics [3]**

- Business signals: Optional messages that guarantee "state alignment" between parties. Layered atop reliable messaging
  - Receipt Ack: Message received and passed structural validity checks by receiving party
  - Acceptance Ack: System passed business rules of receiving party and is now in a system of record (rules and the system are not exposed in BPSS)
  - Exceptions
    - Technical
    - Business
    - Timeouts
- Business Service Interface
  - Runtime software that can isolate the internal communications of a given

Sending Application

Request Document()

ebXML Wrapped Request Document()

receiptAcknowledgment()

FailedAccaptanceAcknowledgment()

Exception()

Exception()

legacy or other application from the collaboration model, and once built represent the party in a collaboration model



# **Message Controls and Choreography**

- Message controls / choreography: Business collaboration choreography describes ordering and transitions between business transactions or sub collaborations within a binary collaboration
  - Choreography equates to and transitions between business states. Transitions happens between business activities. Requests can occur within the timeToPerform of the binary collaboration
    - A timeToPerform is the period of time, starting upon initiation of the first activity, within which this entire collaboration must conclude from the requester's perspective
    - Control flow based on state/transition model

#### Rules

- Production rules: Maps UML model to schema. Currently represented syntactically as strings
- Condition guards and expressions on state transitions: Account for success, failure or timeout
  - Transitions: Can be used to created nested activities
  - Guard: Status of business transaction activity
- Condition expression: Conditions true in logical document WS-Choreography, Face-to-Face, 17 December 2003 Monica J. Martin. Sun Microsystems



#### **BPSS** into the Future

- Service-oriented architecture
  - BSI Interface binding for business messages and signals
- Updates/enhancements to ebXML BPSS 1.01, later versions
  - Tightening business semantics for controls
  - Enhancements to production rules, state management, timing
- Reuse or reference to other technologies: Understanding terminology and scope are important
  - Other choreography definitions or transaction protocols
    - WS-Choreography output
    - WS-CAF output (coordination)
    - Other higher level business constructs



#### Potential Mapping BPSS and WS-Chor Output



13



### **Summary**

- BPSS is focused on business semantics for business collaboration
- WS-Choreography is focused on the externally observable behavior of composed services
- Maximize benefit to both
  - Complementary aspects of emerging standards in BPM
  - Leverage existing capabilities
  - Investigate in more detail expected future capabilities, for example:
    - Business rules
    - Choreography
    - Multi-party collaboration