Initial Thoughts on WSDL2.0 LC101

Caveats:
1. Here are my initial thoughts about a few ways the group may consider to address LC 101. The alternatives listed here are more intended as food of thought, are not meant to be exclusive.
2. In this message, I only focus on wsdl2.0 core. Changes to soap and http binding extensions is pending on the conclusion of the discussion around DavidO's proposals for SOAP MEPs (see [3]) and Greg's slides (see [4]), for example, for soap binding extension, we MAY need to push binding operation@mep to message/fault reference level for some bindings . If we can agree on the general direction on changes to wsdl2.0 core, hopefully it will be easier to scope the binding extension discussion.
3. For those who are already familiar with Greg's slides [4] which use WSDL1.1 examples, note the binding level syntax change from wsdl1.1 to wsdl2.0. In particular,
- wsdl11:binding@type reference the portype whereas wsdl20:binding@type identifies the binding type in use, such as soap11 binding, http binding, etc.
- wsdl11 soap:binding@transport == wsdl20:binding@wsoap:protocol

A USE CASE

Let's start with an example - a (simplified) ExpenseReport service.

The service has two operations: submitExpense, and logExpense

The submitExpense operation takes an XML document as input which contains all the expense data. Depending on the total amount of the expense, the service's response will vary. If the amount is under $100, the service approves the expense automatically, sends a confirmation message and reimburses the user's bank account. If the amount is more than $100, the service will forward the request to a manager for review and notify the user some times later when the decision to approve or decline has been made.

The logExpense operation simply sends a one way message to a logging service every time an expense is approved.

The interface can be easily described using the WSDL 20 in-out mep (irrelevant constructs ignored):

<description ...>

 <types>
 <xs:schema ...>

 <xs:element name="expenseRequest" >
 <xs:complexType ...> ... </xs:complexType>
 </xs:element>

 <xs:element name = "expenseResponse">
 <xs:complexType>
 <xs:choice>
 <xs:element ref = "tns:ApprovalConfirmation"/>
 <!-- an immediate approval message for amount under $100 -->
 <xs:element ref = "tns:ManagerDecision"/>
 <!-- manager decision is required for amount above $100 -->
 <xs:choice>
 </xs:complexType>
 </xs:element>
 ...
 </xs:schema>
 <xs:element name="expenseLog" >
 <xs:complexType ...> ... </xs:complexType>
 </xs:element>
 </types>

 <interface name = "expenseReport" >

 <operation name="submitExpense"
 pattern="http://www.w3.org/2004/03/WSDL/in-out" >
 <input messageLabel="In"
 element="tns:expenseRequest" />
 <output messageLabel="Out"
 element="tns:expenseResponse" />
 </operation>

 <operation name="logExpense"
 pattern="http://www.w3.org/2004/03/WSDL/out" >
 <output messageLabel="Out"
 element="tns:expenseLog" />
 </operation>
 ...
 </interface>

</description>

For discussion purposes, let's say the expense request will always be SOAP over HTTP. The response message will be carried in a SOAP envelop over HTTP when the amount is under $100 and the request is immediately approved. Otherwise, the response will be sent over SMTP at a later time. The log message will always be sent out via HTTP POST.

Note that in this example, the MEPs of the two operations use different binding types and different transport protocols, which makes sense because the two operations are targeting different clients. See [1] for DavidB's post on the "Meaning of a WSDL document" which clarifies that a WSDL is not only for one particular client, but all potential clients of a service. Also note the input and output messages of the submitExpense operation use different binding types and protocols based on its business requirements.

IMPACTS ON WSDL2.0 CORE

This use case posts a few challenges to the current WSDL2.0 design. Per status quo, the binding type and protocol can only be defined in the binding level. Without defining proprietary extensions, the following is probably the best one can do:

 <binding name="expenseReportBinding"
 interface="tns:expenseReport"
 type="what would be the value here?"
 wsoap:protocol="since the two operations both use http as the underlying protocol (well, partially for the first operation), should wsoap:protocol be used at all at this level?">

 <operation ref="tns:submitExpense"
 wsoap:???="since the two messages of this operation may use different binding type and protocol, anything can be reused from soap binding or a totally new binding has to be defined ?"/>

 <operation ref="tns:logExpense"
 http:???="how to indicate the binding type for this operation is http post"/>

</binding>

The key questions we need to answer are - Should WSDL2.0 allow the expense report use case? if so, how the binding can be defined in WSDL2.0 per the above requirements? In particular, what values should be provided at the binding level for the REQUIRED properties binding@type ? how to specify that the two operations using different binding? how to specify that the two messages of an operation use different protocols? The WSDL2.0 spec (part 1 and part 3) does not have a clear answer for these questions at all.

Below is a few ways (not meant to be inclusive, other options are possible) we may consider.

Since the problem is caused by the two or more operations of a single interface use different bindings, we can either fix it in the binding level, or in the interface level.

Option 1: change interface specification so that an interface can only contain operations that use same binding type
In the interface level, if we clearly limit that an interface can only contain operations that use same binding type, the conflicting binding@type problem goes away. In the expenseReport case, two interfaces must be defined, one for submitting expense report, one for logging expense, then at binding level we don't have to worry about conflicting values for @type. Such limitation of interface may be more reasonable than it appears to be - if we think about in reality how many interface will contain operations that use different binding types, I would say it's definitely in the 20 side of 80/20 case.

if we add the above limitation, the definition of the expense report service may look like:

<description ... >
...
 <interface name = "expenseReport" >

 <operation name="submitExpense"
 pattern="http://www.w3.org/2004/03/WSDL/in-out" >
 <input messageLabel="In"
 element="tns:expenseRequest" />
 <output messageLabel="Out"
 element="tns:expenseResponse" />
 </operation>

 </interface>

 <interface name = "expenseLog" ...>
 <operation name="logExpense"
 pattern="http://www.w3.org/2004/03/WSDL/out" >
 <output messageLabel="Out"
 element="tns:expenseLog" />
 </operation>
 ...
 </interface>
<binding name="expenseReportBinding" interface="expenseReport"
 type= " http://www.w3.org/@@@@/@@/wsdl/soap"
 wsoap:protocol= " http://www.w3.org/@@@@/@@/soap12/bindings/HTTP" .../>

 <operation ref="submitReport" wsoap:mep ="a new special soap mep and binding needs to be defined for the http-in-smtp-out situation"... >
 ...
 </operation>
</binding>

<binding name="expenseLogBinding" interface="expenseLog"
 type= " http://www.w3.org/@@@@/@@/wsdl/http " .../>

 <operation ref="logReport" http:method = "POST" ... >

 ...
 </operation>

 </binding>
 ...
</description>

However, this approach has a few downsides:
- it does come with a cost of blurring the abstraction layers of wsdl - abstract interfaces have to be designed based on binding requirements. In the case of the expenseReport service, the interface has to be re-designed to define meaningful bindings.
- it requires additional soap mep/binding to be defined

Option 2: Change binding specification to allow defining bindings for a subset of operations of an interface.
In the binding level, one may suggest that two bindings can be defined for the expenseReport interface, one for submitExpense, one for logExpense. then the binding@type problem can also be solved.
However, per part 1 section 2.9.1, "A Binding component which defines bindings for an Interface component MUST define bindings for all the operations of that Interface component. The bindings may occur via defaulting rules which allow one to specify default bindings for all operations (see, for example [WSDL 2.0 Bindings]) or by directly listing each Operation component of the Interface component and defining bindings for them. Thus, it is an error for a Binding component to not define bindings for all the Operation components of the Interface component for which the Binding component purportedly defines bindings for.", so defining multiple bindings for different operation of a single interface is disallowed unless we relax this constraint in section 2.9.1.

Option 3: Go back to the wsdl1.1 way and leave binding type specification to binding extensions
Change <binding name="xs:NCName" interface="xs:QName"? type="xs:anyURI" >
to <binding name="xs:NCName" interface="xs:QName"? >

This solution doesn't require the limitation on interface design as in option 1, nor requires changing mapping rules between interface and binding as in option 2. It works just as wsdl1.1 which gives the most flexibility to binding specifications. for example, creative use of soap binding extension constructs as shown in Greg's slide 12 becomes possible if we change the wsdl20 soap binding extensions appropriately.

However, this approach still requires proprietary bindings to be defined since not too much of the current soap and http binding extensions can be really re-used for the expense report use case.
Assuming some third party bindings are defined to accommodate the special situations of the expenseReport service, the binding definition may look like

 <binding name="expenseReportBinding"
 interface="tns:expenseReport">

 <operation ref="tns:submitExpense" ...
 myExt:type="http://example.com/mybinding1"/>
 myExt:mep="http://example.com/mymeps/http-in-smtp-out"/>

 <operation ref="tns:logExpense" ...
 whttp:type=" http://www.w3.org/@@@@/@@/wsdl/http " >
 myExt:mep="http://example.com/mymeps/http-out"/>

 </binding>

Note WSDL2.0 does NOT provide any guidance about how binding level meps should be defined, so the interoperability of such extensions are highly questionable

Option 4: Enhance the wsdl binding component model and add @protocol and @type properties to message/fault reference level
we can also add some construct to indicate asynchrony. The binding syntax can look like:

<binding name="xs:NCName" interface="xs:QName"?
 typeDefault="xs:anyURI"?
 protocolDefault="xs:anyURI"?
 ... >
 <documentation />?

 <fault ref="xs:QName" ...>
 <documentation />?
 </fault>*

 <operation ref="xs:QName" ..>
 <documentation />?

 <input messageLabel="xs:NCName"?
 type="xs:anyURI"?
 protocol="xs:anyURI"?
 ...>
 <documentation />?
 <feature ... />*
 <property ... />*
 </input>*

 <output messageLabel="xs:NCName"?
 type="xs:anyURI"?
 protocol="xs:anyURI"?
 whttp:shareConnection="xs:boolean"??
 ...>
 <!-- the optional @shareConnection can be used to indicate asynchrony. I don't claim to be an http expert, so will rely on real experts to validate this idea. If it's something practical, we need to clearly specify this property's validity. It is only valid when http is used for the operation, and it's only valid for non initial message in wsdl meps that contains multiple messages, for example, the out message in a wsdl in-out mep. In addition, we need to clearly specify what to do with the http response message and when shareConnection is set to false.-->
 <documentation />?
 <feature ... />*
 <property ... />*
 </output>*

 <infault
 type="xs:anyURI"?
 protocol="xs:anyURI"?

 ...>
 <documentation />?
 <feature ... />*
 <property ... />*
 </infault>*
 <outfault

 type="xs:anyURI"?
 protocol="xs:anyURI"?
 ...>
 <documentation />?
 <feature ... />*
 <property ... />*
 </outfault>*

 <feature ... />*
 <property ... />*
 </operation>*

 <feature ... />*
 <property ... />*

</binding>

The good thing about this approach is that wsdl core provides a very powerful expression power for binding types and protocols used by each message, and so it dramatically reduces the needs for defining proprietary binding meps . For example, the expenseReport use case can be easily supported by WSDL2.0 without having to heavily rely on proprietary binding extensions:

 <binding name="exenpseReportBinding" interface="expenseReport" ...>

 <operation ref="submitReport" ... >

 <input messageLabel="in"
 type= " http://www.w3.org/@@@@/@@/wsdl/soap"
 protocol= " http://www.w3.org/@@@@/@@/soap12/bindings/HTTP" .../>

 <output messageLabel="out"
 type= " http://www.w3.org/@@@@/@@/wsdl/soap"
 protocol= " http://www.w3.org/@@@@/@@/soap12/bindings/SMTP" .../>
 ...
 </operation>

 <operation ref="logReport" ... >

 <output messageLabel="out"
 type= " http://www.w3.org/@@@@/@@/wsdl/http "
 protocol= " http://www.w3.org/@@@@/@@/wsdl/http" .../>
 ...
 </operation>

 </binding>
IMPACTS on WSDL2.0 pre-defined binding extensions (SOAP and HTTP)

Depends on which option we want to go, the impacts on soap and http bindings are different. For example, answers may be different for questions about how asynchrony and one-way should be defined, whether message level @mep property is necessary, etc.

Thoughts?

[0]http://lists.w3.org/Archives/Public/www-ws-desc/2004Dec/0021.html
[1] http://lists.w3.org/Archives/Public/www-ws-desc/2004Dec/0024.html
[2] http://www.w3.org/TR/2004/WD-wsdl20-20040803/#Binding_details
[3] http://www.w3.org/2002/ws/addr/5/MEPsBindingsAddresses.ppt
[4] http://lists.w3.org/Archives/Public/public-ws-async-tf/2005Jan/0004.html
[5] http://www.w3.org/TR/2004/WD-wsdl20-bindings-20040803/#soap-binding
