
RTCPeerConnection
Control Surface

WebRTC 2014-04-28

Bar Setting
• RTCPeerConnection is a terrible API

• It’s indirect, not imperative

• It’s opaque

• The timing is bizarre

• The interaction model is inconsistent

• So new features don’t have a high bar to meet

Existing Offer/Answer
Control Surface

• RTCPeerConnection constructor (RTCConfiguration)

• STUN/TURNS servers basically

• Arguments to createOffer

• Whether to open audio/video slots for the answerer to use

• Mutations to SDP input to RTCSessionDescription constructor

• Section 6 of -jsep describes some aspirational goals

• addStream arguments

• MediaStreamTrack state (muted, enabled, readyState, id) affect SDP

Doohickamajiggities
• Provides a track-specific control surface

• More granular, easier to do tricky things

• Originally to distinguish different directionality attribute
semantics: a=sendonly/recvonly/inactive

• Opens other possibilities

• Control: bandwidth, transport placement (bundling,
RTCP multiplexing), simulcast, layering, CNAME, …

• Feedback: statistics and state

What (gUM-like) Constraints
Can Do For You

• Constraints have several features that we don’t actually
have on RTCPeerConnection

• Ability to discover what is likely to actually do
something, i.e., capabilities

• Ability to discover what has actually been done, i.e.,
status

• We can build those features

• We should build those features

What (gUM-like) Constraints
Cost

• Constraints come with unneeded extras (YAGNI)

• Like the bit where multiple actors apply constraints on a single
resource and the browser mediate between those actors using
constraints to find a common mode

• Or where you let the browser to choose from a set or range of
acceptable options (valuable for some cases, like bandwidth)

• Constraints have some drawbacks (Least Surprise)

• They don’t use the usual feature-detection mechanisms

• Browser flexibility creates opaqueness, which is only mitigated
by the status mechanism

With Constraints

• var canSend = whatsit.getCapabilities()  
 .hasOwnProperty(“send”);

• whatsit.applyConstraints({ send: true });

• var isSending = whatsit.getConstraints().send;

Without

• var canSend = typeof whatsit.send !== ‘undefined’;

• whatsit.send = true;

• var isSending = whatsit.send;

What Might Work
• Some of the values we are trying to control work better if

the browser is given some leeway

• Resolution

• Frame rate (at discrete intervals)

• Bandwidth (minimum is not particularly useful)

• These might justify the use of constraints

• Even fallback (“advanced”) might allow for definition of
co-dependent settings

Taking It Up a Notch
• Bandwidth truly does need to leave the browser some flexibility:

• thingamy.applyConstraints({ bandwidth: { max: 100 } });

• thingamy.setBandwidthLimits(100 /*, undefined */);

• Chicken:

• thingamy.applyConstraints({ chicken: [“chicken”, “chicken”, chicken] });

• thingamy.setChicken([“chicken”, “chicken”, chicken]);

• Layers:

• thingamy.applyConstraints({ 
 layers: [/* complex stuff */]  
});

• thingamy.setLayer(0, { /* less complex stuff */ });

