
1

Dahl, Deborah A., “The W3C Multimodal Architecture and Interfaces Standard”. J. on Multimodal

Interfaces, Volume 7, Issue 3, November 2013 (published online April 13, 2013. ISSN: 1783-7677 (Print)

1783-8738 (Online)

The W3C Multimodal Architecture and

Interfaces Standard

Abstract: This paper describes the World Wide Web Consortium’s (W3C) Multimodal

Architecture and Interfaces (MMI Architecture) standard, an architecture and communications

protocol that enables a wide variety of independent modalities to be integrated into multimodal

applications. By encapsulating the functionalities of modality components and requiring all control

information to go through the Interaction Manager, the MMI Architecture simplifies integrating

components from multiple sources.

Keywords: Multimodal interaction, spoken dialog systems, multimodal

architectures, Extensible Multi-Modal Annotation (EMMA), multimodal systems

1. Overview

Computer-human interaction originally was based entirely on computer-friendly

and often difficult to use commands, which had to be mastered by anyone who

wanted to use a computer. More natural interaction became possible with the

advent of graphical user interfaces with WYSIWYG displays, which allowed

users to use pointing gestures in addition to typed commands. This is still the most

common computer-human interaction paradigm. But even in the earliest days of

computing [1], it was recognized that computer-human interaction would be

improved if the computer could interact with humans in the ways that humans are

used to using when they interact with each other. People naturally interact with

each other using a combination of spoken language, written language, gestures,

and touch, but making natural interaction possible between humans and

computers has proven to be much more difficult than expected. However, as

technologies such as speech recognition, natural language understanding and

gesture recognition become increasingly capable, it is becoming much more

feasible to build applications that support natural multimodal interaction through a

combination of human-friendly modalities.

2

2. Why a Standard Architecture?

While the component technologies of multimodal applications are very powerful,

they can also be very sophisticated and complex. This makes it very important to

have ways of orchestrating their interaction in systems that do not require

developers to master each individual modality technology. Consider how difficult

it would be to develop applications if each developer, or even each organization,

were required to learn such technologies as speech recognition, handwriting

recognition, face recognition and natural language understanding, all of which

might be used in a single application. In addition, with a standard architecture,

experts in specific technologies can develop standalone components that provide

specific services such as speech recognition or face recognition without having to

also master multimodal application development.

Not only is the set of possible modalities large, it is also continually increasing.

Displays, microphones, speakers, cameras, GPS, and accelerometers are nearly

always included with current smartphones and tablets. In addition to these

common input modalities, the number of hardware additions that can be plugged

into devices is also continuing to increase. Medical sensors for blood pressure,

heart rate and blood glucose levels are available, as well as environmental sensors

like temperature. Defining modality-specific ways of coupling together systems

that incorporate several modalities is clearing impractical. All this variety again

points to a strong need for a standard way of putting components together.

There is a large research literature on multimodal interaction, including technical

work on integrating modalities, for example, [2,3] as well as the human factors of

multimodal interaction [4]. In addition, there is a very large literature on

individual modalities. However, there have been very few attempts to define an

open, non-proprietary, multimodal architecture which can be used by any

organization or developer. One example is the Galaxy Communicator project

[3,5]; however that system was heavily focused on speech interaction rather than

multimodal interaction.

In order to provide an open architecture for multimodal development, and to make

the process of developing multimodal applications easier, the World Wide Web

Consortium (W3C) has defined a standard for multimodal applications -- the

Multimodal Architecture and Interfaces specification [6], based on the work of the

W3C Multimodal Interaction Working Group. The goal of the W3C Multimodal

3

Interaction Architecture (MMI Architecture) is to provide a way to coordinate

multiple modalities in a standard way, with standard methods of communication.

This enables multimodal applications to be built by developers who are not

necessarily expert in every modality that the application uses.

A second advantage of a standard multimodal architecture is that it promotes the

development of an ecosystem where companies with expertise in specific

modalities can develop reusable components for modalities in which they are

knowledgeable. These third-party components can subsequently be plugged into

full applications as components. Companies with multimodal application

development expertise can then take specific modality components as black boxes

and assemble them into applications.

It is important for a standard architecture to be as flexible as possible, in order to

accommodate new modalities and new ways of interacting. To that end, important

requirements include support for local as well as distributed applications, multi-

device applications, and multi-user applications.

This architecture is independent of specific application domains, but is

particularly suited for distributed applications that incorporate many modalities.

As the number of devices involved increases, it becomes increasingly important to

have a structured means of orchestrating their operation so that the overall system

is maintainable, extensible, and vendor-independent.

3. Related Work

While this work is focused on the overall integration of components into

multimodal systems, there is a great deal of complementary work on such topics

as platforms and scripting languages that support multimodal applications.

3.1. Platforms

Because multimodal interaction can take place in many different hardware and

software environments, it is also important for a multimodal architecture to be

platform-neutral. The most obvious platform is the World Wide Web, a

distributed platform where a browser runs locally on a computer or mobile device

and where the application interacts with one or more remote web servers.

However, the web is not by any means the only possible platform for multimodal

interaction. Standard desktop or laptop computer applications can also benefit

4

from multimodal applications. Another important platform is a home network,

where devices such as televisions, appliances, lights, and temperature control

interact over a Local Area Network. For example, the Digital Living Network

Alliance (www.dlna.org) has defined guidelines for using media devices in home

networks. Another emerging multimodal platform is the automobile, where voice

control and touchscreens are available. In addition, the automobile is also

emerging as a multi-device platform. The hands and eyes-busy nature of driving

make the car a natural place for multimodal interaction. Although originally

automobile systems were all self-contained, in recent years it has become possible

for user devices to connect to in-car systems, most notably the audio system,

making the car also a multi-device platform.

3.2. Scripting and Interaction Definition Languages

The W3C Multimodal Architecture does not specify the system’s behavior with

respect to the user, but rather defines system-internal behavior with respect to the

underlying communication among components. There are a number of scripting

languages which have been designed to define system behavior regarding the user,

and as such are very complementary to the MMI Architecture. For example,

SCXML [7] is a high-level language for defining state-based systems that

implement specific applications, which could include an interaction between a

user and an intelligent agent. Similarly, for voice applications, VoiceXML [8] is a

widely-adopted tool for specifying the flow of dialog in voice interactions.

Behavior Markup Language (BML) [9] is used to define the behaviors of

intelligent agents and the related Functional Markup Language (FML) [10] is used

to define what an agent wants to achieve, in terms of actions, goals, and plans.

Another markup language, Perception Markup Language (PML) [11] has been

defined for representing perceived non-verbal behaviors. Other markup languages

include MIML (Multimodal Interaction Markup Language) [12], a dialog description

language for dialogs between humans and interactive systems.

Depending on the interaction and modalities of interest, these languages or a

combination of these languages could be used to define the behavior of an MMI

Architecture Interaction Manager (see Section 5.2. below for a discussion of the

Interaction Manager).

http://www.dlna.org/

5

4. Components of a Multimodal System

At a high level, multimodal systems are typically based on architectures that

include the following components:

1) Modality components for processing any of an open-ended set of possible

specific input modalities such as speech, GUI input (pointing device), typed

input, camera input and electronic ink

2) Fusion components for integrating inputs from multiple modalities that

represent a unified user intent; for example speech combined with a pointing

gesture

3) Dialog or interaction managers that

a) use the fused multimodal inputs to determine the user’s intent

b) take into account the user’s intent, the interaction context, the task to be

performed and any relevant system information, determine the next step in

the interaction

4) Fission components that determine how to best present the interaction

manager’s response to the user – for example, whether to speak, display typed

input, or display graphics

5) Presentation components that present the system’s output to the user using a

combination of graphics, text, audio, or other forms of output as appropriate to

the application

5. Components of the Standard

The W3C Multimodal Architecture focuses on Modality Components (MC’s) for

input and presentation and on the Interaction Manager (IM) for coordinating the

MC’s and user interaction. Fusion and fission components can be conceptualized

as independent MC’s or as part of the IM. The MC’s and the IM are together

referred to as constituents.

Encapsulation is a central principle of the MMI Architecture. That is, the internal

workings of each constituent are not visible to the other constituents. All

communication is carried out through standard messages, called lifecycle events,

which may carry application- or modality-specific information as a payload. In

addition, messages are only sent between the IM and MC’s, never directly

between MC’s. This principle makes it possible for third-party modality

6

components to be developed independently of any one system. Fig. 1 shows an

example of the W3C MMI Architecture with an IM and multiple MC’s. It is

unlikely that any one system would include all of the MC’s shown, but they are

included to show the variety of possible MC’s in a multimodal system.

Fig. 1 the IM and MC's in the W3C Multimodal Architecture

5.1. Modality Components

MC’s commonly encapsulate modality-specific input capabilities such as speech

recognition or handwriting recognition, but they actually can have broader

functions. For example, MC’s can encapsulate multiple functionalities, but present

themselves to the IM as a single component. This is called a complex modality

component (discussed in more detail below), and is useful for tightly coupled

functionalities such as coordinating text to speech output with an avatar’s facial

expressions and lip movements. In many cases an input can also require

processing by multiple MC’s before the user’s intent is fully determined. For

example, a speech recognition MC could send its results back to the IM, which

then might in turn send the speech results to a natural language processing engine.

If, as is often the case, speech recognition and natural language processing are

tightly integrated, the speech recognition and natural language functionalities can

be combined into a complex MC which communicates with the IM as a single

component.

7

MC’s in the MMI Architecture can also encapsulate broader functionalities than

intentional user inputs such as speech and GUI actions. An example is the

biometric MC’s in Fig. 1. Identifying users through biometric properties for the

purposes of security and/or personalization is a natural part of many multimodal

applications. For this reason, it makes sense to include biometrics such as speaker

verification or face recognition components in multimodal systems as MC’s.

Sensor inputs such as medical and environmental sensors and geolocation devices

are also possible components of multimodal applications, and fit well into the

MMI Architecture as MC’s. Finally, devices like TV’s and home appliances can

also function as MC’s in multimodal applications. Interesting applications such as

an integrated “home interface” could be supported this way, enabling users to do

things like ask for the current temperature, have it displayed on the TV they’re

watching, and then seamlessly ask the home interface to raise or lower the

temperature. A similar application would be a unified “car interface” that would

let users control the audio system, interact with the GPS, and find out how long it

will be before they need to buy gas by interacting with a single IM.

5.2. Interaction Manager

The IM controls the interaction between the user and the system by taking into

account the user’s input, the task to be performed, the context of the interaction,

and other data as needed. The MMI Architecture does not specify any particular

standard for implementing the IM, but an example of a standard language that

would be suitable for an IM is State Chart Extensible Markup Language

(SCXML) [7]. Examples of other options for implementing an IM are Javascript

for an IM running in a web browser or a suitable server-side programming

language for server-based IM’s.

5.3. Runtime Framework

The Runtime Framework refers to all the infrastructure services that are necessary

for successful execution of a multimodal application. For example, these include

starting modality components, handling communication, and logging. The

standard leaves the specifics of these functions to be defined in a platform-specific

way, although the standard discusses an Event Transport Layer which is part of

the Runtime Framework. The Event Transport Layer includes one or more

8

transport mechanisms linking the IM to the various MC’s. Various protocols can

be used for event transport, but the specification does place two requirements on

the Event Transport Layer -- the events are required to be delivered reliably and

they are required to be delivered in the order they were generated. Appendix F of

the specification [6] describes an Event Transport Layer based on HTTP in detail.

The Runtime Framework is also where functions such as discovery and

registration of modality components occur, as discussed in [13].

5.4. Standard Messages: The Lifecycle Events

The messages defined in the MMI Architecture are referred to as lifecycle events.

Most of the lifecycle events come in request/response pairs. Most commonly the

requests are sent from the IM to an MC and the responses are returned from the

MC to the IM, but the request for a new context is sent by an MC and a request

for status can be sent in either direction.

The events generally fall into two categories. The first is generic control events,

such as starting and stopping components and the corresponding

acknowledgement of these requests. This category includes the events

NewContextRequest/Response, StartRequest/Response,

PrepareRequest/Response, CancelRequest/Response, PauseRequest/Response,

Resume Request/Response, and StatusRequest/Response.

The second category includes modality- or application-specific events that are

used to set parameters in a component and report processing results. These are the

ExtensionNotification and DoneNotification events. The ExtensionNotification

and DoneNotification events are the only events that convey user inputs to the IM.

Clearly, the semantics of user inputs can be very complex, especially in the case

of language input modalities such as speech or text input. In order to provide a

standard representation of the semantics of user inputs, a companion standard to

the MMI Architecture has been developed, Extensible Multimodal Annotation

(EMMA) [14]. EMMA defines a modality-independent framework for

representing the application-specific semantics of user inputs as well as additional

metadata about the inputs, and is discussed in more detail in Section 8. below.

Table 1 summarizes the lifecycle events and their functions.

Name Function

Paired messages initiated by an MC

9

NewContextRequest Request to the IM to initiate a new context of interaction

NewContextResponse Response from the IM with a new context ID

Paired messages initiated by an IM

PrepareRequest Request to the MC to prepare to run, possibly including a

URL pointing to markup, such as a grammar or

VoiceXML document that will be required when the

StartRequest is issued. This allows the MC to fetch and

compile markup, if necessary.

PrepareResponse Response from the MC to a PrepareRequest. The MC is

not required to take any action other than acknowledging

that it has received the PrepareRequest, although it would

be desirable to send back error information if there are

problems preparing.

StartRequest Request to the MC to start processing.

StartResponse Response from the MC to the IM to acknowledge the

StartRequest. The MC is required to send this event in

response to a StartRequest.

CancelRequest The CancelRequest message is sent to stop processing in

the MC. In this case, the MC must stop processing and

return a CancelResponse.

CancelResponse Response from the MC to the IM to acknowledge the

CancelRequest.

PauseRequest A PauseRequest is a request to the MC to pause

processing.

PauseResponse MC’s return a PauseResponse once they have paused, or

if they are unable to pause, the message is sent when they

determine that they will be unable to pause.

ResumeRequest ResumeRequest is a request to resume processing that

was paused by a previous PauseRequest. It can only be

sent to a currently paused context.

ResumeResponse MC’s return a ResumeResponse after receiving a

ResumeRequest. The Status field is “Success” if the

implementation has succeeded in resuming processing

and “Failure” otherwise.

ClearContextRequest A ClearContextRequest may be sent to an MC to indicate

that the specified context is no longer active and that any

resources associated with it may be freed. MC’s are not

required to take any particular action in response to this

command, but are required to return a

ClearContextResponse.

ClearContextResponse A response from the MC acknowledging the

ClearContextRequest. Note that once the IM has sent a

ClearContextRequest to an MC, no more events can be

sent for that context.

Paired messages that can be sent in either direction

StatusRequest The StatusRequest message and the corresponding

StatusResponse provide keep-alive functionality. This

message can be sent by either the IM or an MC.

StatusResponse Response to the StatusRequest message. If the request

specifies a context which is unknown to the MC, the

MC’s behavior is undefined.

Unpaired Messages

DoneNotification Sent from an MC to the IM to indicate completion of a

10

task; contains any data from the MC action, such as an

EMMA message representing user input. (EMMA is

described in Section 8.

ExtensionNotification Sent in either direction to convey application-specific

data, typically sent from the MC to convey user inputs in

EMMA format or report intermediate statuses. Typically

sent from the IM to set modality-specific parameters such

as speech recognition grammars, timeouts or confidence

thresholds. This is the point of extensibility for the

lifecycle events. If no other lifecycle event is suitable for

a message between the IM and MC’s, this message is

used.
Table 1 Lifecycle events in the MMI Architecture

Although lifecycle events do not have to be represented in a specific format, the

specification describes an XML [15] format. If the events are represented in

XML, the specification defines a required XML syntax in Appendix C.

5.5. Fields of the Lifecycle Events

The lifecycle events make use of a set of common fields used by most events, as

well as event-specific fields that are required by certain events.

Fields Common to Most Events

Context

A URI that is unique for the lifetime of the system. The Context field identifies

the interaction. All events relating to a given interaction use the same Context

URI. Events containing a different Context URI are interpreted as part of other,

unrelated, interactions. Unlike all other events, the NewContextRequest event

does not contain a Context field, since it is sent before the context is initiated. The

Context field is optional for the StatusRequest/StatusResponse event. If it is

absent the request is interpreted as a request for the status of the underlying server

rather than a request for the status of a particular context.

Source

A URI that is the address of the sender of the event. The recipient of the event has

to be able to send an event back to the sender by using this value as the

“Target” field of a message.

11

Target

The Target is a URI that represents the address to which the event will be

delivered.

RequestID

The requestID is a unique identifier for a Request/Response pair. Most lifecycle

events come in Request/Response pairs that share a common RequestID. For any

such pair, the RequestID in the Response event is required to match the

RequestID in the request event. The RequestID for such a pair will be unique

within the given Context.

Status

An enumeration of “Success” and “Failure”. The Response event of a

Request/Response pair uses this field to report whether it succeeded in carrying

out the request. Details are provided in the StatusInfo field (below).

StatusInfo

This field is available in the Response events of a Request/Response pair for use

in providing additional, application-specific, status information. The StatusInfo

field is used for providing detailed error information.

Data

This field contains arbitrary data. When a DoneNotification or

ExtensionNotification event containing user inputs is sent from an MC to the IM,

the data field contains the user input, represented in EMMA if appropriate.

Event-specific Fields

Content

The PrepareRequest and StartRequest events include a Content field which

contains inline content which the MC will run. An example of inline content

would be text marked up with Speech Synthesis Markup Language (SSML) [16]

for rendering by a text-to-speech engine.

ContentURL

The PrepareRequest and StartRequest events include a ContentURL field which

contains a pointer to content which the MC will run. An example of content that

would be naturally referred to with a ContentURL would be a relatively large

12

document that would be unwieldy if included inline in the lifecycle event, such as

a large speech recognition grammar.

Note that Content and ContentURL are mutually exclusive. If both Content and

ContentURL are empty the component reverts to its default behavior. This is

appropriate for a non-scriptable component, such as a camera. Sending a camera a

StartRequest message would result in the camera taking a picture, no scripting

would be necessary.

Status

The StatusResponse message includes a Status field, which is different from the

Status field common to all Response messages. While the common Status field is

used by an MC to report whether it succeeded in carrying out a Request, and can

take on the values of either “Success” or “Failure”, the Status field of

StatusResponse refers to the status of the Context or of the constituent. This field

can take on the values “Alive” or “Dead”. The meaning of these values depends

on whether the “context” parameter is present. Specifically:

1) If the Context field is present

a) If the specified context is still active and able to handle additional lifecycle

events, the sender of the StatusResponse message sets the value of this

field to “Alive”.

b) If the context has terminated or is otherwise unable to process new

lifecycle events, the sender sets the Status to “Dead”.

2) If the Context field is not present, the Status refers to the underlying server.

a) If the sender is able to create new contexts, it sets the Status to “Alive”,

b) Otherwise, the Status is set to “Dead”.

6. Simple, Complex, and Nested Components

Although all MC’s are black boxes from the point of view of the rest of the

system, based on their internal organization they can be classified into one of

three categories; simple, complex or nested. A simple modality component

provides a single functionality and does not have any subcomponents that

communicate among themselves. For example, audio capture, handwriting

recognition, speech recognition, or face identification from an image would all be

examples of simple modality components.

13

A complex MC includes functionality from one or more simple components. For

example an HTML page might include functionality for capturing typed input as

well as spoken input. Implemented as a complex MC, the HTML page would send

messages to the IM for each user input, whether spoken or written. The IM would

send lifecycle events to the HTML page appropriate for either spoken or written

input. EMMA results sent back to the IM would contain information about the

medium and mode of the input, so that the IM can distinguish between spoken and

written inputs.

A nested MC is similar to a complex MC in that it includes internal MC’s. In

addition, a nested MC essentially contains its own internal IM that manages

interaction among the internal MC’s. It can be thought of as an instantiation of the

MMI Architecture that presents itself as an MC to a higher-level IM. An example

of a nested MC would be a VoiceXML component [8,17] used to provide voice

services such as speech recognition and text to speech while also handling dialog

management for form-filling tasks with its internal IM. These three types of

MC’s are discussed in detail in Appendix H of the specification.

7. Defining Modality Components

Because the standard MMI Architecture is modality-independent, many details of

how a particular modality component would be implemented are not defined by

the architecture.

This raises the question of how developers can know how to use third-party

components. Some components, such as speech recognition, can have fairly

complex API’s which are very modality-specific. If there is an existing API for a

type of component, the developer can use that API and map the modality-specific

API calls to the MMI Architecture lifecycle events
1
. In some cases there are also

standard API’s that can be used. For example, there are W3C standard API’s for

geolocation [18] and camera [19] information. There is no standard API for

speech recognition, although several have been proposed, for example, [20-23]

and more recently [24]. If there is not yet a standard API for the modality

1
 For example, the StartRequest event might be mapped to a “startListening” method used by a

modality-specific API.

14

component, it becomes especially important for the developer to describe the API

for other users of the component.

Most notably, the need for description applies to the ExtensionNotification event

where modality-specific and application-specific information is conveyed.

Suggestions for the information to be included in defining modality components is

discussed in a W3C Note on “Best practices for creating MMI Modality

Components” [25].

This note includes the following eight guidelines for defining a modality

component for use within the MMI Architecture.

Guideline 1: Each modality component must implement all of the MMI life-cycle

events. This is a basic requirement for the component to be MMI Architecture-

compliant. Note that not all events make sense for all components. For example, a

speech recognition component may not be able to pause once it has started

processing. Nevertheless an MMI Architecture-compliant speech recognition MC

must be able to respond to a PauseRequest event with a PauseResponse event. In

this case, the PauseResponse event might contain a status message that informs

the IM that it cannot pause.

Guideline 2: The definition of the component must identify other functions of the

modality component that are relevant to the interaction manager. That includes

any functions that can be controlled externally, such as starting, stopping, pausing

and setting parameters. As with any API, functionality that is not exposed

externally does not need to be described. Functionality that requires events outside

of the standard events must be defined with ExtensionNotification events. Most

commonly, this additional functionality involves ExtensionNotification events

that are sent from the IM to set parameters within the MC and

ExtensionNotification events that are sent from the MC to the IM to return results

or report intermediate statuses of the processing.

Guideline 3: If the component handles media for either capture or processing,

acceptable media formats must be specified. For example, audio formats that a

speech recognizer accepts must be specified. A handwriting recognition

component could specify, for example, that the input it expects must be in the

form of the InkML standard [26].

Guideline 4: Specify protocols for use between the component and the IM (e.g.,

SIP or HTTP) in the Event Transport Layer. The architecture allows events to be

15

transmitted between the IM and the MC using any protocol that guarantees

reliable delivery in the order the events are sent. Consequently, in defining a

specific modality component, the developer must specify which protocols can be

used with the component. HTTP is one common example, although other

protocols are possible. Alternatives include Session Initiation Protocol (SIP),

Server-sent Events [27], Web Sockets [28] or local sockets over a LAN, for

example.

Guideline 5: Specify supported human languages, e.g., English, German, Chinese

and locale, if relevant. Some modality components are language-specific. These

include speech recognition, text to speech, handwriting recognition and natural

language processing. Other components, such as video capture, are not language-

specific. If the component is language-specific, the supported languages must be

listed.

Guideline 6: Specify supporting languages required by the component, if any.

Some components make use of markup languages. For example, a TTS

component might use SSML to describe the pronunciation of text sent to the

component. Similarly, grammars used by a speech recognition component might

be defined using the Speech Recognition Grammar Specification (SRGS) [29] and

the Semantic Interpretation for Speech Recognition specification [30].

Guideline 7: MC’s sending data to the IM must use the EMMA format where

appropriate. The EMMA format was designed to represent user inputs,

particularly user inputs with complex semantics. MC’s that generate

representations with complex semantics include speech recognition, handwriting

recognition, or natural language processing, for example. Simpler inputs, such as

mouse clicks or selection of a choice with radio buttons can be represented with

EMMA, (especially in applications where spoken and mouse input might be

integrated) but EMMA is not as important for simple inputs.

Guideline 8: Specify error codes and their meanings. Error messages specific to

the component should be documented as well. Standard errors, such as HTTP

errors or XML errors, do not need to be specified in the component definition.

Examples of descriptions of three components (graphical and speech recognition

MC’s and an SCXML IM) can be found in [31].

16

8. Representing and Communicating the Semantics

of User Input (EMMA)

As briefly mentioned in Section 5.4. above, the EMMA specification was

developed to represent the semantics of user inputs. EMMA defines a modality-

independent framework for representing the application-specific semantics of user

inputs as well as additional metadata about the inputs. Because EMMA is

modality-independent, the meaning of an input is represented in the same way

regardless of the original input modality. Fig. 2 shows partial EMMA

representations for the semantics of “I want to go from Boston to Denver on

November 28, 2012”. The semantics is the same, whether the input was spoken,

entered with a GUI interface, or handwritten, so the application-specific semantics

contained in the <emma:interpretation> element is the same. Only the medium

and the mode (as highlighted) differ to reflect the different modalities of input.

Fig. 2 Partial EMMA representations for speech, GUI, and typed input for “I want to go from Boston to

Denver on November 28, 2012

In addition, metadata such as confidence, timestamps and alternative

interpretations is also represented in the same way, regardless of the input

modality. When an MC represents its results in EMMA, the DoneNotification or

the ExtensionNotification lifecycle event Data fields contain the EMMA results

Speech

<emma:interpretation medium=“acoustic” mode=“voice” id="int1">

 <origin>Boston</origin>

 <destination>Denver</destination>

 <date>11282012</date>

 </emma:interpretation>

GUI

<emma:interpretation medium=“tactile” mode=“gui” id="int1">

 <origin>Boston</origin>

 <destination>Denver</destination>

 <date>112812</date>

 </emma:interpretation>

Handwriting

<emma:interpretation medium=“tactile” mode=“ink” id="int1">

 <origin>Boston</origin>

 <destination>Denver</destination>

 <date>11282012</date>

 </emma:interpretation>

17

which are sent to the IM. An example of a DoneNotification event with an

EMMA payload can be seen in Fig. 4.

9. Example – A Personal Assistant Application

Fig. 3 shows the IM and several MC’s for a personal assistant application. This is

a common type of spoken dialog application that provides assistance to the user in

performing such tasks as making phone calls, sending text messages and sending

email. It can also provide useful information such as news, weather, and sports

scores. This example is essentially a command and control application where the

user makes a request and the system carries it out. Dotted lines within the IM

show state transitions through the interaction. Solid lines represent lifecycle

events between the IM and the MC’s. In order to simplify the diagram, not all

lifecycle events involved in an interaction are explicitly shown.

The IM is shown as a state chart that begins by identifying the user. The IM may

also be responsible for starting the MC’s that collect the user’s input (speech

recognition, typing, handwriting, and touch events), although this is not shown in

the diagram. The IM identifies the user by starting a speaker identification MC

with a StartRequest event. The speaker identification component responds with a

StartResponse event. If the MC is unable to start, it can send back error messages

or other status information in the StatusResponse, but if the MC is able to start, it

begins its operation. When the MC is finished with its operation, it returns the

data (in this case an identification of a speaker) with a DoneNotification event. In

this example the MC responsible for identifying the user is a speaker

identification component, but identification could just as well be done through

face recognition from a camera or through the use of a fingerprint reader.

18

Fig. 3 IM and MC's for a personal assistant application

Fig. 4 shows the full DoneNotification event in XML format from the speaker

identification MC, including the EMMA data. The lifecycle event information

includes the source component, the target component, the context ID, the

requestID, and the status, as described in Section 5.5. The EMMA result of the

identification process is included in the data field. The identification component

has identified the user as “Mary Smith” with a confidence of .8. After the user has

been identified, the application waits for requests from the user.

19

Fig. 4 DoneNotification event from a speaker identification MC

At this point the user input MC’s are all running, and like the IM, are waiting for

events from the user. When the user provides an input through speech, typing,

handwriting or tapping on the touchscreen, the MC that processes the action sends

an ExtensionNotification event to the IM with the user’s input represented in

EMMA. For example the user might say something like “What’s the weather

going to be like today?” and the speech recognition MC would send the message

to the IM with that meaning
2
. The IM analyzes the request and determines how it

should be serviced. In this case it invokes a weather component to find out what

the weather will be like, presents the information to the user, and returns to the

wait state, where it awaits a new input from the user.

2
 In this example, we assume that the speech recognition component provides an interpretation

of the input, in addition to the literal tokens of input, to allow for the user to express this request

in other words, such as “Tell me about today’s weather”, or even “Will I need my umbrella?”

However, the architecture supports interpreting the user’s input with a separate natural

language understanding MC.

<mmi:mmi xmlns:mmi="http://www.w3.org/2008/04/mmi-arch"

version="1.0" xmlns:emma="http://www.w3.org/2003/04/emma">

<mmi:doneNotification mmi:source="someURI"

mmi:target="someOtherURI" mmi:context="someURI"

mmi:status="success" mmi:requestID="request-1" >

<mmi:data>

<emma:emma version="1.0">

 <emma:interpretation

 id=“int1”

 emma:confidence=".80”

 emma:medium=“acoustic"

 emma:mode=“voice"

 emma:verbal="false"

 emma:function="identification">

 <person>12345</person>

 <name>Mary Smith</name>

 </emma:interpretation>

</emma:emma>

</mmi:data>

</mmi:doneNotification>

</mmi:mmi>

20

10. Related Issues and Future Directions

There are several areas where it would be useful to extend the MMI Architecture

to either provide additional important functionality, or to improve interoperability

among components developed by different vendors.

10.1. Encapsulation and Modality Interaction

Although encapsulation is essential for making it possible to easily add new

modality functionality by incorporating components from different vendors into a

system, it does make close interaction between related modalities more difficult,

especially when low latency is required. One good example of this is coordination

of text-to-speech (TTS) output with graphical displays of human faces, where

timing must be very precise so that the speech and visual components stay

synchronized. The architecture provides for this case with the concepts of nested

and complex components that allow closely related functionalities to be contained

in a single component; however, as nested and complex components include more

and more functionalities, we begin to lose the advantages of encapsulation and

modularity.

10.2. Communication Protocols

The MMI Architecture does not define a required communications prototcol for

transporting lifecycle events between MC’s and IM’s. This enables it to be

flexible and usable for many different use cases. For web applications, HTTP is

often appropriate, but newer protocols such as web sockets [32,28] and server-

sent events [27] can also be used.

Appendix F of the specification documents in detail how HTTP can be used as a

communications protocol for an MMI Architecture application. One configuration

of IM’s and MC’s where HTTP would be suitable is where the IM resides on a

web server and the MC’s are HTTP clients. Because only clients initiate

exchanges in HTTP, in order to support the MMI Architecture, the server has to

have some means of sending events to the client. One way to achieve this is to

have the client MC poll the server for events by sending an HTTP/GET request to

the server to obtain any IM-initiated lifecycle events. Events can be sent from the

client to the server with normal HTTP/POST requests.

21

10.3. Discovery and Registration

The MMI Architecture specification describes clearly how system components

behave and interact, but it does not address how components are discovered and

made available in the first place. For this reason, the Multimodal Interaction

Working Group has begun a work item on discovery and registration [13] which

specifies methods for dynamically combining and controlling modalities through

the use of a registry based on user-experience data and modality states. Although

many multimodal applications can be supported by interaction through fixed,

known components, there are a number of use cases for dynamically configured

systems where discovery is very important. Some of these are discussed in detail

in [13], including smart homes, personalized in-car experience, multiple users

interacting in public spaces, and interaction with health sensors.

10.4. Media

A number of MC’s make use of media such as audio, images, or video. The MMI

Architecture does not define how a component obtains media or what media

formats can be used. Audio data, for example, could be sent to a server using

multipart form data sent by HTTP/Post. Session Initiation Protocol (SIP) and Real

Time Streaming Protocol (RTSP) are other options. Web Real-Time

Communications (WebRTC) [33] is an emerging W3C standard that will also be

useful for transmitting media as it matures.

10.5. Streaming

Many user inputs can be sent in discrete messages that contain the entire input, for

example, when the mouse is clicked or the “submit” button is pressed the

complete user input is conveyed in that message. On the other hand, some inputs

are continuous and can be sent for processing while the input is being collected.

For example, a speech input can be sent as a complete audio file after the user has

finished speaking or it can be sent continuously while speech is occurring. In most

cases the user experience is improved if a continuous input is streamed because

latency is reduced. In addition, for applications like dictation, the user experience

is also improved if the user can see the speech recognition results incrementally,

while he or she is still speaking. Intermediate results of processing streams can be

returned as multiple incremental ExtensionNotification events with EMMA data

22

fields. Although there is no standard yet for incremental EMMA results, a

proposal is described in [34], using the new attributes “emma:streamId” which

identifies a stream, “emma:streamSeqNr” indicating the current input’s position in

a stream, and “emma:streamProgress” to indicate the beginning, middle and end

of streams.

10.6. Implementations and Evaluation

As part of the W3C standardization process, the MMI Architecture standard was

implemented by five organizations which submitted formal implementation

reports. The implementation reports are summarized in [35]. As examples of the

kinds of applications that have been built on MMI Architecture implementations,

Openstream has implemented a number of types of applications, including

financial services, healthcare, and mobile workforce solutions [36]. A research

application of multimodal services for multimedia is described in [37].

Outside of the implementations included in the formal report, the specification has

also been implemented by others, for example [38]. An evaluation of the ability

for implementations of multimodal components from different vendors to

interoperate was performed by a group consisting of representatives from

Openstream, France Telecom, and Deutsche Telekom [31], who were able to

successfully demonstrate interoperability between a voice MC developed by

Openstream, a graphical MC developed by Deutsche Telekom, and an IM

developed by France Telecom. The test application was a multimodal math quiz.

Feedback on the standard is always welcome on the Multimodal Interaction

Working Group’s mailing list, www-multimodal@w3.org.

11. Summary

The W3C Multimodal Architecture and Interfaces specification, along with the

Extensible Multimodal Annotation specification, provides a generic, flexible and

extensible standard for integrating a broad variety of system components into

multimodal applications. Whether the application runs on a traditional browser, on

a mobile device, or in a home or a car, the multimodal architecture provides the

infrastructure for a wide variety of innovative applications, accessed through

natural, multimodal interfaces.

Acknowledgements

23

The W3C Multimodal Architecture and Interfaces and EMMA specifications represent the work of

many individuals who have participated in the Multimodal Interaction Working Group. In

particular, I would like to acknowledge the work of the following authors of the MMI Architecture

and EMMA specifications and related documents.

Kazuyuki Ashimura

Jim Barnett

Paolo Baggia

Michael Bodell

Daniel C. Burnett

Jerry Carter

Michael Johnston

Nagesh Kharidi

Ingmar Kliche

Jim Larson

Raj Tumuluri

Brad Porter

Dave Raggett

T.V. Raman

B. Helena Rodriguez

Muthuselvam Selvaraj

Andrew Wahbe

Piotr Wiechno

Moshe Yudkowsky

Special thanks go to Kazuyuki Ashimura, the W3C Team Contact for the Multimodal Interaction

Working Group, for his guidance through the W3C process and to Jim Barnett, the Editor-in-Chief

of the Multimodal Architecture and Interfaces specification.

12. References

1. Turing A (1950) Computing machinery and intelligence. Mind 59:433-460

2. Johnston M, Bangalore S, Vasireddy G, Stent A, Ehlen P, Walker M, Whittaker S, Maloor P

MATCH: an architecture for multimodal dialogue systems. In: Proceedings of the 40th Annual

Meeting on Association For Computational Linguistics, Philadelphia, 2001. Association for

Computational Linguistics, pp 376-383

3. Bayer S (2005) Building a Standards and Research Community with the Galaxy Communicator

Software Infrastructure. In: Dahl DA (ed) Practical Spoken Dialog Systems, vol 26. Text, Speech

and Language Technology. Kluwer Academic Publishers, Dordrecht, pp 166-196

4. Oviatt SL (1999) Ten myths of multimodal interaction. Communications of the ACM 42:74--81

5. Seneff S, Lau R, Polifroni J Organization, communication, and control in the Galaxy-II

Conversational System. In: Proceedings of Eurospeech 1999, Budapest, 1999.

6. Barnett J, Bodell M, Dahl DA, Kliche I, Larson J, Porter B, Raggett D, Raman TV, Rodriguez

BH, Selvaraj M, Tumuluri R, Wahbe A, Wiechno P, Yudkowsky M (2012) Multimodal

Architecture and Interfaces. World Wide Web Consortium. http://www.w3.org/TR/mmi-arch/.

Accessed November 20 2012

7. Barnett J, Akolkar R, Auburn RJ, Bodell M, Burnett DC, Carter J, McGlashan S, Lager T,

Helbing M, Hosn R, Raman TV, Reifenrath K, Rosenthal Na (2012) State Chart XML (SCXML):

State Machine Notation for Control Abstraction. World Wide Web Consortium.

http://www.w3.org/TR/scxml/. Accessed November 20 2012

8. McGlashan S, Burnett DC, Carter J, Danielsen P, Ferrans J, Hunt A, Lucas B, Porter B, Rehor

K, Tryphonas S (2004) Voice Extensible Markup Language (VoiceXML 2.0). W3C.

http://www.w3.org/TR/voicexml20/. Accessed November 9 2012

9. Kopp S, Krenn B, Marsella S, Marshall A, Pelachaud C, Pirker H, Thórisson KR, Vilhjálmsson

H Towards a Common Framework for Multimodal Generation: The Behavior Markup Language

In: International Conference on Intelligent Virtual Agents, Marina del Rey, California, USA,

August 21-23, 2006 2006.

10. Heylen D, Kopp S, Marsella S, Pelachaud C, Vilhjalmsson H (2008) The Next Step Towards a

Functional Markup Language. Paper presented at the Proc. of Intelligent Virtual Agents (IVA

2008), Tokyo, Japan, September 1-3

11. Scherer S, Marsella S, Stratou G, Xu Y, Morbini F, Egan A, Rizzo A, Morency L-P (2012)

Perception Markup Language: Towards a Standardized Representation of Perceived Nonverbal

Behaviors. In: Nakano Y, Neff M, Paiva A, Walker M (eds) Intelligent Virtual Agents, vol 7502.

http://www.w3.org/TR/mmi-arch/
http://www.w3.org/TR/scxml/
http://www.w3.org/TR/voicexml20/

24

Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp 455-463. doi:10.1007/978-3-

642-33197-8_47

12. Araki M, Tachibana K Multimodal Dialog Description Language for Rapid System

Development. In: 7th SIGdial Workshop on Discourse and Dialogue, Sydney, Australia, July

2006.

13. Rodriguez BH, Wiechno P, Dahl DA, Ashimura K, Tumuluri R (2012) Registration &

Discovery of Multimodal Modality Components in Multimodal Systems: Use Cases and

Requirements. World Wide Web Consortium. http://www.w3.org/TR/mmi-discovery/. Accessed

November 26 2012

14. Johnston M, Baggia P, Burnett D, Carter J, Dahl DA, McCobb G, Raggett D (2009) EMMA:

Extensible MultiModal Annotation markup language. W3C. http://www.w3.org/TR/emma/.

Accessed November 9 2012

15. Bray T, Jean Paoli J, Sperberg-McQueen CM, Maler E, Yergeau F (2004) Extensible Markup

Language (XML) 1.0 (Third Edition). World Wide Web Consortium.

http://www.w3.org/TR/2004/REC-xml-20040204/. Accessed November 9 2012

16. Burnett DC, Walker MR, Hunt A (2004) W3C Speech Synthesis Markup Language (SSML).

W3C. http://www.w3.org/TR/speech-synthesis/.

17. Oshry M, Auburn RJ, Baggia P, Bodell M, Burke D, Burnett DC, Candell E, Carter J,

McGlashan S, Lee A, Porter B, Rehor K (2007) Voice Extensible Markup Language (VoiceXML)

2.1. http://www.w3.org/TR/voicexml21/. Accessed November 9 2012

18. Popescu A (2012) Geolocation API Specification. World Wide Web Consortium.

http://www.w3.org/TR/geolocation-API/. Accessed November 27 2012

19. Kostiainen A, Oksanen I, Hazaël-Massieux D (2012) HTML Media Capture. World Wide Web

Consortium. http://www.w3.org/TR/capture-api/. Accessed November 27 2012

20. Microsoft (2007) Microsoft Speech API 5.3 (SAPI). http://msdn2.microsoft.com/en-

us/library/ms723627.aspx.

21. Java Speech API. (1998) Sun Microsystems. http://java.sun.com/products/java-media/speech/.

22. SALT Forum (2002) Speech Application Language Tags (SALT). http://www.saltforum.org.

23. IBM (2003) X+V 1.1. http://www-3.ibm.com/software/pervasive/multimodal/x+v/11/spec.htm.

24. Bodell M, Bringert B, Brown R, Burnett DC, Dahl DA, Druta D, Ehlen P, Hemphill C,

Johnston M, Pettay O, Sampath S, Schröder M, Shires G, Tumuluri R, Young M (2011) HTML

Speech Incubator Group Final Report. World Wide Web Consortium.

http://www.w3.org/2005/Incubator/htmlspeech/XGR-htmlspeech-20111206/. Accessed November

27 2012

25. Kliche I, Dahl DA, Larson JA, Rodriguez BH, Selvaraj M (2011) Best practices for creating

MMI Modality Components. World Wide Web Consortium. http://www.w3.org/TR/2011/NOTE-

mmi-mcbp-20110301/. Accessed November 20 2012

26. Watt SM, Underhill T, Chee Y-M, Franke K, Froumentin M, Madhvanath S, Magaña J-A,

Pakosz G, Russell G, Selvaraj M, Seni G, Tremblay C, Yaeger L (2011) Ink Markup Language

(InkML). World Wide Web Consortium. http://www.w3.org/TR/InkML. Accessed November 27

2012

27. Hickson I (2012) Server-sent Events. World Wide Web Consortium.

http://www.w3.org/TR/eventsource/. Accessed November 20 2012

28. Hickson I (2012) The WebSocket API. The World Wide Web Consortium.

http://www.w3.org/TR/websockets/. Accessed November 20 2012

29. Hunt A, McGlashan S (2004) W3C Speech Recognition Grammar Specification (SRGS).

W3C. http://www.w3.org/TR/speech-grammar/. Accessed November 9 2012

30. Van Tichelen L, Burke D (2007) Semantic Interpretation for Speech Recognition. W3C.

http://www.w3.org/TR/semantic-interpretation/. Accessed November 9 2012

31. Kliche I, Kharidi N, Wiechno P (2012) MMI interoperability test report. World Wide Web

Consortium. http://www.w3.org/TR/2012/NOTE-mmi-interop-20120124/. Accessed November 27

2012

32. Fette I, Melnikov A (2011) RFC 6455: The WebSocket Protocol. Internet Engineering Task

Force. http://tools.ietf.org/html/rfc6455. Accessed November 20 2012

33. Bergkvist A, Burnett DC, Jennings C, Narayanan A (2012) WebRTC 1.0: Real-time

Communication Between Browsers. World Wide Web Consortium.

http://www.w3.org/TR/webrtc/. Accessed November 28 2012

34. Johnston M, Dahl DA, Kliche I, Baggia P, Burnett DC, Burkhardt F, Ashimura K (2009) Use

Cases for Possible Future EMMA Features. World Wide Web Consortium.

http://www.w3.org/TR/emma-usecases/.

http://www.w3.org/TR/mmi-discovery/
http://www.w3.org/TR/emma/
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/speech-synthesis/
http://www.w3.org/TR/voicexml21/
http://www.w3.org/TR/geolocation-API/
http://www.w3.org/TR/capture-api/
http://msdn2.microsoft.com/en-us/library/ms723627.aspx
http://msdn2.microsoft.com/en-us/library/ms723627.aspx
http://java.sun.com/products/java-media/speech/
http://www.saltforum.org/
http://www-3.ibm.com/software/pervasive/multimodal/x+v/11/spec.htm
http://www.w3.org/2005/Incubator/htmlspeech/XGR-htmlspeech-20111206/
http://www.w3.org/TR/2011/NOTE-mmi-mcbp-20110301/
http://www.w3.org/TR/2011/NOTE-mmi-mcbp-20110301/
http://www.w3.org/TR/InkML
http://www.w3.org/TR/eventsource/
http://www.w3.org/TR/websockets/
http://www.w3.org/TR/speech-grammar/
http://www.w3.org/TR/semantic-interpretation/
http://www.w3.org/TR/2012/NOTE-mmi-interop-20120124/
http://tools.ietf.org/html/rfc6455
http://www.w3.org/TR/webrtc/
http://www.w3.org/TR/emma-usecases/

25

35. Wiechno P, Kharidi N, Kliche I, Rodriguez BH, Schnelle-Walka D, Dahl DA, Ashimura K

(2012) Multimodal Architecture and Interfaces 1.0 Implementation Report. World Wide Web

Consortium. http://www.w3.org/2002/mmi/2012/mmi-arch-ir/. Accessed November 27 2012

36. Openstream I (2013) Solutions. http://www.openstream.com/solutions.htm. Accessed March

15 2013

37. Rodriguez BH, Moissianc J-C, Demeure I Multimodal Instantiation of Assistance Services. In:

iiWAS '10 Proceedings of the 12th International Conference on Information Integration and Web-

based Applications & Services Paris, France, 2010. ACM, pp 934-937

38. Pous M, Ceccaroni L Multimodal Interaction in Distributed and Ubiquitous Computing. In:

Fifth International Conference on Internet and Web Applications and Services (ICIW), Barcelona,

Spain, 2010.

http://www.w3.org/2002/mmi/2012/mmi-arch-ir/
http://www.openstream.com/solutions.htm

