
WS Choreography Description Language, Version 1

Editor's Draft, 19 February 2004

This version:

TBD

Latest version:

TBD

Previous Version:

Not Applicable

Editors (alphabetically):

Nickolaos Kavantzas, Oracle, Oracle mailto:nickolas.kavantzas@oracle.com
This document is available in other format(s):

Copyright

Copyright © 2003 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark, document use and software licensing rules apply.

Abstract

The Web Services Choreography Description Language (WS-CDL) is an XML-based language that describes cross-enterprise collaborations of Web Services participants by defining their common observable behavior; where ordered and synchronized message exchanges result in alignment of their common information.

The existing Web Services specifications, based on a stateless, connected, client-server model, offer a communication bridge between the heterogeneous computational environments used to develop applications today.

The future of E-Business applications requires the ability to perform long-lived business transactions between autonomous services. Applications, exposed as Web Services, must be able to communicate and synchronize their common business knowledge with other Web Services in a loosely coupled environment. These interactions are long-lived and must avoid resource constraints when accessing state information or relaxing consistency guarantees in the presence of potential error recovery conditions. Business collaborations between autonomous Web Service participants will be stateful and require that all participating services can act as peers while reliably communicating in an asynchronous fashion.

This specification extends the emerging stack of Web Services standards targeted for integrating applications developed in heterogeneous computation environments.

Status of this Document

This specification is a draft document and may be updated, extended or replaced by other documents, if necessary. It is for review and evaluation only. The authors of this specification provide this document as is and provide no warranty about the use of this document in any case. The authors welcome feedback and contributions to be considered for updates to this document in the near future.
Table of Contents

1 Introduction

1.1 Notational Conventions

1.2 Purpose

1.3 Goals

 1.4 Relationship with WSDL

 1.5 Relationship with Business Process Languages

2 Language Concepts

2.1 Collaboration Types

 2.1.1 Abstract Choreography

 2.1.2 Portable Choreography

 2.1.3 Concrete Choreographies

 2.1.4 Relationship between Collaboration Types

2.2 Collaboration Packaging

2.3 Coupling Collaborating Agents

2.3.1 Roles

2.3.2 Participants

2.3.3 Relationships

 2.3.4 Channels

2.4 Information Driven Collaborations

2.4.1 Declaring Information Types

2.4.2 Variables

 2.4.2.1 Variables and Abstract/Portable/Concrete Choreographies

 2.4.3 Tokens

 2.4.4 Choreographies

2.4.5 Work Units

 2.4.6 Reusing existing Choreographies

 2.4.6.1 Composing Choreographies

 2.4.6.2 Importing Choreographies

 2.4.7 Choreography Life-line

 2.4.8 Choreography Recovery

 2.4.8.1 Exception Block

 2.4.8.2 Transaction Block

2.5 Activities

 2.5.1 Control Structures

 2.5.2 Interacting
2.5.3 Performed Choreography

2.5.4 Assigning Variables

2.5.5 Defining actions with no business effect

3 Example
4 Language Elements

4.1 Choreography Document Structure
 4.1.1 Choreography document Naming and Linking
 4.1.2 Language Extensibility and Binding
 4.1.3 Semantics

4.2 Choreography Package
 4.2.1 Importing definitions
4.3 Roles

4.4 Participants
4.5 Relationships

4.6 Channels

4.7 Information Types

4.8 Tokens and Token Locators

 4.8.1 Tokens

 4.8.2 Token Locators

4.9 Variables

 4.9.1 Expressions

4.10 Choreography Definition

 4.10.1 WorkUnit
4.11 Activities Definition

 4.11.1 Control Structures

 4.11.1.1 Sequence

 4.11.1.2 Parallel

 4.11.1.3 Choice

 4.11.2 Basic Activities

 4.11.2.1 Perform activity
 4.11.2.2 Interaction activity

 4.11.2.2.1 Interaction Roles

 4.11.2.2.2 Interaction Message Content

 4.11.2.2.3 Interaction Channel Variables

 4.11.2.2.4 Interaction Operations

 4.11.2.2.5 Interaction State Changes

 4.11.2.2.6 Interaction Based Alignment

 4.11.2.2.7 Protocol Based Information Exchanges

 4.11.2.3 Assign activity
 4.11.2.4 NoAction activity
 4.11.2.5 Finalize activity

5 WSDL Bindings

6 Relationship with the Security framework

7 Relationship with the Reliable Messaging framework

8 Relationship with the Transaction/Coordination protocol

9 Acknowledgements

10 References

Appendix A – WS-CDL XSD Schemas

Appendix B – WS-CDL Supplied Functions

1. Introduction

For many years, organizations have being developing solutions for automating cross-enterprise, business transactions in an effort to improve productivity and reduce operating costs.

The past few years have seen the Extensible Markup Language (XML) and the Web Services framework developing as the de-facto choices for describing interoperable data and platform neutral business interfaces, enabling more open business transactions to be developed.
Web Services are a key component of the emerging, loosely coupled, Web-based computing architecture. A Web Service is an autonomous, standards-based component whose public interfaces are defined and described using XML. Other systems may interact with a Web Service in a manner prescribed by its definition, using XML based messages conveyed by Internet protocols.

An architecture of layered standards is being defined that allows technical interoperability of Web Services. The current Web Service architecture is designed for simple information retrieval in a stateless message exchange and is currently defined in the following foundation layers:

· SOAP: defines the basic formatting of a message and the basic delivery options independent of programming language, operating system, or platform. A SOAP compliant Web Service knows how to send and receive SOAP-based messages.

· WSDL: describes the static interface of a Web Service. It defines the protocol and the message characteristics of end points. Data types are defined by XML Schema specification, which supports rich type definitions and allows expressing any kind of XML type requirement for the application data.

· UDDI: enables the publishing of Web Services that are available and facilitate their discovery from service requesters using sophisticated searching mechanims.

· Web Services Security: ensures that exchanged messages are not modified or forged.

The existing Web Services specifications, based on a stateless, connected, client-server model, provide an interoperable data-bus for bridging heterogeneous computational environments.

The future of E-Business applications also requires the ability to perform interoperable, cross-enterprise, long-lived business transactions. That is, applications, exposed as Web Services, exchanging business documents in peer-to-peer environments should be able to communicate and synchronize their common business knowledge with other Web Services in a loosely coupled environment. This interaction can occur over a long period of time, and must do so without resource limitations when accessing state information, or relaxing consistency guarantees.

Business collaborations between autonomous Web Service participants will be stateful. The ability to perform certain business operations as well as the way to interpret the content of each business documents may be influenced by the previous exchanges and require that all participating services act as peers and communicate in a coordinated and reliable fashion.

Extending the current Web Services stack by defining several additional layers,

enables autonomous applications to participate in peer-to-peer business transactions.

The following figure shows the emerging stack of standards associated with Web Services for integrating applications developed in heterogeneous computation environments.

The new layers defined at the top of the current Web Service stack (see Fig. 1) are:
· Business Collaboration Languages layer: describes cross-enterprise collaborations of Web Services participants by defining a global view of their observable behavior, where synchronized information exchanges through their shared collaboration points occur, when the commonly defined ordering rules are satisfied.
· Business Process Languages layer: describes the execution logic of Web Services based applications by defining their control flows (such as conditional, sequential, parallel and exceptional execution) and prescribing the rules for consistently managing their non-observable business data.

· Reliable Messaging layer: provides exactly-once and guaranteed delivery of business documents exchanged between participants.

· Context, Coordination and Transaction layer: defines interoperable mechanisms for propagating context of long-lived business transactions and enables participants to meet correctness requirements.

Figure 1 Emerging Web Services Framework

1.1. Notational Conventions
1. The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC-2119 [2].

2. The following namespace prefixes are used throughout this document:

	Prefix
	Namespace URI
	Definition

	wsdl
	http://schemas.xmlsoap.org/wsdl/
	WSDL namespace for WSDL framework.

	cdl
	http://www.w3.org/ws/choreography/2004/02/WSCDL

	WSCDL namespace for Choreography language.

	xsi
	http://www.w3.org/2000/10/XMLSchema-instance
	Instance namespace as defined by XSD [10].

	xsd
	http://www.w3.org/2000/10/XMLSchema
	Schema namespace as defined by XSD [10].

	tns
	(various)
	The “this namespace” (tns) prefix is used as a convention to refer to the current document.

	(other)
	(various)
	All other namespace prefixes are samples only. In particular, URIs starting with “http://sample.com” represent some application-dependent or context-dependent URI [4].

3. This specification uses an informal syntax to describe the XML grammar of a WSDL document:

· The syntax appears as an XML instance, but the values indicate the data types instead of values.

· Characters are appended to elements and attributes as follows: "?" (0 or 1), "*" (0 or more), "+" (1 or more).

· Elements names ending in "…" (such as <element…/> or <element…>) indicate that elements/attributes irrelevant to the context are being omitted.

· Grammar in bold has not been introduced earlier in the document, or is of particular interest in an example.

· <-- extensibility element --> is a placeholder for elements from some "other" namespace (like ##other in XSD).

· The XML namespace prefixes (defined above) are used to indicate the namespace of the element being defined.

· Examples starting with <?xml contain enough information to conform to this specification; others examples are fragments and require additional information to be specified in order to conform.

XSD schemas are provided as a formal definition of WS-CDL grammar (see Appendix A).

1.2. Purpose

Business or other activities that involve multiple different organizations or independent processes that use Web Services technology to exchange information can be successful if they are properly coordinated. This means that the sender and receiver of a message know and agree in advance both:

· The format and structure of the messages that are exchanged, and

· The sequence and conditions in which the messages are exchanged.

To solve this problem, a “common” or “global” definition of the sequence and conditions in which messages are exchanged is produced that describes the observable, complementary behavior
of all the participants involved. Each participant can then use the definition to build and test solutions that conform to the global definition.

The main advantage of a global definition approach is that it separates the process being followed by an individual business or system within a “domain of control” from the definition of the sequence in which each business or system exchanges information with others. This means that, as long as the “observable” sequence does not change, the rules and logic followed within the domain of control can change at will.

In real-world scenarios, corporate entities are often unwilling to delegate control of their business processes to their integration partners. Choreography offers a means by which the rules of participation within a collaboration can be clearly defined and agreed to, jointly. Each entity may then implement its portion of the Choreography as determined by their common view.

The example below serves as one example of Choreography in Action:
[image: image1.wmf]
Figure 2

In Figure 2, Company A and Company B wish to integrate their business processes. The respective Business Analysts at both companies agree upon the rules and processes involved for the collaboration. Using a tool that can serve as a basis for the collaboration, Company A and Company B agree upon their interactions and generate a WS-CDL representation.

The WS-CDL representation can then, in the case of Company A, be used to generate a BPEL [18] code template. Company B, having greater legacy driven integration needs, relies on a J2EE [25] solution incorporating Java and EJBs.

In this example, Choreography specifies the interoperability and interactions between business entities, while leaving actual implementation decisions in the hands of each individual company.

1.3. Goals

The primary goal of a Business Collaboration Language for Web Services is to specify a declarative, XML based language that defines a global view of their observable behavior, where synchronized information exchanges occur
, when the commonly defined ordering rules are satisfied.

Some additional goals of this definition language are to permit:

· Reusability. The same choreography definition is usable by different participants operating in different contexts (industry, locale, etc) with different software (e.g. application software) and different message formats and standards

· Cooperative. Choreographies define the sequence of exchanging messages between two (or more) independent participants or processes by describing how they should cooperate

· Multi-Party. Choreographies can be defined involving any number of participants or processes

· Semantics. Choreographies can include human-readable documentation and semantics for all the components in the choreography.

· Composability. Existing choreographies can be combined to form new choreographies that may be reused in different contexts

· Modular. Choreographies can be defined using an "import" facility that allows a choreography to be created from components contained in several different choreographies

· Information Driven. Choreographies describe how participants that take part in choreographies maintain where they are in the Choreography by recording the observable state changes caused by observable exchanges of information and their observable reactions to them

· Information Alignment. Choreographies allow the participants that take part in choreographies to communicate and synchronize their observable states and the observable information they share

· Exception Handling. Choreographies can define how exceptional or unusual conditions that occur whilst the choreography is performed are handled

· Transactionality. The processes or participants that take part in a choreography can work in a “transactional” way with the ability to coordinate the outcome of the long-lived collaborations, which include multiple, often recursive collaboration units, each with its own business rules and goals.

· Compatibility with other Specifications. The specifications will work alongside and complement other specifications such as the WS-Reliability, WS-Composite Application Framework (WS-CAF), WS-Security (WS-Security), Business Process Execution Language for WS (BPEL4WS) etc.
1.4. Relationship with WSDL
The WS-CDL specification depends on the following specifications: XML 1.0 [9], XML-Namespaces [10], XML-Schema 1.0 [11, 12] and XPath 1.0 [13]. In addition, support for importing and referencing service definitions given in WSDL 1.2 [7] is a normative part of the WS-CDL specification.

1.5. Relationship with Business Process Languages
WS-CDL is not an "executable business process description language" [16, 17, 18, 19, 20] or an implementation language [23]. The role of specifying the execution logic of an application will be covered by these specifications; by enabling the definition of the control flows (such as conditional, sequential, parallel and exceptional execution) and the rules for consistently managing their unobservable business data.
WS-CDL does not depend on a specific business process implementation language. Thus, it can be used to specify truly interoperable collaborations between any type of Web Service participant regardless of the supporting platform or programming model used by the implementation of the hosting environment.

Typically, the respective Business Analysts define in WS-CDL the common observable behavior of all participants engaged in the business collaboration. Each participant could be implemented by completely different languages such as:

· Web Services applications, whose implementation is based on executable business process languages like [16, 17, 18, 19, 20].
· Web Services applications, whose implementation is based on languages like [23].
· Or human controlled software agents.
2. Language Concepts

This section introduces the Web Services Choreography Description Language (WS-CDL) definitions to address the Business Collaboration Language requirements as defined in section 1.

2.1 Collaboration Types

One of the key goals of WS-CDL is to enable collaboration types
reuse. Global definitions of a Choreography facilitate this especially if Choreographies are defined with varying degrees of abstraction. Although more could be defined, this model identifies and supports three different levels of abstraction in which choreographies can usefully be defined and used.

2.1.1 Abstract Choreography

The first is a highly abstract choreography that defines:

· The types of information that is exchanged, for example an order sent between a buyer and a seller

· The sequence and conditions under which the information is sent.

· When and how information exchanges are coordinated
However, it does not define:

· The physical structure of the information that is exchanged, for example there are no definitions of the XML documents, SOAP messages, WSDL port types and operations, URLs etc that are to be used.

· How the different conditions that are used to control the sequence of exchanging information are determined.

· Where the messages in the choreography should be sent e.g. to a URL

· How the messages are to be secured (if at all) and whether or not the messages are to be sent reliably.

Although abstract, this approach will be useful for defining generally accepted or “canonical” definitions for very common processes, such as placing an order. Definitions of theses types of choreography would best be carried out by international standards organizations that have a cross-industry, multi-geographic responsibility.
2.1.2 Portable Choreography

Clearly, the development of these abstract choreographies will take some time to complete, so the second type of choreography to define is a “portable” choreography. In this type of choreography definition an Abstract Choreography is extended with:

· Detailed definitions of the physical structure of the information that is exchanged including the WSDL port types and operations.

· Details of the technology to be used, for example, how to secure the messages and send them reliably.

· Rules that express, as far as possible, the conditions that are used to control the sequence of exchange of information, in terms of, for example XPath expressions that reference data in the messages.

However they do not specify the URLs to which the messages are sent nor, for example, the digital certificates used to secure them. This means that an organization should be able to design and build a solution that conforms, in detail, to the rules of the choreography, and only require limited additional information at run time to determine where messages should be sent. As a result realizing interoperability should be much easier.

This “portable” type of choreography is targeted more at vertical industry organizations, that want to define rules for collaboration between the members of their industry and simplify, as far as possible, the implementation and integration process.
2.1.3 Concrete Choreographies

The final type of choreography, is a Concrete Choreography, where all the details are specified that are required to send a message. This extends the definition in a Portable Choreography to include information about the “endpoints”. This can include information such as:

· The URLs that are the destinations of the messages that are sent, and

· Other “endpoint” specific rules such as digital certificates to be used for securing messages.

These types of choreographies are probably most applicable where two or more participants want to specify how they will cooperate and there is little or no need for other organizations to follow the same process.

2.1.4 Relationship between Collaboration Types

The table below summarizes the three different types of choreographies.

	
	Abstract
	Portable
	Concrete

	Types of Messages
	Identified
	Identified
	Identified

	Message Structure
	Not Defined
	Defined
	Defined

	Conditions
	Identified
	Identified
	Identified

	Condition evaluation rules
	Not defined
	Defined as far as possible
	Defined as far as possible

	Technology used
	Not defined
	Defined
	Defined

	Message Endpoint Data
	Not defined
	Not Defined
	Defined

An Abstract Choreography can be extended to become a Portable Choreography and a Portable Choreography can be extended to become a Concrete Choreography.

Alternatively each different type of Choreography to be defined directly. This means that:

· A Portable Choreography can be defined without first defining the Abstract Choreography.

· A Concrete Choreography can be defined without defining an Abstract or Portable Choreography.
2.2 Collaboration Packaging

A WS-CDL document describes interoperable, cross-enterprise collaborations that allow participants to perform business transactions. In order to facilitate these collaborations, services commit on mutual responsibilities by establishing business relationships. Their collaboration takes place in a commonly agreed set of constraints, whereby documents are exchanged in a synchronized fashion between the participants.

A collaboration package aggregates the following elements:

· Participants, Roles and Relationships. In a Choreography information is always exchanged between Participants, such as a Business or Organization acting in one or more Roles, for example Buyer or Seller as part of a Relationship, for example purchasing goods.

· Choreography. A Choreography allows constructing compositions of Web Service participants by explicitly asserting their common observable behaviors, where synchronized information exchanges through their shared collaboration points occur, when the commonly defined ordering rules are satisfied.
· Choreography Composition and Import. This element enumerates how one Choreography can be created by performing other, pre-existing choreographies and importing content from other choreographies.

· Types, Variables and Tokens. Variables contain information about objects in the choreography such as the messages exchanged or the state of the Roles involved. Tokens are aliases that can be used to reference parts of a Variable. Both Variables and Tokens have Types that define the structure of what the Variable or Token contains.

· Interactions. These are the basic building blocks of the Choreography which result in the sending of messages between Roles in either a “one-way” or “request-response” message pattern.

· Activities and Control Structures. Activities are the lowest level components of the Choreography that do the actual work. Control Structures combine activities with other Control Structures in a nested structure to express the sequence and conditions in which the messages in the choreography are exchanged.

· Choreography Exceptions and Transactions. Choreography Exceptions describe how to specify what additional Interactions should occur when a Choreography behaves in an abnormal way. Choreography Transactions describes how to specify what additional Interactions should occur to reverse the effect of an earlier completed choreography.

· Semantics. Semantics allow the creation of descriptions that can record the semantic definitions of almost every single component in the model.
2.3 Coupling Collaborating Agents

The WSDL specification describes the functionality of a service provided by a participant based on a stateless, connected, client-server model. The emerging Web Based applications require the ability to exchange business documents also in a peer-to-peer environment. In these types of environment a participant represents a requester of services provided by another participant and is at the same time a provider of services requested from other participants, thus creating mutual multi-participant service dependencies.
A WS-CDL document describes how a Web Service participant is capable of engaging in collaborations with the same participant or with different participants by specifying both their static and dynamic couplings.

Within a Choreography, information is always exchanged between Participants. The Roles and Relationship types identify the static coupling of collaborating Web Service participants. The Channels identify the dynamic coupling of collaborating Web Service participants.

2.3.1 Roles
A Role identifies a set of related behaviors, for example the Buyer role is associated with purchasing of goods or services and the Supplier role is associated with providing those goods or services for a fee.

A Role specifies the observable behavior, in terms of the operations, a participant MUST exhibit in order to collaborate with other participants. Within a Role, a Behavior specifies a subset of the observable behavior a participant MUST exhibit in order to collaborate with other participants under their mutually agreed commitments.

2.3.2 Participants

A Participant identifies a set of related Roles, for example a Commercial Organization could take both a Buyer Role when purchasing goods and a Seller role when selling them.
2.3.3 Relationships
A Relationship is the association of two Roles for a purpose. A relationship represents the possible ways in which two roles can interact. For example the Relationships between a Buyer and a Seller could include:

· A “Purchasing” Relationship, for the initial procurement of goods or services, and

· A “Customer Management” Relationship to allow the Supplier to provide service and support after the goods have been purchased or the service provided.

Although Relationships are always between two Roles, Choreographies involving more than two Roles are possible. For example if the purchase of goods involved a third-party Shipper contracted by the Supplier to deliver the Supplier’s goods, then, in addition to the Purchasing and Customer Management relationships described above, the following relationships might exist:

· A “Logistics Provider” relationship between the Supplier and the Shipper, and

A “Goods Delivery” relationship between the Buyer and the Shipper.

A Relationship specifies the mutual commitments, based on the Role types and the Behavior type required, that two participants oblige to provide in order to participate in a common business transaction.

2.3.4 Channels

A Channel type facilitates the collaboration between two Participants by identifying their common collaboration points. A Channel identifies where and how to send/receive information to/into a Role. Additionally, it identifies what is the allowed Channel information that can be passed from a Role to another Role and the usage of a Channel within each participant.

A Channel MUST describe the Role of a participant sending/receiving information to/from another participant.
A Channel MAY describe the service reference type of a participant, used for locating where and how to exchange messages to/into a participant.

A Channel MAY describe the business process type implementation within that participant.

A Channel MAY describe the identity of an instance of a business process implementing a participant’s role.
A Channel MAY describe one or more logical conversations between participants, within a collaboration. Each conversation groups a set of related document exchanges.

A Channel MAY be passed around from one role to another. Channel MAY prescribe the types of the Channels allowed to be exchanged between the Web Services participants, through this channel. Additionally, a Channel MAY restrict its usage by specifying the number of times a Channel instance can be used.

2.4 Information Driven Collaborations

A WS-CDL document allows defining relevant parts of the exchanged messages that can influence the observable behavior of a collaboration.

Variables contain information about objects in the choreography such as the messages exchanged or the state of the Roles involved. Tokens are aliases that can be used to reference parts of a Variable. Both Variables and Tokens have Types that define the structure of what the Variable or Token contains.

2.4.1 Declaring Information Types

Information types are used for defining the types of business information used within a Choreography. By introducing this abstraction, a Choreography definition avoids referencing only abstract message types, as described by WSDL, but instead can reference other data types as defined by the XML Schema specification.

2.4.2 Variables

A WS-CDL document allows declaration of the business information shared between participants engaged in stateful, long-lived business transactions, where performing certain collaborations requires the ability to depend upon the exchanges of previous messages.
Variables capture information about objects in a Choreography as defined by the Variable Usage:

· Information Exchange Variables that contain information such as an Order that is used to:

· Populate the content of a message to be sent, or

· Populated as a result of a message received

· Information Variables that contain information such as an Order that is used to:

· Populate the content of a message to be sent, or

· Populated as a result of a message received

· State Variables that contain information about the State of a Role as a result of information exchanged. For example:

· When a Buyer sends an order to a Seller, the Buyer could have a State Variable called “OrderState” set to a value of “OrderSent” and once the message was received by the Seller, the Seller could have an State Variable called “OrderState” set to a value of “OrderReceived”. Note that the variable “OrderState” at the Buyer is a different variable to the “OrderState” at the Seller

· Once an order is received, then it might be validated and checked for acceptability in other ways that affect how the choreography is performed. This could require additional states to be defined for “Order State”, such as: “OrderError”, which means an error was detected that stops processing of the message, “OrderAccepted”, which means that there were no problems with the Order and it can be processed, and “OrderRejected”, which means, although there were no errors, it cannot be processed, e.g. because a credit check failed.

· Channel Variables that contain information that describes how and where a message is sent to a Role. For example, a Channel Variable could contain information such as the URL to which the message should be sent, the policies that are to be applied, such as security, whether or not reliable messaging is to be used, etc.

· Other Variables including

· Locally Defined Variables that contain information created and changed locally by a Role. They can be Information Exchange, State or Channel Variables as well as variables of other types. For example “Maximum Order Amount” could be data created by a seller that is used together with an actual order amount from an Order received to control the flow of the choreography. In this case how Maximum Order Amount is calculated and its value would not be known by the other Roles

· Common Variables that contain information that is common knowledge to two or more Roles, e.g. “OrderResponseTime” which is the time in hours in which a response to an Order must be sent

The value of Variables can be:

· Known by all the roles prior to the start of the choreography

· Assigned by one role and optionally communicated to other roles

· Assigned as a result of an interaction

· Assigned by one role from other information

· Used to determine the decisions and actions to be taken in a Choreography.

Within a WS-CDL document, variable information is made available to a participant, by declaring it. Data access of variable information is done using the features of XML data types, WSDL message types and XPATH expressions.

Within a WS-CDL document variable information is made available to two interacting participants within a Choreography, by performing an interaction through a common Channel. Additionally, the variable information exchanged between the two participants MAY be aligned, so they are the same in both participants.
2.4.2.1 Variables and Abstract/PortableConcrete Choreographies

Defining Variables to hold information about the objects in a Choreography means that:

· Variables contain all the information about a Choreography that can change from implementation to implementation

· The definition of the sequence and conditions in which information is exchanged is independent of how those information exchanges are actually implemented

· As new methods are developed for defining interfaces, messages, as well as other Web Services standards, only the way the variables are defined should need to change. The essence of the choreography, i.e. the basic definition of the sequence and conditions in which information is exchanged, remains the same.

In addition the Import statement also allows definitions in one choreography, to be over-ridden by other, replacement definitions. This means that:

· The same choreography can be reused in different contexts with different interfaces, message types and varying levels of detail as required

· The Abstraction Level of the variables can change as required from abstract through to concrete

· The definitions of the variables in an “abstract” choreography can be used as a checklist to validate that any replacement definitions at either the Portable or Concrete levels form a complete list.

2.4.3 Tokens

A Token is an alias for a piece of data in a variable or message that needs to be used by a Choreography. Tokens differ from Variables in that Variables contain values whereas Tokens contain information that defines how to access the piece of the data that is relevant. For example a Token for "Order Amount" within an Order business could be an alias for an expression that pointed to the Order Amount element within an XML document. This could then be used as part of a condition that controls the flow of a choreography, for example “Order Amount > $1000”.

All Tokens MUST have a type, for example, an Order Amount would be of type amount, Order Id could be alphanumeric and counter an integer.

Tokens types reference a document fragment within a Choreography definition and Token Locators provide a query mechanism to select them. By introducing these abstractions, a Choreography definition avoids depending on specific message parts, as described by WSDL, or a specific query string, as specified by XPATH, but instead the parts or the query string can change without affecting the Choreography definition.
2.4.4 Choreographies
A WS-CDL document explicitly prescribes the rules, agreed between Web Service participants, that govern the ordering of exhanged messages and the provisioning of alternative patterns of behavior. The operational semantics of these rules are based on the data-driven computational model, where availability of shared variable information causes a rule to be triggered and its guarded subsequent actions to be enabled.
A Choreography allows constructing compositions of Web Service participants by explicitly asserting their common observable behaviors, where synchronized information exchanges through their shared collaboration points occur, when the commonly defined ordering rules are satisfied.

A Choreography defined at the Package level is called a base Choreography, and does not share its context with other base choreographies. A Choreography defined within another Choreography is called an enclosed Choreography. A Package MUST contain exactly one base Choreography, that is explicitly marked as the root Choreography. The root Choreography is the only base Choreography that MAY be initiated. The root Choreography is enabled when it is initiated.
 All non-root base Choreographies MAY be enabled only inside a root Choreography.

A Choreography facilitates recursive composition, where combining two or more Choreographies can form a new enclosing Choreography that may be re-used in different business contexts.

A Choreography MUST contain at least one Relationship type, enumerating the observable behavior this Choreography requires its participants to provide. One or more relationships MAY be defined within a Choreography, modeling multi-participant collaborations.
A Choreography acts as a name scoping context as it restricts the visibility of variable information. Variables defined in a Choreography are visible in the scoping Choreography and all its enclosed Choreographies, forming a Choreography Visibility Horizon. Restricting the visibility of variable information allows aligning activities that are generated, and exchanging variable information between participants to be isolated from activities belonging to different Visibility Horizons.

A Choreography MUST contain one or more Work Units.

2.4.5 WorkUnits

A Work Unit prescribes the explicit rules for enforcing the constraints that preserve the consistency of the business transactions commonly performed by the Web Service participants. Examples of a Work Unit include:

· A Send PO Work Unit that includes Interactions for the Buyer to send an Order, the Supplier to acknowledge the order, and then later accept (or reject) the order. This work unit would probably not have a guard.

· An Order Delivery Error Work Unit that is performed whenever the Place Order Work Unit did not reach a “normal” conclusion. This would have a Guard condition that identifies the error – see also Choreography Exceptions and Transactions.

· A Change Order Work Unit that can be performed whenever an order acknowledgement message has been received and an order rejection has not been received.

A Work Unit specifies the data dependencies that must be satisfied before enabling one or more business actions, by expressing interest on the availability of variable information that already exists or will be created in the future.
A Work Unit is enabled when the Choreography it belongs to is enabled. Enabled Work Units are matched when the required, zero, one or more variable information become available. Availability of some variable information does not mean that a Work Unit matches immediately. Only when all variable information required by a Work Unit become available in the appropriate Visibility Horizon does matching succeed. Variable information available in a Choreography MAY be matched with a Work Unit that will be registered in the future. The matching of variable information with Work Units MAY enable one, or more concurrent Choreographies.

A Work Unit MUST contain one Control Structures or Activity.
A Control Structure prescribes the sequencing and conditional rules for enabling one or more business actions.

An Activity describes the detailed actions of a business transaction, commonly performed by the Web Service participants.

A Work Unit allows an application to recover from faults that are the result of abnormal business actions and also to finalize completed business actions that need to be logically rolled back.

A Choreography MAY contain more than one Work Unit, thus allowing selection between alternative collaboration paths.
A Work Unit MAY belong to a Select group. One or more Work Units MAY belong to the same Select group. Within a Choreography, one or more Select groups MAY be specified. When two or more Work Units are matched within the same Select group then only one Work Unit is allowed to make progress by enabling its own actions. The lexicographical order of the Work Units belonging to the same Select group, determines which Work Unit makes progress. All matched Work Units that belong to different Select groups are allowed to make progress by enabling their own actions.
A Work Unit completes successfully when all its enclosed business actions complete successfully. A Work Unit that completes successfully MUST be considered again for matching (based on its guard condition) if its repetition condition (optionally defined in the Work Unit) evaluates to true.

2.4.6 Reusing existing Choreographies

Choreographies can be combined and built from other Choreographies.

2.4.6.1 Composing Choreographies

Choreography Composition is the creation of new Choreographies by reusing existing choreography definitions. For example if two separate Choreographies were defined as follows:

· A Request for Quote (RFQ) Choreography that involved a Buyer role sending a request for a quotation for goods and services to a Supplier to which the Supplier responding with either a “Quotation” or a “Decline to Quote” message, and

· An Order Placement Choreography where the Buyer placed and order for goods or services and the Supplier either accepted the order or rejected it.

You could then create a new “Quote and Order” Choreography by reusing the two where the RFQ choreography was executed first, and then, depending on the outcome of the RFQ Choreography, the order was placed using the Order Placement Choreography.

In this case the new choreography is “composed” out of the two previously defined choreographies. These choreographies may be specified either:

· Locally, i.e. they are included, as a Enclosed Choreography, in the same choreography definition as the choreography that performed them, or

· Globally, i.e. they are specified in a separate choreography definition that is defined elsewhere.

Using this approach, Choreographies can be recursively combined to support choreographies of any required complexity allowing more flexibility as Choreographies defined elsewhere can be reused.

2.4.6.2 Importing Choreographies

An Import statement can contain references to a complete Choreography or part of a Choreography.

Import statements must be interpreted in the sequence they occur.

When the Import statement contains references to variables or other data that have the same identity, then the content of the later Import statement replaces the same content referenced by the earlier Import statement.

This means, for example, that if an initial Choreography definition referenced by an Import statement contained variables, etc, that were defined in an Abstract way, then the replacement definition could either be Portable or Concrete.

It also enables one Choreography definition to effectively be “cloned” by replacing the definitions for some or all of its variables.

2.4.7 Choreography Life-line
A Choreography expresses the progression of a business transaction. Initially, the business transaction MUST be started, then work MAY be performed within it and finally it MUST complete. These different phases are designated by explicitly marked business operations within the Choreography and its semantics.

A root Choreography is initiated when the first interaction, marked as the Choreography initiator, is performed. Two or more interactions MAY be marked as initiators, indicating alternative initiation actions. In this case, the first action will initiate the Choreography and the other actions will enlist with the already initiated Choreography. An interaction designated as a Choreography initiator MUST be the first action performed in a Choreography. If a Choreography has two or more Work Units with interactions marked as initiators, then these are mutually exclusive and the Choreography will be initiated when the first interaction occurs and the remaining Work Units will be disabled. All the interactions not marked as initiators indicate that they will enlist with an already initiated Choreography.

A Choreography completes successfully when there are no more enabled Work Unit(s) within it. Alternatively, a Choreography completes successfully if its complete condition (optionally defined in the Choreography) evaluates to true even if one or more enabled Work Units are still unmatched.

2.4.8 Choreography Recovery

An Exception WorkUnit MAY be defined as part of an enclosing Choreography to recover from exceptional conditions that may occur in that Choreography.

A Finalization WorkUnit MAY be defined as part of an enclosing Choreography to provide the finalization actions that semantically rollback the completed enclosing Choreography.

2.4.8.1 Exception Block

A Choreography can sometimes fail as a result of an exceptional circumstance or error. Different types of exceptions are possible including this non-exhaustive list:

· Interaction Failures, for example the sending of a message did not occur

· Protocol Based Exchange failures, for example no acknowledgement was received as part of a reliable messaging protocol

· Security failures, for example a Message was rejected by a recipient because the digital signature was not valid

· Choreography Sequence Failures, for example a Message was received that was not in the sequence as defined by the Choreography

· Timeout errors, for example an Interaction did not complete within a required timescale

· Validation Errors, for example an XML order document was not well formed or did not conform to its schema definition

· Business Process “failures”, for example the goods ordered were out of stock.

To handle these and other “errors“ separate Work Units are defined in the Exception Block for each “exception” condition (as identified by its guards) that needs to be handled. Only one Work Unit per exception should be performed.

When a Choreography encounters an exceptional condition it MAY need to act on it.

An Exception WorkUnit MAY be defined as part of an enclosing Choreography for the purpose of handling the exceptional conditions occurring on that Choreography. A Choreography MAY define one or more Exception WorkUnits. An Exception Work Unit expresses interest on fault variable information that MAY become available.
The fault variable information is a result of:
· A fault occurring while performing an interaction between collaborating participants.

· A timeout occuring while an interaction between collaborating participants was not completed within a specified time period.

Exception Work Units are enabled when the enclosing Choregraphy is enabled. An Exception WorkUnit MAY be enabled only once for an enclosing Choreography. Exception Work Units enabled in an enclosing Choreography MAY behave as the default mechanism to recover from faults for all its enclosed Choreographies. Exception Work Units enabled in an enclosed Choreography MAY behave as a refined mechanism to recover from faults for any of its enclosing Choreographies.

If a fault occurs, then the faulted Choreography completes unsuccessfully and its Finalization WorkUnit is not enabled. The actions, including enclosed Choreographies, enabled within the faulted Choreography are completed abnormally before an Exception Work Unit can be matched.

Within a Choreography only one Exception Work Unit MAY be matched. When an Exception Work Unit matches, it enables the appropriate activities for recovering from the fault.

Matching a fault with an Exception Work Unit is done as follows:
If a fault is matched by an Exception Work Unit then the actions of the matched Work Unit are enabled. If a fault is not matched by an Exception Work Unit defined within the Choreography in which the fault occurs, then the fault will be recursively propagated to the parent Exception WorkUnit until a match is successful.
The actions within the Exception WorkUnit MAY use variable information visible in the Visibility Horizon of its enclosing Choreography as they stand at the current time.

The actions of an Exception WorkUnit MAY also fault. The semantics for matching the fault and acting on it are the same as described in this section.

2.4.8.2 Transaction Block

When a Choreography encounters an exceptional condition it MAY need to revert the actions it had already completed, by providing finalization actions that semantically rollback the effects of the completed actions.

A Finalization WorkUnit is a WorkUnit defined as part of an enclosing Choreography for the purpose of reverting the effects of that Choreography. A Choreography MAY define exactly one Finalization WorkUnit.

A Finalization Work Unit expresses interest on variable information that MAY become available by a finalization command targetted to the enclosing Choreography. The finalization command is issued by the Exception or the Finalization WorkUnit of the parent of the enclosing Choreography. When a Finalization Work Unit matches, it enables the appropriate finalization actions.

A Finalization WorkUnit is enabled only after its enclosing Choreography completes successfully. The Finalization WorkUnit may be enabled only once for an enclosing Choreography.

The actions within the Finalization WorkUnit MAY use variable information visible in the Visibility Horizon of its enclosing Choreography as they were at the time the enclosing Choreography completed or as they stand at the current time.

The actions of the Finalization WorkUnit MAY fault. The semantics for matching the fault and acting on it are the same as described in the previous section.
2.5 Activities

Activities are the lowest level components of the Choreography, which do the actual work.

Control Structures combine these Activities with other Control Structures in a nested way to specify the sequence and flow of the exchange of information within the Choreography.

However at the highest level, the Choreographies consist of Work Units, that each contains a single Activity that is performed whenever an optional enabling condition on the Work Unit, called a guard, is true.

Each Activity within a Work Unit is then either:

· A Basic Activity that does the actual work. These are:

· An Interaction, i.e. the Work Unit consists of a single Interaction

· A Perform, which means that a complete, separately defined choreography is performed

· An Assign, which assigns, within one Role, the value of one Variable to the value of a Variable

· No Action, which means that the Choreography should take no particular action at that point

· Control Structures that group Basic Activities and Control Structures together in a nested structure to express the logic and decision flow involved in the Choreography. The Control Structures are:

· Sequence, which specifies a list of Activities that are performed in sequence

· Parallel, which means that all the Activities are performed at the same time

· Choice, which specifies that just one of two or more Activities are performed depending on the predicate associated with each Activity

2.5.1 Control Structures

The Sequence Control Structure enables a Work Unit to define that one or more Activities must be performed in sequence. Activities must be performed in the same sequence that they are defined.

The Parallel Control Structure enables a Work Unit to define that Activities are performed in parallel.
The Choice Control structure enables a Work Unit to define that only one of two or more Activities should be performed. It works by adding a Guard statement to each individual Activity within the Choice. An Activity should only occur if the Guard on the Activity evaluates to true. Once one of the Activities in the Choice has been performed, then no other Activities in the Choice must be performed.

2.5.2 Interacting

An Interaction represents the unit of work for communicating and synchronizing two participants. Two participants make progress by interacting and can possibly align their shared information by performing synchronized information exchanges through a common Channel.

An interaction is initiated when a participant playing the requesting role sends a service request, through a common Channel, to a participant playing the accepting role. The interaction is continued when the accepting participant, sends zero or one response(s) back to the requesting participant.
States contain information about the State of a Role as a result of information exchanged in the form of an Interaction. For example after an Interaction where an order is sent by a Buyer to a Seller, the Buyer could create the State Variable “Order State“ and assign the value “Sent” when the message was sent, and when the Seller received the order, the Seller could also create its own version of the “Order State” State Variable and assign it the value “Received”.

As a result of a State Change, several different outcomes are possible which can only be determined at run time. The Interaction lists each of these allowed State Changes, for example when an order is sent from a Buyer to a Seller the outcomes could be one of the following State Changes:

1. Buyer.OrderState = Sent, Seller.OrderState = Received

2. Buyer.OrderState = SendFailure, Seller.OrderState not set

3. Buyer.OrderState = AckReceived, Seller.OrderState = OrderAckSent

In some choreographies there may be a requirement that, at the end of an Interaction, the Roles in the Choreography have agreement of the outcome. More specifically within an Interaction, a Role needs to have a common understanding of the state changes of one or more State Variables that are complimentary to one or more State Variables of its partner Role.

Additionally within an Interaction, a Role needs to have a common understanding of the values of the Information Exchange Variables at the partner Role. Without alignment the Buyer knows that her “OrderState” is set to “Sent”, but does not know the value of the OrderState at the Seller. Once the Seller receives the Order then the Seller knows that his “OrderState” variable is set to “Received”. He also knows the Buyers “OrderState” was set to “Sent”, as the Choreography defines that the Buyer’s Order State variable is set in this way when an Order is sent.

With Choreography Alignment the difference is that both the Buyer and the Seller have:

· State Variables such as Order State variables at the Buyer and Seller, that have Values that are complementary to each other, e.g. Sent at the Buyer and Received at the Seller, and

· Knowledge of the values of each others States Variables, i.e. the Buyer knows that the Seller’s “OrderState” variable has the value “Received” and the Seller knows that the Buyer’s “OrderState” variable is set to “Sent”

· Information Exchange Variables that have the same types with the same content, e.g. The Order variables at the Buyer and Seller have the same Information Types and hold the same order

This assurance of the outcome with respect to States is achieved by an ‘agreement’ protocol that is used in conjunction with the Choreography such as the Web Services and other specifications designed to coordinate long-running transactions.
The variable information that need to be aligned and made available to the two interacting participants MUST be explicitly modeled in WS-CDL as a variable alignment interaction between them. After the alignment interaction completes, both participants progress at the same time, in a lock-step fashion and the variable information in both participants is aligned. Their variable alignment comes from the fact that the requesting participant has to know that the accepting participant has received the message and the other way around, the accepting participant has to know that the requesting participant has sent the message before both of them progress. The mechanism of how this is accomplished is implementation specific.

The One-Way, Request or Response messages in an Interaction may also be implemented using a Protocol Based Exchange where a series of messages are exchanged according to some well-known protocol, such as the reliable messaging protocols defined in specifications such as WS Reliability.

In both cases, the same or similar Message Content may be exchanged as in a simple Interaction, for example the sending of an Order between a Buyer and a Seller. Therefore some of the same State Changes may result.

However when protocols such as the reliable messaging protocols are used, additional State Changes will occur. For example, if a reliable messaging protocol were being used then the Buyer, once confirmation of delivery of the message was received, would also know that the Seller's "Order State" variable was in the state “Received” even though there was no separate Interaction that described this.
An interaction activity forms the atom of composition, where multiple interacts are combined to form a Choreography, which can be used in different business contexts. A business collaboration that does not have atomic semantics, SHOULD be modeled as several interactions between participants instead of one interaction.
The Channel through which an interaction occurs is used to determine whether to enlist the interaction with an already initiated Choreography or to initiate a new Choreography.

Within a Choreography, two or more related interactions MAY be grouped to form a logical conversation. The Channel through which an interaction occurs is used to determine whether to enlist the interaction with an already initiated conversation or to initiate a new conversation.
An interaction completes normally when the request and the response (if there is one) complete successfully. In this case the business documents and Channels exchanged during the request and the response (if there is one) result in the shared variable being aligned between the two participants.

An interaction completes abnormally if faults occur:

· The time-to-complete timeout identifies the time an interaction takes to complete. If this timeout occurs, after the interaction was initiated but before it completed, then a fault is generated.

· A fault signals an exceptional condition during the management of a request or within a participant when accepting the request.

In this case the business documents and channels exchanged do not result in any new variable alignment between these participants, rather the shared variable remains the same as if this interaction had never occurred:
· A requesting participant completes the current interaction. The requesting participant may create a new interaction to recover from this failure as part of the same Choreography or of a completely new Choreography.

· An accepting participant completes the current interaction.
2.5.3 Performed Choreography

The Performed Choreography Structure enables a Choreography to define that a separately defined Choreography is to be performed. The Choreography that is performed can be defined either within the same Choreography Definition or separately.

2.5.4. Assigning Variables
Assign populates, within one Role, the value of one Variable using the value of a Variable or Token, or makes a Token reference a Variable or another Token.

The assignments may include:

· Assigning one Information Exchange Variable to another, for example so that a Choreography can define that a message received by one role is forwarded to another.

· Assigning a Locally Defined Variable to part of the data contained in an Information Exchange Variable.
2.5.5 Defining actions with no business effect
The Noaction activity models the performance of a business action that has no business effect to any of the collaborating participants. Examples of its use include:

· In a Work Unit, when there is a need to wait until the Guard condition on the Work Unit is true, for example you need to wait until say three separate Interactions are complete before progressing to the next step in the Choreography

· In a Choice so that you can enumerate all the possible choices even if some of the choices involve no Interactions.
2.5.6 Finalization Command
The Finalize activity models issuing a finalization command from a parent Choreography to the Finalization WorkUnit of an enclosed Choreography.
3 Example

This example depicts a multi-party choreography illustrating a simple purchase sequence. The choreography involves four parties; a Buyer, Seller, Credit Checking Service and Inventory Service.

The Seller, upon receiving the Purchase Order from the buyer, initiates 3 interactions:

· one with the Buyer to acknowledge the receipt of the Purchase Order

· one with the Credit Checking Service to check the credit of the Buyer

· one with the Inventory Service to check the inventory of the product ordered by the Buyer.

The Seller waits for the response from both the Credit Checking Service and Inventory Service. If both responses are positive, the order is processed and the Purchase Order Response is sent.

If either of the responses from Credit Checking Service or Inventory Service are negative, then a Purchase Order Reject message is sent to the Buyer.

In the example below, the main choreography involves 3 relationships:

· Buyer-Seller

· Seller-Credit Checking Service

· Seller-Inventory

Within this main choreography, we have 3 sub-Choreographies, one for each relationship. The various Work Units with guards on them reflect the ordering of the activities.

The Work Unit 'purchaseDocAvailibility' has a guard on 'purchaseOrderDocAtSeller' that triggers when a Purchase Order document is received by the Seller.

Similarly, the Work Unit with the guard 'creditApprovalInventoryApproval' is triggered when the query on 'CreditCheckResponseDocAtSeller' and 'InventoryResponseDocAtSeller' result in positive answers from the Credit Checking Service and Inventory Service.

WSDL Definitions

<definitions name="PurchaseOrderDefs"

 targetNamespace="urn:purchaseOrder:purchaseOrderDefs"

 xmlns:tns="urn:purchaseOrder:purchaseOrderDefs"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <types>

 <xsd:complexType name="purchaseOrderType">

 <xsd:element name="CID" type="xsd:string"/>

 <xsd:element name="Order" type="xsd:int"/>

 <!-- more stuff-->

 </xsd:complexType>

 </types>

 <types>

 <xsd:complexType name="purchaseOrderAckType">

 <xsd:element name="CID" type="xsd:string"/>

 <xsd:element name="Order" type="xsd:int"/>

 <!-- more stuff-->

 </xsd:complexType>

 </types>

 <types>

 <xsd:complexType name="purchaseOrderResponseType">

 <xsd:element name="CID" type="xsd:string"/>

 <xsd:element name="Order" type="xsd:int"/>

 <!-- more stuff-->

 </xsd:complexType>

 </types>

 <types>

 <xsd:complexType name="purchaseOrderRejectType">

 <xsd:element name="CID" type="xsd:string"/>

 <xsd:element name="Order" type="xsd:int"/>

 <xsd:element name="reason" type="xsd:string"/>

 <!-- more stuff-->

 </xsd:complexType>

 </types>

 <types>

 <xsd:complexType name="inventoryCheckRequestType">

 <xsd:element name="productID" type="xsd:int"/>

 <xsd:element name="productQty" type="xsd:int"/>

 <!-- more stuff-->

 </xsd:complexType>

 </types>

 <types>

 <xsd:complexType name="inventoryCheckResponseType">

 <xsd:element name="productID" type="xsd:int"/>

 <xsd:element name="productQty" type="xsd:int"/>

 <!-- more stuff-->

 </xsd:complexType>

 </types>

 <types>

 <xsd:complexType name="creditCheckRequestType">

 <xsd:element name="CustomerID" type="xsd:int"/>

 <xsd:element name="SSN" type="xsd:string"/>

 <!-- more stuff-->

 </xsd:complexType>

 </types>

 <types>

 <xsd:complexType name="creditCheckResponseType">

 <xsd:element name="CustomerID" type="xsd:int"/>

 <xsd:element name="SSN" type="xsd:string"/>

 <!-- more stuff-->

 </xsd:complexType>

 </types>

 <message name="purchaseOrderMsg">

 <part name="PO" type="purchaseOrderType"/>

 </message>

 <message name="purchaseOrderAckMsg">

 <part name="PO" type="purchaseOrderAckType"/>

 </message>

 <message name="purchaseOrderResponseMsg">

 <part name="PO" type="purchaseOrderResponseType"/>

 </message>

 <message name="purchaseOrderRejectMsg">

 <part name="PO" type="purchaseOrderRejectType"/>

 </message>

 <message name="creditRequestMsg">

 <part name="Credit" type="creditRequestType"/>

 </message>

 <message name="creditResponseMsg">

 <part name="Credit" type="creditResponseType"/>

 </message>

 <message name="inventoryRequestMsg">

 <part name="Inventory" type="inventoryRequestType"/>

 </message>

 <message name="inventoryResponseMsg">

 <part name="Inventory" type="inventoryResponseType"/>

 </message>

 <!-- more stuff-->

</definitions>

Buyer Service

<definitions name="BuyerService"

 targetNamespace="urn:purchaseOrder:buyerService"

 xmlns:pons="urn:purchaseOrder:purchaseOrderDefs"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

<interface name="BuyerPT">

<operation name="createOrderAck">

<input message="pons:purchaseOrderAckMsg"/>

</operation>

<operation name="createOrderResponse">

<input message="pons:purchaseOrderResponseMsg"/>

</operation>

<operation name="createOrderReject">

<input message="pons:purchaseOrderRejectMsg"/>

</operation>

</interface>

</definitions>

Seller Service
<definitions name="SellerService"

 targetNamespace="urn:purchaseOrder:sellerService"

 xmlns:pons="urn:purchaseOrder:purchaseOrderDefs"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

<interface name="SellerPOPT">

<operation name="createOrder">

<input message="pons:purchaseOrderMsg"/>

</operation>

</interface>

<interface name="SellerCreditPT">

<operation name="creditResponse">

<input message="pons:creditResponseMsg"/>

</operation>

</interface>

<interface name="SellerInventoryPT">

<operation name="inventoryResponse">

<input message="pons:inventoryResponseMsg"/>

</operation>

</interface>

</definitions>

 Credit Service
<definitions name="CreditService"

 targetNamespace="urn:purchaseOrder:creditService"

 xmlns:pons="urn:purchaseOrder:purchaseOrderDefs"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

<interface name="CreditPT">

<operation name="creditCheck">

<input message="pons:creditRequestMsg"/>

</operation>

</interface>

 </definitions>

Inventory Service

<definitions name="InventoryService"

 targetNamespace="urn:purchaseOrder:inventoryService"

 xmlns:pons="urn:purchaseOrder:purchaseOrderDefs"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

<interface name="InventoryPT">

<operation name="inventoryCheck">

<input message="pons:inventoryRequestMsg"/>

</operation>

</interface>

 </definitions>

Choreography Example
<package

name="purchaseOrderChoreography"

version="1.0"

targetNamespace="urn:purchaseOrder:purchaseOrderChoreography"

xmlns:pons="urn:purchaseOrder:purchaseOrderDefs"

xmlns:bns="urn:purchaseOrder:buyerService"

xmlns:sns="urn:purchaseOrder:sellerService"

xmlns:cns="urn:credit:creditService"

xmlns:ins="urn:inventory:inventoryService"

xmlns:wsrf="http://www.wsref.com"

xmlns="http://www.w3.org/ws/choreography/2004/02/CDL"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl">

 <importDefinitions>

 <import namespace=”http://otn.oracle.com/”

 location=”http://otn.oracle.com/ws/choreo/sample”/>

 </importDefinitions>

<!-- Information Type definitions -->

<informationType name="purchaseOrderDocType"

messageType="pons:purchaseOrderMsg"/>

<informationType name="purchaseOrderAckDocType"

messageType="pons:purchaseOrderAckMsg"/>

<informationType name="purchaseOrderRejectDocType"

messageType="pons:purchaseOrderRejectMsg"/>

<informationType name="purchaseOrderResponseDocType"

messageType="pons:purchaseOrderResponseMsg"/>

<informationType name="creditCheckRequestDocType"

messageType="pons:creditCheckRequestMsg"/>

<informationType name="creditCheckResponseDocType"

messageType="pons:creditCheckResponseMsg"/>

<informationType name="inventoryCheckRequestDocType"

messageType="pons:inventoryCheckRequestMsg"/>

<informationType name="inventoryCheckResponseDocType"

messageType="pons:inventoryCheckResponseMsg"/>

<!-- Token and token locators -->

<token

name="purchaseOrderID" type="xsd:int"/>

<tokenLocator tokenName="sns:purchaseOrderID"

 informationType ="purchaseOrderDocType"

part="PO"

query="/PO/Order"/>

<tokenLocator tokenName="sns:purchaseOrderID"

 informationType ="purchaseOrderResponseDocType"

part="PO"

query="/PO/Order"/>

<token

name="customerID" type="xsd:int"/>

<tokenLocator tokenName="sns:customerID"

 informationType ="creditRequestDocType"

part="Credit"

query="/CreditCheck/CustomerID"/>

<tokenLocator tokenName="sns:customerID"

 informationType ="creditResponseDocType"

part="Credit"

query="/CreditCheckResponse/CustomerID"/>

<token

name="productID" type="xsd:int"/>

<tokenLocator tokenName="sns:productID"

 informationType ="inventoryRequestDocType"

part="Inventory"

query="/InventoryCheck/ProductID"/>

<tokenLocator tokenName="sns:productID"

 informationType ="inventoryResponseDocType"

part="Inventory"

query="/InventoryCheckResponse/ProductID"/>

<token

name="buyerRef" type="anyURI"/>

<token

name="warehouseRef" type="anyURI"/>

<token

name="creditRef" type="anyURI"/>

<token

name="inventoryRef" type="anyURI"/>

<!-- Role definitions -->

<role name="Buyer">

<behavior name="buyer" interface="bns:BuyerPT"/>

</role>

<!-- The role seller has 3 interfaces one for buyer, one for

 credit and one for inventory-->

<role name="Seller">

<behavior name="sellerForBuyer"

 interface="sns:SellerPOPT"/>

<behavior name="sellerForCredit"

 interface="sns:SellerCreditPT"/>

<behavior name="sellerForInventory"

 interface="sns:SellerInventoryPT"/>

</role>

<role name="Credit">

<behavior name="buyer" interface="cns:CreditPT"/>

</role>

<role name="Inventory">

<behavior name="buyer" interface="ins:InventoryPT"/>

</role>

<!-- Relationship definitions -->

<relationship name="BuyerSellerBinding">

<role type="Buyer"/>

<role type="Seller"/>

</relationship>

<relationship name="SellerCreditBinding">

<role type="Buyer"/>

<role type="Seller"/>

</relationship>

<relationship name="SellerInventoryBinding">

<role type="Buyer"/>

<role type="Seller"/>

</relationship>

<!-- Channel Type definitions -->

<channelType name="purchaseOrderCHT">

<role type="Seller" behavior="sellerForBuyer"/>

<reference>

<token name="warehouseRef"/>

</reference>

<identity>

<token name="purchaseOrderID"/>

</identity>

</channelType>

<channelType name="purchaseOrderResponseCHT">

<role type="Buyer"/>

<reference>

<token name="buyerRef"/>

</reference>

<identity>

<token name="purchaseOrderID"/>

</identity>

</channelType>

 <channelType name="creditCheckCHT">

<role type="Credit"/>

<reference>

<token name="creditRef"/>

</reference>

<identity>

<token name="customerID"/>

</identity>

</channelType>

 <channelType name="creditCheckResponseCHT">

<role type="Seller" behavior="sellerForCredit"/>

<reference>

<token name="warehouseRef"/>

</reference>

<identity>

<token name="customerID"/>

</identity>

</channelType>

 <channelType name="inventoryCheckCHT">

<role type="Credit"/>

<reference>

<token name="inventoryRef"/>

</reference>

<identity>

<token name="productID"/>

</identity>

</channelType>

<channelType name="inventoryCheckResponseCHT">

<role type="Seller" behavior="sellerForInventory"/>

<reference>

<token name="warehouseRef"/>

</reference>

<identity>

<token name="productID"/>

</identity>

</channelType>

<choreography name="purchaseOrderChoreograpy" root="true">

<relationship type="BuyerSellerBinding"/>

 <relationship type="SellerCreditBinding"/>

 <relationship type="SellerInventoryBinding"/>

<variableDefinitions name="purchaseOrderChoreographyVariable">

 <variable name="purchaseOrderDocAtSeller"

informationType="purchaseOrderDocType"

role="Seller"/>

<variable name="creditCheckResponseDocAtSeller"

informationType="creditCheckResponseDocType"

role="Seller"/>

<variable name="inventoryCheckResponseDocAtSeller"

informationType="inventoryCheckResponseDocType"

role="Seller"/>

 <variable name="seller-channel-for-buyer"

channelType="purchaseOrderCHT"/>

</variableDefinitions>

<workunit name="programPurchaseOrder">

<!-- A sub choreography for buyer/seller interactions -->

<choreography

name="buyerSellerChoreography”>

<relationship=”BuyerSellerBinding"/>

<variableDefinitions

 name="purchaseOrderChoreographyVariable">

<variable name="purchaseOrderAckDoc"

informationType="purchaseOrderAckDocType"/>

<variable name="purchaseOrderDocAtBuyer"

informationType="purchaseOrderDocType"

role="Buyer"/>

<variable name="purchaseOrderResponseDoc"

informationType="purchaseOrderResponseDocType"/>

<variable name="purchaseOrderRejectDoc"

informationType="purchaseOrderRejectDocType"/>

<variable name="buyer-channel"

channelType="purchaseOrderResponseCHT"/>

</variableDefinitions>

<workunit name="purchaseOrder">

<!-- This is the first interaction, hence we assume that

 the buyer and seller

have negotiated and know the seller-channel-for-buyer -->

<interaction name="createOrderInteract"

 channel="seller-channel-for-buyer"

 operation="createOrder"

 messageContentType="purchaseOrderDocType"

 initiateChoreography="true">

 <participate relationship="BuyerSellerBinding"

 fromRole="Buyer"

 toRole="Seller"/>

 <align variable="purchaseOrderDocAtBuyer"

 with-variable="purchaseOrderDocAtSeller"/>

 <align variable="buyer-channel"

 with-variable="buyer-channel"/>

</interaction>

<!-- This is not a response, but just an acknowledgement

-->

<interaction name="createOrderAckInteract"

 channel="buyer-channel"

 operation="createOrderAck"

 messageContentType="purchaseOrderDocType">

 <participate relationship="BuyerSellerBinding"

 fromRole="Seller"

 toRole="Buyer"/>

 <align variable="purchaseOrderAckDoc"

 with-variable="purchaseOrderAckDoc"/>

</interaction>

<!-- this is a sub choreography of buyerSellerChoreography

because we want to share the scope of buyer-channel

 between the two -->

<choreography

name="sellerResponseChoreography">

<relationship=”BuyerSellerBinding"/>

<!-- The group name ApproveOrReject indicates that

 all the Work Units that belong to this group are

 mutually exclusive. When one is fired, the

 others are disabled.-->

<workunit name="creditApprovalInventoryApproval"

 guard= "cdl:getVariable(CreditCheckResponseDocAtSeller, \“/Customer/Credit\”) [text() = 'success'] && cdl:getVariable(InventoryResponseDocAtSeller, \“/Order/Inventory\”) [text()='available']">

<interaction name="createOrderResponse"

 channel="buyer-channel"

 operation="createOrderResponse"

 messageContentType="purchaseOrderDocType">

 <participate relationship="BuyerSellerBinding"

fromRole="Seller"

toRole="Buyer"/>

 <align variable="purchaseOrderResponseDoc"

 with-variable="purchaseOrderResponseDoc"/>

</interaction>

</workunit>

</choreography>

<!-- this is a sub choreography of buyerSellerChoreography

 because we want to share the scope of buyer-channel

between the two. -->

<choreography

name="sellerRejectChoreography">

<relationship=”BuyerSellerBinding"/>

<!--workunit belongs to group ApproveOrReject.-->

<workunit name="creditInventoryRejection"

 guard= "cdl:getVariable(CreditCheckResponseDocAtSeller, \“/Customer/Credit\”)[text='failedToApprove'] || cdl:getVariable(InventoryResponseDocAtSeller, \“/Order/Inventory\”)[text= 'notAvailable']">

<interaction name="createOrderReject"

 channel="buyer-channel"

 operation="createOrderReject"

 messageContentType="purchaseOrderDocType">

 <participate relationship="BuyerSellerBinding"

fromRole="Seller"

toRole="Buyer"/>

 <align variable="purchaseOrderRejectDoc"

 with-variable="purchaseOrderRejectDoc"/>

</interaction>

</workunit>

</choreography>

</workunit>

</choreography>

<!-- Choreography to check credit of the buyer -->

<choreography name="creditCheckChoreography">

<relationship type="SellerCreditBinding"/>

 <variableDefinitions name=”creditCheckChoreographyVariable”>

<variable name="creditCheckRequestDoc"

informationType="creditCheckRequestDocType"/>

<variable name="creditCheckResponseDocAtCredit"

informationType="creditCheckResponseDocType"

role="Credit"/>

<variable name="seller-channel-for-credit"

channelType="tns:creditCheckResponseCHT"/>

 </variableDefinitions>

<!-- When purchaseOrderDocAtSeller is available at seller,

 this workunit is enabled -->

<workunit name="purcaseDocAvailibility"

 guard="purchaseOrderDocAtSeller">

<interaction name="creditCheck"

 channel="credit-channel"

 operation="checkCredit"

 messageContentType="purchaseOrderDocType"

 initiateChoreography="true">

 <participate relationship="SellerCreditBinding"

 fromRole="Seller"

toRole="Credit"/>

 <align variable="creditCheckRequestDoc"

 with-variable="creditCheckRequestDoc"/>

 <align variable="seller-channel-for-credit"

 with-variable="seller-channel-for-credit"/>

</interaction>

<interaction name="creditCheckResponse"

 channel="seller-channel-for-credit"

 operation="creditResponse"

 messageContentType="purchaseOrderDocType">

 <participate relationship="SellerCreditBinding"

fromRole="Credit"

toRole="Seller"/>

<align variable="creditCheckResponseDocAtCredit"

 with-variable=" creditCheckResponseDocAtSeller"/>

</interaction>

</workunit>

</choreography>

<!-- Choreography to check inventory of the products ordered

 by the buyer -->

<choreography name="inventoryCheckChoreography">

<relationship type="SellerInventoryBinding"/>

 <variableDefinitions name=”inventoryCheckChoreographyVariable”>

<variable name="inventoryCheckRequestDoc"

informationType="inventoryCheckRequestDocType"/>

<variable name="inventoryCheckResponseDocAtInventory"

 informationType="inventoryCheckResponseDocType"

 role="Inventory"/>

 <variable name="seller-channel-for-inventory"

 channelType="inventoryCheckResponseCHT"/>

 </variableDefinitions>

<!-- When purchaseOrderDocAtSeller is available at seller,

this workunit is enabled. -->

<workunit name="purcaseDocAvailibility"

guard="purchaseOrderDocAtSeller">

<interaction name="inventoryCheck"

 channel="inventory-channel"

 operation="inventoryCredit"

 messageContentType="purchaseOrderDocType"

 initiateChoreography="true">

 <participate relationship="SellerInventoryBinding"

fromRole="Seller"

toRole="Inventory"/>

 <align variable="inventoryRequestDoc"

 with-variable="inventoryRequestDoc"/>

</interaction>

<interaction name="inventoryResponse"

 channel="seller-channel-for-inventory"

 operation="inventoryResponse"

 messageContentType="purchaseOrderDocType">

 <participate relationship="SellerInventoryBinding"

fromRole="Inventory"

toRole="Seller"/>

 <align variable="inventoryResponseDocAtInventory"

 with-variable="inventoryResponseDocAtSeller"/>

</interaction>

</workunit>

</choreography>

</workunit>

</choreography>

</package>

4 Language Elements

This section describes the WS-CDL language constructs in detail. We first introduce some principles and notions that apply to all or most of the language elements.

4.1 Choreography Document Structure

A WS-CDL document is simply a set of definitions. The WS-CDL definitions are named constructs that can be referenced. There is a package element at the root, and individual Choreography type definitions inside.

4.1.1 Choreography document Naming and Linking

WS-CDL documents can be assigned an optional name attribute of type NCNAME that serves as a lightweight form of documentation. Optionally, a targetNamespace attribute of type URI may be specified. The URI MUST NOT be a relative URI. A reference to a definition is made using a QName. Each definition type has its own name scope. Names within a name scope MUST be unique within a WS-CDL document. The resolution of QNames in WS-CDL is similar to the resolution of QNames described by the XML Schemas specification [11].

4.1.2 Language Extensibility and Binding

If desired to extend the WS-CDL language, this specification allows inside a WS-CDL document the use of extensibility elements and/or attributes defined in other XML namespaces.

Extensibility elements MUST use an XML namespace different from that of WS-CDL. All extension namespaces used in a WS-CDL document MUST be declared. An extension namespace is declared by using the following syntax:

 <extension namespace="anyURI"/>*

Extensions MUST NOT change the semantics of any element or attribute from the WSCDL namespace.

4.1.3 Semantics

Within a WS-CDL document, descriptions will be required to allow the recording of semantics definitions. The optional description sub-element is used as a textual description for documentation purposes. This attribute is allowed inside any WS-CDL language element.

The information provided by the description attribute will allow for the recording of semantics in any or all of the following ways:

· Text. This will be in plain text or possibly HTML and should be brief.

· Document Reference. This will contain a URL to a document that more fully describes the component. For example on the top level Choreography Definition that might reference a complete paper

· Structured Attributes. This will contain machine processable definitions in languages such as RDF or OWL.

Descriptions that are Text or Document References can be defined in multiple different human readable languages.

WS-CDL uses the optional name attribute for providing a name that can be used to reference some language constructs. This attribute is used inside some WS-CDL language elements. Language construct definitions MUST have distinct names.

4.2 Choreography Package
The package construct allows aggregating a set of business related collaborations, where the elements informationType, tokenType, tokenLocator, roleType, relationshipType and channelType are shared by all choreographies.

The targetNamespace attribute provides the namespace associated with all definitions contained in this Package. Choreography definitions imported to this Package may be associated with other namespaces. The top-level attributes name, author, version, and description define authoring properties of the Choreography document.

A WS-CDL package contains a set of one or more Choreographies and a set of one or more collaboration type definitions, allowing the various types whose use may be wider than a single Choreography to be defined once. The collaboration Package contains:
· One or more Information Types

· One or more Token types and Token Locators

· One or more Role types

· One or more Relationship types

· One or more Channel types

· One or more Interaction types

· Zero or more, package-level Choreographies

The syntax of this construct is:

 <package

 name="ncname"

 author=”xsd:string”?

 version=”xsd:string”

 description=”xsd:string”?

 targetNamespace="uri"

 xmlns=”http://www.w3.org/ws/choreography/2004/02/WSCDL/”>

 importDefinitions+

 informationType+

 token+

 tokenLocator+

 role+

 relationship+

 participant+

 channelType+

 ChoreographyNotation*

 </package>

4.2.1 Importing definitions
The importDefinitions notation allows reusing Choreography types defined in another Choreography document such as Token types, Token Locator types, Information Types, Role types, Relationship types, Channel types, Choreographies.

In addition, WSDL documents can be imported and their definitions reused.

The syntax of this construct is:

 <importDefinitions>

 <import namespace="uri" location=”uri” />+

 </importDefinitions>

The namespace and location attributes provide the namespace names and document location that contain additional Choreography definitions that MUST be imported into this Package.
4.3 Roles

A Role identifies a set of related behaviors.

The role construct allows the definition of the observable behavior, in terms of the observable operations a participant MUST provide.

A role is associated with one process type and one or more Web Service interface types.

The syntax of this construct is:
 <role name="ncname"

 processType="qname"? >

 <behavior name="ncname"

 interface="qname"? />+

 </role>

The role element defines an optional processType attribute, which identifies the process type a participant implements. The behavior element defines an optional interface attribute, which identifies a WSDL interface type the process exhibits.

A role that defines a behavior without an interface describes a simple client role without any Web Service interface, i.e. it never acts as an accepting role in a relationship.

4.4 Participants
A Participant identifies a set of related Roles.

The syntax of this construct is:
 <participant name="ncname">

 <role type="ncname" behavior="ncname"? />+

 </participant>

4.5 Relationships

A Relationship is the association of two Roles.

The relationship construct allows the definition of the observable behavior that two collaborating participants are mutually agreeing to exhibit.

The syntax of this construct is:
 <relationship name="ncname">

 <role type="ncname" behavior="ncname"? />

 <role type="ncname" behavior="ncname"? />

 </relationship>

A relationship has two role types defined.

The optional behavior attribute points to a behavior type within the role type specified by the type attribute of the role element.

4.6 Channels

A Channel Type facilitates the collaboration between two Participants. A Channel identifies where and how to send/receive information to/into a Role.

Additionally, it identifies what is the allowed Channel information that can be passed from a Role to another Role and the usage of a Channel within each participant.

The channelType construct defines a collaboration point, used for communication and synchronization between participants.

The syntax of this construct is:
 <channelType name="ncname"

 usage=“once”|”unlimited”

 viewpoint=“common”|”participant”?

 action=“request”|”receive”|”respond” >
 <channelDefinitions>?
 <channel type=”ncname”

 action=“request”|”receive”|”respond”
 new=”true”|”false” >+

 </channelDefinitions>

 <role type="ncname" behavior="ncname"? />

 <reference>

 <token name="ncname"/>+

 </reference>

 <identity>

 <token name="ncname"/>+

 </identity>*

 </channelType>

The content varies depending on the type of the choreography:

	Choreography Type
	Channel

	Abstract
	In an Abstract Choreography, the Channel Type is described by:

· A unique identifier, e.g. a URI that identifies the Channel Type within the Role

· A semantic definition, that describes the type of channel information that the Channel can accept. Including:

· What channel information can be passed using this channel type

· How a channel should be used

	Portable
	In a Portable Choreography, the abstract Channel Type is extended by identifying:

· One or more WSDL Service Interfaces that collectively implement the channel type.

· How Correlation of the messages sent using the Channel Type is to be done

	Concrete
	Channel Types in a Concrete Choreography are defined in the same way as for a Portable Choreography.

The element usage is used to restrict the number of times a channel can be used within a Choreography.

The optional element channelDefinitions prescribes the channel(s) allowed to be exchanged from one Role to another Role, when using this Channel in an interaction. In the case where the operation used to exchange the Channel is of request-response type, then the attribute direction within the channelDefinitions element defines if the Channel will be exchanged during the request or during the response. The Channels exchanged can be used in subsequent interaction activities. If the element channelDefinitions is missing then this Channel can only be used for exchanging business documents.

The element role is used to statically identify the collaboration point.

The element reference MAY be used for identifying the WSDL service reference type of a participant. The service type of a participant is distinguished by a set of Token types as specified by the token element within the reference element.
The optional element identity MAY be used for identifying an instance of a business process implementing a participant’s role and for identifying a logical conversation (group of related message exchanges) between participants within a Choreography. The business process type within a participant and the different conversations between participants are distinguished by a set of Token types as specified by the token element within the identity element.
4.7 Information Types

Information Types describe the type of information that is being captured within a Variable at a Role.

The syntax of this construct is:

 <informationType name="ncname"
 messageType="qname"?

 type=”qname”? element=”qname”? />

The type of information that is referenced will vary depending on the type of the Choreography and the type of information that the variable contains.

	Choreography Type
	Information Type

	Abstract
	In an Abstract Choreography, the Information Type is described by:

· A unique identifier, e.g. a URI, that identifies the information Type and

· A semantic definition that explains the purpose of the information Type and outlines its content.

No detail is provided of the actual type, e.g. XSD definitions

	Portable
	In a Portable Choreography the Information Type extends the Abstract Information Type by defining its XML Schema Type. Note that this may be simple or complex depending on the need.

	Concrete
	In a Concrete Choreography, Information Type is defined in the same way as for a Portable Choreography

The informationType construct specifies the type of information used within a Choreography. The attributes messageType, type, and element describe the document to be a WSDL message type, an XML Schema simple type, or an XML Schema element respectively. The document is of one of these types exclusively.

4.8 Tokens and Token Locators

4.8.1 Tokens

A Token is an alias for a piece of data in a variable or message that needs to be used by a Choreography.

The syntax of this construct is:
 <token name="ncname" informationType="qname" />

The token construct describes the naming and typing of document fragments. The named fragments are called Token types.

The way these tokens are defined will vary depending on the type of choreography.

	Choreography Type
	Tokens

	Abstract
	In an abstract choreography, tokens are described by:

· A unique identifier, e.g. a URI that identifies the token

· A semantic definition, that describes what the token means

However Abstract tokens do not have a type.

	Portable
	In a portable choreography, a token extends an Abstract definition of a token by defining:

· Its type, e.g. by giving it an XML Schema type

· A reference to the location of the item, for example using an XML Path expression

	Concrete
	Tokens in a Concrete Choreography are defined in the same way as for a Portable Choreography.

The attribute informationType identifies the type of the document fragment.

4.8.2 Token Locators

The tokenLocator construct defines a locator for selecting a document fragment within a document as a token using the part and the query attributes.

The syntax of this construct is:
 <tokenLocator tokenName="qname"

 informationType="qname"

 part="ncname"?

 query="XPath-expression" />

The attribute tokenName identifies the name of the token type that the locator is associated with.

The attribute informationType identifies the type on which the query is performed to locate the token.

The optional attribute part identifies the part of the document, if any, on which the query is performed to locate the token.

The attribute query defines the query string that is used to select a document fragment within a document.

4.9 Variables

Variables capture information about objects in a Choreography.

The variableDefinitions is used for declaring one or more variables within a Choreography block. The location of the variableDefinitions within a Choreography defines the visibility of the variable information.

The syntax is as follows:
 <variableDefinitions>

 <variable name="ncname"

 informationType=”ncname”?
 channelType="ncname"?

 mutable=”true|false”

 free=”true|false”

 observable=”true|false”

 role="ncname"? />+
 </variableDefinitions>

The declared variables can be of the following types:

· Information Exchange Variables, State Variables. The attribute informationType describes the type of the variable.
· Channel Variables: The attribute channelType describes the type of the Channel.

The way Variables are declared will vary depending on the type of choreography.
	Choreography Type
	Variables

	Abstract
	In an abstract choreography, variables are described by:

· An Role name that identifies the role within which the variable is known

· A name that identifies the variable, that is unique within the Role within the Choreography Definition

· A semantic definition, that describes what the variable means

	Portable
	In a portable choreography, the abstract definition of the Variables is extended to include a Information Type, which define what type of information the variable contains

	Concrete
	Variables in a Concrete Choreography are defined in the same way as for a Portable Choreography.

The attribute mutable, when set to “false” describes that the variable information when initialized, cannot change anymore. The attribute observable, when set to “false” describes that the method of the variable information initialization with an actual value is not of relevance to other participants. The element role is used to specify where variable information resides.
4.9.1 Expressions

Expressions are used in a assign activity to create new variable information by generating it from a constant value.

Predicate expressions are used in a Work Unit to specify its guard condition.

The language used in WS-CDL for specifying expressions and query or conditional predicates is XPath 1.0.
4.10 Choreography Definition

The choreography construct allows specifying compositions of Web Service participants by asserting their common observable behaviors where computation progress occurs by exchanging messages in a predetermined order.

The ChoreographyNotation is as follows:

Define a root or a base Choreography. A base Choreography MAY be enclosed within another Choreography using the other type of ChoreographyNotation.
The syntax of this construct is:
 <choreography name="ncname"

 complete=“xsd:boolean XPath-expression”?

 root=”true”|”false”?>

 ChoreographyNotation*

 <relationship type="ncname">+
 variableDefinitions?

 <select>

 WorkUnitNotation+

 </select>*

 WorkUnitNotation+

 <exception name="ncname">

 WorkUnitNotation+

 </exception>?

 <finalization name="ncname">

 WorkUnitNotation

 </finalization>?

 </choreography>

The complete attribute allows to explicitly complete a Choreography.

The ChoreographyNotation within the choreography element declares the Choreographies that MAY be used through a perform activity within this Choreography.

The relationship element within the choreography element enumerates the relationships this Choreography MAY participate in.

The variableDefinitions element enumerates the variable information holders, shared between roles within this Choreography and all its enclosed activities.

The root element marks a base Choreography as the root Choreography of a Package.
A Choreography MUST have one or more Work Unit Notations.

A Choreography MAY have one or more workunit elements within a Select group. The element select allows specifying Work Units belonging to a Select group. When a workunit matches in a Select group then all other Work Units belonging to the same Select group are disabled.

A Choreography MAY define a recovery block. One or more Exception WorkUnits MAY be defined as part of the Choreography to recover from exceptional conditions that may occur in that enclosing Choreography. Additionally one Finalization WorkUnit MAY be defined as part of the Choreography to provide the finalization activities for that enclosing Choreography.

4.10.1 WorkUnit

Within a Choreography, a workunit expresses interest on variable information before enabling its enclosed activities identified by the Activity notation.

The WorkUnitNotation is defined as follows:

 <workunit name="ncname"

 guard=“xsd:boolean XPath-expression”?

 repeat=“xsd:boolean XPath-expression”? >

 ActivityNotation

 </workunit>+

The guard attribute describes the interest on the availability of one or more, existing or future variable information. If a guard is not specified then the workunit always matches and the activities enclosed within the workunit are enabled. When the variable information specified by a guard become available and the guard condition (which references the matched variable) evaluates to true, then the workunit matches and the activities enclosed within the workunit are enabled.

The repeat attribute allows, when the condition it specifies evaluates to true, to make the current Work Unit considered again for matching (based on the guard condition attribute).

4.11 Activities Definition

An ActivityNotation is a ChoreographyNotation, a ControlNotation or a Basic activity.

4.11.1 Control Structure
A Control structure contains one or more activities that are all enabled in parallel, in sequence or when a condition evaluates to true.

The ControlNotation is as follows:

4.11.1.1 Sequence
A Control structure contains two or more activities that are enabled when the sequence activity is enabled. The sequence element restricts the series of enclosed activities to be enabled sequentially.

The syntax of this construct is:

 <sequence>

 ActivityNotation+

 </sequence>

4.11.1.2 Parallel

A Control structure contains two or more activities that are enabled when the parallel activity is enabled. The parallel element allows all enclosed activities to be enabled concurrently.

The syntax of this construct is:
 <parallel>

 ActivityNotation+

 </parallel>

4.11.1.3 Choice
A Control structure contains one or more activities from which one is enabled when the condition specified by the predicate attribute of the choice-branch element evaluates to true.

The syntax of this construct is:
 <choice>

 <choice-branch name="ncname"?

 predicate=“xsd:boolean XPath-expression”? >

 ActivityNotation

 </choice-branch>+

 </choice>
4.11.2 Basic activities

4.11.2.1 Perform activity
The perform activivity allows composing recursive Choreographies to form new Choreographies. Within the perform element the choreographyName references a base, non-root Choreography defined in the same or in a different collaboration Package.
The syntax of this construct is:
 <perform choreographyName=”qname”>

 <alias>

 <this variable=“ncname”/>

 <free variable="ncname"/>

 </alias>+

 </perform>

4.11.2.2 Interaction activity
A WS-CDL interaction always involves the exchange of information between two Roles in a Relationship.

The syntax of this construct is:
 <interaction

 channel="ncname"

 operation="ncname"

 time-to-complete="xsd:duration"

 initiateChoreography="true"|"false">

 <participate relationship=”ncname”

 fromRole="ncname"

 toRole="ncname" />

 <exchange

 messageContentType="qname"

 viewpoint=“common”|”participant”?

 align=“true”|”false”?

 action=“request”|”receive”|”respond” >

 <use name=“ncname”/>?

 <populate name="ncname"/>?

 </exchange>

 <record

 viewpoint=“common”|”participant”?

 align=“true”|”false”?

 action=“request”|”receive”|”respond” >

 <fromRole name="ncname"
 informationType="qname">

 <source name=“ncname”/> |

 <source expression=“XPath-expression”/>

 <target name="ncname"

 predicate=“xsd:boolean XPath-expression”? />

 </fromRole>?

 <toRole name="ncname"
 informationType="qname">

 <source name=“ncname”/> |

 <source expression=“XPath-expression”/>

 <target name="ncname"

 predicate=“xsd:boolean XPath-expression”? />

 </toRole>?

 </record>*

 </interaction>

The interaction construct allows a Role to interact with another Role by requesting an observable operation offered by that Role. The interaction materializes when a requester Role sends variable information and an accepter Role simultaneously receives the variable information through a shared Channel as described by the channel attribute.

This means an Interaction can be one of two types:

· A One-Way Interaction that involves the sending of single message,

· A Request-Response Interaction when two messages are exchanged.

An Interaction also contains “references” to:

· The From Role and To Role that are involved

· The Message Content Type that is being exchanged

· The Information Exchange Variables at the From Role and To Role that are the source and destination for the Message Content

· The Channel Variable that specifies the interface and other data that describe where and how the message is to be sent

· The Operation that specifies what the recipient of the message should do with the message when it is received

· A list of potential States Changes that can occur and may be aligned at the From Role and the To Role as a result of carrying out the Interaction.

The attribute operation specifies a one-way or a request-response WSDL 1.2 operation.

An interaction activity can be marked as a Choreography initiator when the initiateChoreography attribute is set to “true”.

Within the participate element, the relationship attribute specifies the Relationship this Choreography participates in and the fromRole and toRole attributes specify the requesting and the accepting Roles respectively.

The time-to-complete attribute identifies the time an interaction MUST take to complete.

Within an Interaction, a Role needs to have a common understanding of the state changes of one or more State Variables that are complimentary to one or more State Variables of its partner Role. Additionally within an Interaction, a Role needs to have a common understanding of the values of the Information Exchange Variables at the partner Role. The optional align element with the variable and with-variable attributes, specifies the shared variable information that MUST be atomically aligned and made available to the two interacting participants, as specified by the fromRole and toRole attributes and the relationship attribute within the participate element, when the interaction activity completes normally. In the case where the operation is of request-response type, then the attribute direction within the align element defines if the Channel will be aligned during the request or during the response.
4.11.2.2.1 Interaction Roles

Interactions always have a “direction” in that there is a From Role that sends the original message and a To Role that receives the message. In the case of a request/response MEP, the “To Role” will also send a response message back to the “From Role”.

4.11.2.2.2 Interaction Message Content

Message Content identifies the type of information that is exchanged between the roles and the Information Exchange Variables used as follows:

· One Way From Message is the variable that is the source for a One-Way Message at the From Role
· One Way To Message is the variable that is the destination for a One-Way Message at the To Role
· Request From Message is the variable that is the source for Request Message at the From Role
· Request To Message is the variable that is the destination for Request Message at the To Role
· Response To Message is the variable that is the source for Response Message at the To Role
· Response From Message is the variable that is the destination for Response Message at the From Role
The type of information that is referenced will vary depending on the type of the Choreography.

	Choreography Type
	Message Content

	Abstract
	In an Abstract Choreography, the message content that is exchanged is described by:

· A unique identifier, e.g. a URI, that identifies the message content and

· A semantic definition that explains the purpose of the message and outlines its content.

No detail is provided of the actual message content, e.g. XSD definitions

	Portable
	In a Portable Choreography, the Abstract definition of Message Content is extended to include a WSDL Message Type or an XSD element type

	Concrete
	In a Concrete Choreography, Message Content is defined in the same way as for a Portable Choreography

4.11.2.2.3 Interaction Channel Variables

A Channel Variable contains information on where and how to send information to a specific instance of the To Role. This is because Concrete Channel information plus Correlation information about a Choreography contains sufficient information to identify how to send messages to a specific instance of a process.

Additionally, Channel Variable information can be passed within Message Content. This allows the destination for messages in a choreography to be determined dynamically.

For example, a Buyer could specify Channel information to be used for sending delivery information. The Buyer could then send the Channel information to the Seller who then forwards it to the Shipper. The Shipper could then send delivery information directly to the Buyer using the Channel Information originally supplied by the Buyer.

The content varies depending on the type of the choreography.

	Choreography Type
	Channel

	Abstract
	In an Abstract Choreography, the channel is described by:

· A unique identifier, e.g. a URI that identifies the Channel within the Role

· A semantic definition, that describes the type of channel information that the Channel can accept

	Portable
	In a Portable Choreography, the abstract channel is extended by identifying its Channel Type, which defines what type of information the variable contains.

	Concrete
	In a concrete choreography, the channel extends a portable channel by adding end point information for each interface such as complex Service References or simple URIs, digital certificates etc.

At run time, information about a channel variable is expanded further. This requires that the messages in the Choreography also contain Correlation information, for example by including:

· A SOAP header that specifies the correlation data to be used with the Channel, or

· Using the actual value of data within a message, for example the Order Number of the Order that is common to all the messages sent over the Channel

In practice, when a Choreography is performed, several different ways of doing correlation may be employed which vary depending on the Channel Type.

4.11.2.2.4 Interaction Operations

An Operation specifies the particular part of an interface that is the target for a message.

The content varies depending on the type of choreography.

	Choreography Type
	Interaction

	Abstract
	In an abstract choreography, an operation is described by a unique name within the Interface within the Channel

	Portable
	In a portable choreography, an operation is described referencing a WSDL one-way or request-response Operation

	Concrete
	Same as portable.

4.11.2.3 Assign activity
The assign construct makes the variable value available to a participant using the use element, when the condition specified by the predicate attribute evaluates to true and the assign activity completes normally.

The syntax of this construct is:
 <assign>

 <copy>

 <source variable=“ncname”/> |

 <source expression=“XPath-expression”/>

 <target variable="ncname"

 predicate=“xsd:boolean XPath-expression”? />

 </copy>+

 </assign>

4.11.2.4 Noaction activity

The noaction construct allows the Choreography to perform an action that has no business effect on any participant.

The syntax of this construct is:
 <noaction/>

4.11.2.5 Finalize activity

The finalize construct allows issuing a finalization command from a parent Choreography to the Finalization WorkUnit of an enclosed Choreography as identified by the choreography-name attribute.

The syntax of this construct is:

 <finalize choreographyName=”qname” />

5. Relationship with the Security framework

Because messages can have consequences in the real world, the collaboration participants will impose security requirements on the message exchanges. Many of these requirements can be satisfied by the use of WS-Security [24].

6. Relationship with the Reliable Messaging framework
The WS-Reliability specification [22] provides a reliable mechanism to exchange business documents among collaborating participants. The WS-Reliability specification prescribes the formats for all messages exchanged without placing any restrictions on the content of the encapsulated business documents. The WS-Reliability specification supports one-way and request/response message exchange patterns, over various transport protocols (examples are HTTP/S, FTP, SMTP, etc.). The WS-Reliability specification supports sequencing of messages and guaranteed, exactly once delivery. A violation of any of these consistency guarantees results in an error condition, reflected in the Choreography as an interaction fault.
Using WS-CDL, two Web Service participants make progress by interacting. After they interaction, both participants progress at the same time, in a lock-step fashion. The variable information alignment comes from the fact that the requesting participant has to know that the accepting participant has received the message and the other way around, the accepting participant has to know that the requesting participant has sent the message before both of them progress. There is no intermediate variable, where one participant sends a message and then it proceeds independently or the other participant receives a message and then it proceeds independently.

Implementing this type of handshaking in a distributed system requires support from a WS- Reliability protocol, where agreement among participants can be reached even in the case of failures and loss of messages.
7. Relationship with the Transaction/Coordination framework

8. Acknowledgments
9. References
[1] S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels", RFC 2119, Harvard University, March 1997

[2] T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI): Generic Syntax", RFC 2396, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998.

[3] http://www.w3.org/TR/html401/interaction/forms.html#submit-format

[4] http://www.w3.org/TR/html401/appendix/notes.html#ampersands-in-uris

[5] http://www.w3.org/TR/html401/interaction/forms.html#h-17.13.4

[6] Simple Object Access Protocol (SOAP) 1.1 "http://www.w3.org/TR/2000/NOTE-SOAP-20000508/"

[7] Web Services Definition Language (WSDL) 1.2

[8] Industry Initiative "Universal Description, Discovery and Integration"

[9] W3C Recommendation "The XML Specification"

[10] XML-Namespaces " Namespaces in XML, Tim Bray et al., eds., W3C, January 1999"

http://www.w3.org/TR/REC-xml-names

[11] W3C Working Draft "XML Schema Part 1: Structures". This is work in progress.

[12] W3C Working Draft "XML Schema Part 2: Datatypes". This is work in progress.

[13] W3C Recommendation "XML Path Language (XPath) Version 1.0”

[14] "Uniform Resource Identifiers (URI): Generic Syntax," RFC 2396, T. Berners-Lee, R. Fielding, L. Masinter, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998.

[15] WSCI: Web Services Choreography Interface 1.0, A.Arkin et.al

[16] XLANG: Web Services for Business Process Design

[17] WSFL: Web Service Flow Language 1.0

[18] BPEL: Business Process Execution Language 1.1

[19] BPML: Business Process Modeling Language 1.0

[20] XPDL: XML Processing Description Language 1.0

[21] WS-CAF: Web Services Context, Coordination and Transaction Framework 1.0

[22] Web Services Reliability 1.0

[23] The Java Language Specification

[24] Web Services Security

[25] J2EE: Java 2 Platform, Enterprise Edition, Sun Microsystems
A. WS-CDL XSD Schemas

B. WS-CDL Supplied Functions

Context

Integration

Quality�of Service

Discovery

Description

Messaging

Transport

Business Collaboration Language:

Choreography Description Language

Coordination

Transactions

Security

Business Process Languages:

BPEL, XPDL, BPML

Reliable Messaging

UDDI

WSDL

SOAP

XML,Encoding

HTTP, BEEP,IIOP, JMS, SMTP

�PAGE \# "'Page: '#'�'" �� It would be most helpful if some examples were provided. I presume that WS-CAF is one example that would fit the bill so listing some examples would help clarify.

�PAGE \# "'Page: '#'�'" �� I’m afraid the colour scheme and shadows on the diagram make it hard to read. It would be better to have a muted colour scheme with black text and no shading.

�PAGE \# "'Page: '#'�'" �� The use of the term complementary appears to be significant and yet is never described (I think). Can you provide a clear and precise definition of what it means?

�PAGE \# "'Page: '#'�'" �� The Choreo GUI bit need tidying up on the diagram as the WS-CDL is lost on my version.

�PAGE \# "'Page: '#'�'" �� I’m a bit worried abou this being very restrictive. When the term “synchronized” is used in this way it appears mandatory rather than optional.

�PAGE \# "'Page: '#'�'" �� Might be a good idea to define observable and how it applies to state, exchange of information and so on. If this was done earlier on then these terms could loose their “observable” prefix.

�PAGE \# "'Page: '#'�'" �� The notion of a collaboration type is, I think, not defined and so needs a precise defintion of what it is.

�PAGE \# "'Page: '#'�'" �� I see this as a binding and not a concrete choreography. I would rather, as I think we agreed at the F2F, rename the conceret choreography as a binding and adjust everything accordingly

�PAGE \# "'Page: '#'�'" �� Question: Can the additional information about usage and type be used to check for liveness properties. It seems to me that it has this benefit.

�PAGE \# "'Page: '#'�'" �� This makes it well suited to protocols such as FIXML, SWIFT, TWIST and fpML since they are not based on WSDL at this point.

�PAGE \# "'Page: '#'�'" �� This would seem very useful for skeleton generation. Would that be correct?

�PAGE \# "'Page: '#'�'" �� As above.

�PAGE \# "'Page: '#'�'" �� Confusing as to what is a root and what is an iniator. In particular a bit confusing when you get to the bit that says you can have multiple choreographies that can initiate and yet here the implication is one. Can you make it clearer what is meant by a root choreography as distinguished from a choreography that can be an initiator?

�PAGE \# "'Page: '#'�'" �� Does this mean that exceptional behaviour is defined at the workunit level and not at the interact level?

�PAGE \# "'Page: '#'�'" �� From the description it looks like you don’t have much integration to do. Just reference the appropriate choreographies and go. This doesn’t sound as if it is the case. So my comment is that this needs to be made little more explicit like “adding the appropriate channel and state variables to allow them to work together correctly”. Or perhaps I am missing something? I would have though you need at least a line that checks the exit/termination state of one because the other is dependent on it.

�PAGE \# "'Page: '#'�'" �� How is an interaction failure, as described above, different to a timeout? And how is such an interaction failure observed?

�PAGE \# "'Page: '#'�'" �� I really don’t understand what “refined mechanism” means. Could you clarify?

PAGE
26

