

	[image: HW_POS_RGB_Vertical]

	文档名称
	文档密级

[image: W3C]
WebRTC 1.0: Real-time Communication Between Browsers
W3C Editor's Draft 20 September 2012
This version:
http://dev.w3.org/2011/webrtc/editor/webrtc.html
Latest published version:
http://www.w3.org/TR/webrtc/
Latest editor's draft:
http://dev.w3.org/2011/webrtc/editor/webrtc.html
Editors:
Adam Bergkvist, Ericsson
Daniel C. Burnett, Voxeo
Cullen Jennings, Cisco
Anant Narayanan, Mozilla
Initial Author of this Specification was Ian Hickson, Google Inc., with the following copyright statement:
© Copyright 2004-2011 Apple Computer, Inc., Mozilla Foundation, and Opera Software ASA. You are granted a license to use, reproduce and create derivative works of this document.
All subsequent changes since 26 July 2011 done by the W3C WebRTC Working Group are under the following Copyright:
© 2011-2012 W3C® (MIT, ERCIM, Keio), All Rights Reserved. Document use rules apply.
For the entire publication on the W3C site the liability and trademark rules apply.

Abstract
This document defines a set of ECMAScript APIs in WebIDL to allow media to be sent over the network to another browser or device implementing the appropriate set of real-time protocols, and media to be received from another browser or device. This specification is being developed in conjunction with a protocol specification developed by the IETF RTCWEB group and an API specification to get access to local media devices developed by the Media Capture Task Force.
Status of This Document
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.
This document is not complete. It is subject to major changes and, while early experimentation is encouraged, it is therefore not intended for implementation. The API is based on preliminary work done in the WHATWG. The Web Real-Time Communications Working Group expects this specification to evolve significantly based on:
· The outcome of ongoing exchanges in the companion RTCWEB group at IETF to define the set of protocols that, together with this document, will enable real-time communications in Web browsers.
· Privacy issues that arise when exposing local capabilities and local streams.
· Technical discussions within the group, on the data channel in particular.
· Experience gained through early experimentations.
· Feedback received from other groups and individuals.
This document was published by the Web Real-Time Communications Working Group as an Editor's Draft. If you wish to make comments regarding this document, please send them to public-webrtc@w3.org(subscribe, archives). All feedback is welcome.
Publication as an Editor's Draft does not imply endorsement by the W3C Membership. This is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate to cite this document as other than work in progress.
This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.
Table of Contents
· 1. Introduction
· 2. Conformance
· 3. Terminology
· 4. Network Stream API
· 4.1 Introduction
· 4.2 Interface definitions
· 4.2.1 MediaStream
· 4.2.1.1 label
· 4.2.1.2 Events on MediaStream
· 4.2.2 MediaStreamTrack
· 4.3 AudioMediaStreamTrack
· 4.3.1 Attributes
· 4.3.2 Methods
· 5. Peer-to-peer connections
· 5.1 RTCPeerConnection
· 5.1.1 RTCSdpType
· 5.1.2 RTCSessionDescription Class
· 5.1.2.1 Attributes
· 5.1.2.2 Dictionary RTCSessionDescriptionInit Members
· 5.1.3 RTCSessionDescriptionCallback
· 5.1.3.1 Callback RTCSessionDescriptionCallback Parameters
· 5.1.4 RTCStatsCallback
· 5.1.4.1 Callback RTCStatsCallback Parameters
· 5.1.5 RTCVoidCallback
· 5.1.6 RTCPeerConnectionErrorCallback
· 5.1.6.1 Callback RTCPeerConnectionErrorCallback Parameters
· 5.1.7 RTCPeerState Enum
· 5.1.8 RTCGatheringState Enum
· 5.1.9 RTCIceState Enum
· 5.1.10 RTCIceCandidate Type
· 5.1.10.1 Attributes
· 5.1.10.2 Dictionary RTCIceCandidateInit Members
· 5.1.11 RTCIceServer Type
· 5.1.11.1 Dictionary RTCIceServer Members
· 5.1.12 RTCConfiguration Type
· 5.1.12.1 Dictionary RTCConfiguration Members
· 5.1.13 RTCIdentityAssertion Type
· 5.1.13.1 Dictionary RTCIdentityAssertion Members
· 5.1.14 RTCStatsElement dictionary
· 5.1.14.1 Dictionary RTCStatsElement Members
· 5.1.15 RTCStatsReport Type
· 5.1.15.1 Attributes
· 5.1.15.2 Methods
· 5.1.16 RTCPeerConnection Interface
· 5.1.17 Garbage collection
· 6. IANA Registrations
· 6.1 Constraints
· 7. Simple Example
· 8. Advanced Example
· 9. Call Flow Browser to Browser
· 10. Call Flow Browser to MCU
· 11. Peer-to-peer Data API
· 11.1 DataChannel
· 11.1.1 Attributes
· 11.1.2 Methods
· 11.1.3 Dictionary DataChannelInit Members
· 11.2 Examples
· 11.3 Garbage Collection
· 12. Statistics Model
· 12.1 Example
· 13. Identity Provider Interaction
· 13.1 Peer-Connection/IdP Communications
· 13.2 Requesting Assertions
· 13.3 Verifying Assertions
· 13.4 Examples
· 14. Event definitions
· 14.1 RTCPeerConnectionIceEvent
· 14.1.1 Attributes
· 14.1.2 Dictionary RTCPeerConnectionIceEventInit Members
· 14.2 MediaStreamEvent
· 14.2.1 Attributes
· 14.2.2 Dictionary MediaStreamEventInit Members
· 14.3 DataChannelEvent
· 14.3.1 Attributes
· 14.3.2 Dictionary DataChannelEventInit Members
· 15. Event summary
· 16. Security Considerations
· 17. Change Log
· A. Acknowledgements
· B. References
· B.1 Normative references
· B.2 Informative references
1. Introduction
This section is non-normative.
There are a number of facets to video-conferencing in HTML covered by this specification:
· Representing a multimedia stream (video, audio, or both) from local devices (video cameras, microphones, Web cams) or from prerecorded files provided by the user.
· Connecting to remote peers using NAT-traversal technologies such as ICE, STUN, and TURN.
· Sending the locally-produced streams to remote peers and receiving streams from remote peers.
· Sending arbitrary data directly to remote peers.
This document defines the APIs used for these features. This specification is being developed in conjunction with a protocol specification developed by the IETF RTCWEB group and an API specification to get access to local media devices developed by the Media Capture Task Force.
2. Conformance
As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification are non-normative. Everything else in this specification is normative.
The key words MUST, MUST NOT, REQUIRED, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this specification are to be interpreted as described in [RFC2119].
This specification defines conformance criteria that apply to a single product: the user agent that implements the interfaces that it contains.
Implementations that use ECMAScript to implement the APIs defined in this specification must implement them in a manner consistent with the ECMAScript Bindings defined in the Web IDL specification [WEBIDL], as this specification uses that specification and terminology.
3. Terminology
The EventHandler interface represents a callback used for event handlers as defined in [HTML5].
The concepts queue a task and fires a simple event are defined in [HTML5].
The terms event handlers and event handler event types are defined in [HTML5].
4. Network Stream API
4.1 Introduction
The MediaStream interface, as defined in the [GETUSERMEDIA] specification, typically represents a stream of data of audio and/or video. A MediaStream may be extended to represent a stream that either comes from or is sent to a remote node (and not just the local camera, for instance). The extensions required to enable this capability on the MediaStream object will be described in this document.
A MediaStream as defined in [GETUSERMEDIA] may contain zero or more MediaStreamTrack objects. A MediaStreamTrack sent to another peer will appear as one and only one MediaStreamTrack to the recipient. A peer is defined as a user agent that supports this specification.
Channels are the smallest unit considered in the MediaStream specification. Channels are intended to be encoded together for transmission as, for instance, an RTP payload type. All of the channels that a codec needs to encode jointly MUST be in the same MediaStreamTrack and the codecs SHOULD be able to encode, or discard, all the channels in the track.	Comment by w00193976: I don’t know the real means, or maybe it should “decode”?
The concepts of an input and output to a given MediaStream apply in the case of MediaStream objects transmitted over the network as well. A MediaStream created by a RTCPeerConnection object (later described in this document) will take as input the data received from a remote peer. Similarly, a MediaStream from a local source, for instance a camera via [GETUSERMEDIA] will have an output that represents what is transmitted to a remote peer if the object is used with a RTCPeerConnection object.
The concept of duplicating MediaStream objects as described in [GETUSERMEDIA] is also applicable here. This feature can be used, for instance, in a video-conferencing scenario to display the local video from the user’s camera and microphone in a local monitor, while only transmitting the audio to the remote peer (e.g. in response to the user using a "video mute" feature). Combining tracks from different MediaStream objects into a new MediaStream is useful in certain cases.
4.2 Interface definitions
NOTE
In this section, we only specify aspects of the following objects that are relevant when used along with a RTCPeerConnection. Please refer to the original definitions of the objects in the [GETUSERMEDIA] document for general information on using MediaStream and MediaStreamTrack.
4.2.1 MediaStream
4.2.1.1 label
The label attribute specified in MediaStream returns a label that is unique to this stream, so that streams can be recognized after they are sent through the RTCPeerConnection API.
When a MediaStream is created to represent a stream obtained from a remote peer, the label attribute is initialized from information provided by the remote source.
NOTE
The label of a MediaStream object is unique to the source of the stream, but that does not mean it is not possible to end up with duplicates. For example, a locally generated stream could be sent from one user agent to a remote peer using RTCPeerConnection ,and then sent back to the original user agent in the same manner, in which case the original user agent will have multiple streams with the same label (the locally-generated one and the one received from the remote peer).
4.2.1.2 Events on MediaStream
A new media track may be associated with an existing MediaStream . For example, if a remote peer adds a new MediaStreamTrack object to one of the track lists of a MediaStream that is being sent over aRTCPeerConnection, this is observed on the local user agent. If this happens for the reason exemplified, or for any other reason than the add() [GETUSERMEDIA] method being invoked locally on aMediaStreamTrackList or tracks are being added as the stream is created (i.e. the stream is initialized with tracks), the user agent MUST run the following steps:
1. Create a MediaStreamTrack object track to represent the new media component.
2. If track’s kind attribute equals "audio", add it to the MediaStream object’s audioTracks MediaStreamTrackList object.
3. If track’s kind attribute equals "video", add it to the MediaStream object’s videoTracks MediaStreamTrackList object.
4. Fire a track event named addtrack with the newly created track at the MediaStreamTrackList object.
An existing media track may also be disassociated from a MediaStream . If this happens for any other reason than the remove() [GETUSERMEDIA] method being invoked locally on a MediaStreamTrackList or the stream is being destroyed, the user agent MUST run the following steps:
1. Let track be the MediaStreamTrack object representing the media component about to be removed.
2. Remove track from the MediaStreamTrackList object.
3. Fire a track event named removetrack with track at the MediaStreamTrackList object.
The event source for the onended event in the networked case is the RTCPeerConnection object.
4.2.2 MediaStreamTrack
A MediaStreamTrack object’s reference to its MediaStream in the non-local media source case (an RTP source, as is the case for a MediaStream received over a RTCPeerConnection) is always strong.
When a track belongs to a MediaStream that comes from a remote peer and the remote peer has permanently stopped sending data the ended event MUST be fired on the track, as specified in [GETUSERMEDIA].
ISSUE 1
ISSUE: How do you know when it has stopped? This seems like an SDP question, not a media-levelquestion.
A track in a MediaStream , received with a RTCPeerConnection , MUST have its readyState attribute [GETUSERMEDIA] set to muted (1) until media data arrives.	Comment by w00193976: What does it mean? I don’t find any link or reference. There is no (2), but many (3) following” RTCPeerConnection readiness state is closed”
In addition, a MediaStreamTrack has its readyState set to muted on the remote peer if the local user agent disables the corresponding MediaStreamTrack in the MediaStream that is being sent. When the addstream event triggers on a RTCPeerConnection, all MediaStreamTrack objects in the resulting MediaStream are muted until media data can be read from the RTP source.
ISSUE 2
ISSUE: How do you know when it has been disabled? This seems like an SDP question, not a media-levelquestion.
4.3 AudioMediaStreamTrack
NOTE
The DTMF API is having a bunch of list discussion and will probably change.
The AudioMediaStreamTrack is a specialization of a normal MediaStreamTrack that only carries audio and is extended to have the capability to send and/or receive DTMF codes.
interface AudioMediaStreamTrack : MediaStreamTrack {
 readonly attribute boolean canInsertDTMF;
 void insertDTMF (DOMString tones, optional long duration);
};
4.3.1 Attributes
canInsertDTMF of type boolean, readonly
The canInsertDTMF attribute MUST indicate if the AudioMediaStreamTrack is capable of sending DTMF.
4.3.2 Methods
insertDTMF
When a AudioMediaStreamTrack object’s insertDTMF() method is invoked, the user agent MUST queue a task that sends the DTMF tones.
The tone parameters is treated as a series of characters. The characters 0 to 9, A to D, #, and * generated the associated DTMF tones. The characters a to d are equivalent to A to D. The character, indicates a an delay of 2 seconds before processing the next character in the tones parameter. Unrecognized characters are ignored.	Comment by w00193976: ->are	Comment by w00193976: delete
The duration parameters indicates the duration in ms to play the each DTMF passed in the tones parameters. The duration can not be more than 6000 or less than 70. The default duration is 100 ms for each tone. The gap between tones MUST be at least 50 ms but should be as short as possible.	Comment by w00193976: ->parameter
ISSUE 3
ISSUE: How are invalid values handled?
If insertDTMF is called on the same object while an existing task for this object to generate DTMF is still running, the previous task is canceled. Calling insertDTMF with an empty tones parameter can be used to cancel any tones currently being sent.
NOTE
Editor Note: We need to add a callback that is set on the object that is called after the tones are sent. This is needed to allow the application to know when it can send new tones without canceling the tones that are currently being sent.
NOTE
Editor Note: It seems we would want a callback or event for incoming tones. The proposal sent to the list had them played as audio to the speaker but I don’t see how that is useful.
	Parameter
	Type
	Nullable
	Optional
	Description

	tones
	DOMString
	✘
	✘
	

	duration
	long
	✘
	✔
	

Return type: void
5. Peer-to-peer connections
A RTCPeerConnection allows two users to communicate directly, browser to browser. Communications are coordinated via a signaling channel which is provided by unspecified means, but generally by a script in the page via the server, e.g. using XMLHttpRequest.
Calling new RTCPeerConnection(configuration) creates a RTCPeerConnection object.
The configuration has the information to find and access the [STUN] and [TURN] servers. There may be multiple servers of each type and any TURN server also acts as a STUN server.
A RTCPeerConnection object has an associated ICE agent, RTCPeerConnection readiness state, and ICE state. These are initialized when the object is created.	Comment by w00193976: Whether “RTCPeerConnection” prefix is needed for all of them?	Comment by w00193976: Should we set the font style to bold and italics?
When the RTCPeerConnection() constructor is invoked, the user agent MUST run the following steps. This algorithm has a synchronous section (which is triggered as part of the event loop algorithm).
1. Create an ICE Agent and let connection’s RTCPeerConnection ICE Agent be that ICE Agent and provide it the STUN and TURN servers from the configuration array. The [ICE] will proceed with gathering as soon as the IceTransports constraint is not set to "none". At this point the ICE Agent does not know how many ICE components it needs (and hence the number of candidates to gather) but it can make a reasonable assumption and as the RTCPeerConnection object gets more information, it can adjust the number of components.	Comment by w00193976: The previous paragraph states "ICE agent”, and it is inconsistent in capitalization.
2. Set connection’s RTCPeerConnection readiness state to new .
3. Set connection’s RTCPeerConnection ice state to new .	Comment by w00193976: The same as above.
->ICE state
4. Let connection’s localStreams attribute be an empty read-only MediaStream array.
5. Let connection’s remoteStreams attribute be an empty read-only MediaStream array.
6. Return connection, but continue these steps asynchronously.
7. Await a stable state. The synchronous section consists of the remaining steps of this algorithm.
During the lifetime of the RTCPeerConnection object, the following procedures are followed:
1. If iceState is "new" and the IceTransports constraint is not set to "none", it MUST queue a task to start gathering ICE address and set the iceState to "gathering".
2. If the ICE Agent has found one or more candidate pairs for any MediaStreamTrack that forms a valid connection, the ICE state is changed to "connected".
3. When the ICE Agent finishes checking all candidate pairs, if at least one connection has been found for some MediaStreamTrack, the iceState is changed to "completed" and if no connection has been found for any MediaStreamTrack, the iceState is changed to "failed".
ISSUE 4
ISSUE: Note that this means that if I was able to negotiate audio but not video via ICE, then iceState == "completed". Is this really what is desired?
4. If the iceState is "connected" or "completed" and both the local and remote session descriptions are set, the RTCPeerConnection state is set to "active".
5. If the iceState is "failed", a task is queued to calls the close method.
ISSUE 5
ISSUE:: CJ - this seems wrong to me.
User agents negotiate the codec resolution, bitrate, and other media parameters. User agents are RECOMMENDED to initially negotiate for the maximum resolution of a video stream. For streams that are then rendered (using a video element), user agents are RECOMMENDED to renegotiate for a resolution that matches the rendered display size.
NOTE
Starting with the native resolution means that if the Web application notifies its peer of the native resolution as it starts sending data, and the peer prepares its video element accordingly, there will be no need for a renegotiation once the stream is flowing.
The word "components" in this context refers to an RTP media flow and does not have anything to do with how [ICE] uses the term "component".
When a user agent has reached the point where a MediaStream can be created to represent incoming components, the user agent MUST run the following steps:
1. Let connection be the RTCPeerConnection expecting this media.
2. Create a MediaStream object to represent the media stream.
3. Run the following steps for each component in the media stream.
1. Create a MediaStreamTrack object track to represent the component. [[EDITORIAL: Can we just reference 3.2.1.2 here?]]
2. If track's kind attribute equals "audio", add it to the MediaStream object's audioTracks MediaStreamTrackList object.
3. If track's kind attribute equals "video", add it to the MediaStream object's videoTracks MediaStreamTrackList object.
NOTE
The creation of new incoming MediaStreams may be triggered either by SDP negotiation or by the receipt of media on a given flow.
NOTE
The internal order in the MediaStreamTrackList objects on the receiving side should reflect the order on the sending side. One way to enforce this is to specify the order in the SDP.
4. Queue a task to run the following substeps:
1. If the connection’s RTCPeerConnection readiness state is closed (3), abort these steps.	Comment by w00193976: Why is always”closed” followed by (3)?
2. Add the newly created MediaStream object to the end of connection’s remoteStreams array.
3. Fire a stream event named addstream with the newly created MediaStream object at the connection object.
When a user agent has negotiated media for a component that belongs to a media stream that is already represented by an existing MediaStream object, the user agent MUST associate the component with that MediaStream object.
When a RTCPeerConnection finds that a stream from the remote peer has been removed , the user agent MUST follow these steps:
1. Let connection be the RTCPeerConnection associated with the stream being removed.
2. Let stream be the MediaStream object that represents the media stream being removed, if any. If there isn't one, then abort these steps.
3. By definition, stream is now finished.
NOTE
A task is thus queued to update stream and fire an event.
4. Queue a task to run the following substeps:
1. If the connection’s RTCPeerConnection readiness state is closed (3), abort these steps.	Comment by w00193976:
2. Remove stream from connection’s remoteStreams array.
3. Fire a stream event named removestream with stream at the connection object.
The task source for the tasks listed in this section is the networking task source.
If something in the browser changes that causes the RTCPeerConnection object to need to initiate a new session description negotiation, an negotiationneeded event is fired at the RTCPeerConnectionobject.	Comment by w00193976: ->a
In particular, if a RTCPeerConnection object is consuming a MediaStream and a track is added to one of the stream's MediaStreamTrackList objects, by, e.g., the add() method being invoked, theRTCPeerConnection object MUST fire the "negotiationneeded" event. Removal of media components must also trigger "negotiationneeded".
To prevent network sniffing from allowing a fourth party to establish a connection to a peer using the information sent out-of-band to the other peer and thus spoofing the client, the configuration information SHOULD always be transmitted using an encrypted connection.
5.1 RTCPeerConnection
The general operation of the RTCPeerConnection is described in [RTCWEB-JSEP].
5.1.1 RTCSdpType
The RTCSdpType enum describes the type of a RTCSessionDescription instance.
enum RTCSdpType {
 "offer",
 "pranswer",
 "answer"
};
	Enumeration description

	offer
	An RTCSdpType of "offer" indicates that a description should be treated as an [SDP] offer.

	pranswer
	An RTCSdpType of "pranswer" indicates that a description should be treated as an [SDP] answer, but not a final answer. A description used as a SDP "pranswer" may be applied as a response to a SDP offer, or an update to a previously sent SDP "pranswer".

	answer
	An RTCSdpType of "answer" indicates that a description should be treated as an [SDP] final answer, and the offer-answer exchange should be considered complete. A description used as a SDP answer may be applied as a response to a SDP offer, or an update to a previously send SDP "pranswer".

5.1.2 RTCSessionDescription Class
The RTCSessionDescription() constructor takes an optional dictionary argument, descriptionInitDict, whose content is used to initialize the new RTCSessionDescription object. If a dictionary key is not present in descriptionInitDict, the corresponding attribute will be initialized to null. If the constructor is run without the dictionary argument, all attributes will be initialized to null. This class is a future extensible carrier for the data contained in it and does not perform any substantive processing.
Objects implementing the RTCSessionDescription interface MUST serialize with the serialization pattern "{ attribute }".
[Constructor (optional RTCSessionDescriptionInit descriptionInitDict)]
interface RTCSessionDescription {
 attribute RTCSdpType? type;
 attribute DOMString? sdp;
};
dictionary RTCSessionDescriptionInit {
 RTCSdpType type;
 DOMString sdp;
};
5.1.2.1 Attributes
sdp of type DOMString, nullable
The string representation of the SDP [SDP]
type of type RTCSdpType, nullable
What type of SDP this RTCSessionDescription represents.
5.1.2.2 Dictionary RTCSessionDescriptionInit Members
sdp of type DOMString
type of type RTCSdpType
DOMString sdp
5.1.3 RTCSessionDescriptionCallback
callback RTCSessionDescriptionCallback = void (RTCSessionDescription sdp);
5.1.3.1 Callback RTCSessionDescriptionCallback Parameters
sdp of type RTCSessionDescription
The object containing the SDP [SDP].
5.1.4 RTCStatsCallback
callback RTCStatsCallback = void (RTCStatsElement[] statsElements, MediaStreamTrack? selector);
5.1.4.1 Callback RTCStatsCallback Parameters
statsElements of type array of RTCStatsElement
The objects containing the stats result.
selector of type MediaStreamTrack, nullable
The selector object that the statistics was gathered for. Currently only MediaStreamTrack supported.
5.1.5 RTCVoidCallback
callback RTCVoidCallback = void ();
5.1.6 RTCPeerConnectionErrorCallback
callback RTCPeerConnectionErrorCallback = void (DOMString errorInformation);
5.1.6.1 Callback RTCPeerConnectionErrorCallback Parameters
errorInformation of type DOMString
Information about what went wrong.
ISSUE 6
ISSUE: Should this be an enum?
5.1.7 RTCPeerState Enum
enum RTCPeerState {
 "new",
 "have-local-offer",
 "have-local-pranswer",
 "have-remote-pranswer",
 "active" (also could be called "open", "stable")",
 "closed"
};
	Enumeration description

	new
	The object was just created, and no networking has yet occurred.

	have-local-offer
	A local description, of type "offer", has been supplied.

	have-local-pranswer
	A remote description of type "offer" has been supplied and a local description of type "pranswer" has been supplied.

	have-remote-pranswer
	A local description of type "offer" has been supplied and a remote description of type "pranswer" has been supplied.

	active" (also could be called "open", "stable")
	Both local and remote descriptions have been supplied, and the offer-answer exchange is complete.

	closed
	The connection is closed.

The non normative peer state transitions are:
An example set of transitions might be:
Caller transition:
· new PeerConnection(): new
· setLocal(offer): have-local-offer
· setRemote(pranswer): have-remote-pranswer
· setRemote(answer): active
· close(): closed
Callee transition:
· new PeerConnection(): new
· setRemote(offer): received-offer
· setLocal(pranswer): have-local-pranswer
· setLocal(answer): active
· close(): closed
5.1.8 RTCGatheringState Enum
enum RTCGatheringState {
 "new",
 "gathering",
 "complete"
};
	Enumeration description

	new
	The object was just created, and no networking has occurred yet.

	gathering
	The ICE engine is in the process of gathering candidates for this RTCPeerConnection.

	complete
	The ICE engine has completed gathering. Events such as adding a new interface or new TURN server could cause that state to go back to gathering.

5.1.9 RTCIceState Enum
NOTE
There is active discussion around changing these states.
enum RTCIceState {
 "starting",
 "checking",
 "connected",
 "completed",
 "failed",
 "disconnected",
 "closed"
};
	Enumeration description

	starting
	The ICE Agent is gathering addresses and/or waiting for remote candidates to be supplied.

	checking
	The ICE Agent has received remote candidates on at least one component, and is checking candidate pairs but has not yet found a connection. In addition to checking, it may also still be gathering.

	connected
	The ICE Agent has found a usable connection for all components but is still checking other candidate pairs to see if there is a better connection. It may also still be gathering.

	completed
	The ICE Agent has finished gathering and checking and found a connection for all components.

	failed
	The ICE Agent is finished checking all candidate pairs and failed to find a connection for at least one component.

	disconnected
	Liveness checks have failed for one or more components. This is more aggressive than failed, and may trigger intermittently (and resolve itself without action) on a flaky network.

	closed
	The ICE Agent has shut down and is no longer responding to STUN requests.

States take either the value of any component or all components, as outlined below:
· checking occurs if ANY component has received a candidate and can start checking
· connected occurs if ALL components have established a working connection
· completed occurs if ALL components have finalized the running of their ICE process
· failed occurs if ANY component has given up trying to connect
· disconnected occurs if ANY component has failed liveness checks
· closed occurs only if PeerConnection.close() has been called.
NOTE
The WG is discussing if starting/checking should be one state or two.
If a component is discarded as a result of signaling (e.g. RTCP mux or BUNDLE), the state may advance directly from checking to completed.
An example transition might look like:
· new PeerConnection(): Starting
· (Starting, remote candidates received): Checking
· (Checking, found usable connection): Connected
· (Checking, gave up): Failed
· (Connected, finished all checks): Completed
· (Completed, lost connectivity): Disconnected
· (any state, ICE restart occurs): Starting
· close(): Closed
The non normative ICE state transitions are:
5.1.10 RTCIceCandidate Type
The RTCIceCandidate() constructor takes an optional dictionary argument, candidateInitDict, whose content is used to initialize the new RTCIceCandidate object. If a dictionary key is not present incandidateInitDict, the corresponding attribute will be initialized to null. If the constructor is run without the dictionary argument, all attributes will be initialized to null. This class is a future extensible carrier for the data contained in it and does not perform any substantive processing.
Objects implementing the RTCIceCandidate interface MUST serialize with the serialization pattern "{ attribute }".
[Constructor (optional RTCIceCandidateInit candidateInitDict)]
interface RTCIceCandidate {
 attribute DOMString? candidate;
 attribute DOMString? sdpMid;
 attribute unsigned short? sdpMLineIndex;
};
dictionary RTCIceCandidateInit {
 DOMString candidate;
 DOMString sdpMid;
 unsigned short sdpMLineIndex;
};
5.1.10.1 Attributes
candidate of type DOMString, nullable
This carries the candidate-attribute as defined in section 15.1 of [ICE].
sdpMLineIndex of type unsigned short, nullable
This indicates the index (starting at zero) of m-line in the SDP this candidate is associated with.
sdpMid of type DOMString, nullable
If present, this contains the identifier of the "media stream identification" as defined in [RFC 3388] for m-line this candidate is associated with.
5.1.10.2 Dictionary RTCIceCandidateInit Members
candidate of type DOMString
DOMString sdpMid
sdpMLineIndex of type unsigned short
sdpMid of type DOMString
unsigned short sdpMLineIndex
5.1.11 RTCIceServer Type
dictionary RTCIceServer {
 DOMString url;
 nullable DOMString credential;
};
5.1.11.1 Dictionary RTCIceServer Members
credential of type nullable DOMString
If the url element of the internal array is TURN URI, then this is the credential to use with that TURN server.
url of type DOMString
A stun or turn URI as defined in [STUN-URI] and [TURN-URI].
In network topologies with multiple layers of NATs, it is desirable to have a STUN servers between every layer of NATs in addition to the TURN servers to minimize the number peer to peer network latency.	Comment by w00193976: Delete “a”?
An example array of RTCIceServer objects is:
[{ url:"stun:stun.example.net"] } , { url:"turn:user@turn.example.org", credential:"myPassword"}]
5.1.12 RTCConfiguration Type
dictionary RTCConfiguration {
 RTCIceServer[] iceServers;
};
5.1.12.1 Dictionary RTCConfiguration Members
iceServers of type array of RTCIceServer
An array of containing the STUN and TURN servers provided by the JS that can be used by ICE.
5.1.13 RTCIdentityAssertion Type
dictionary RTCIdentityAssertion {
 DOMString idp;
 DOMString name;
};
5.1.13.1 Dictionary RTCIdentityAssertion Members
idp of type DOMString
The identity provider, identified as a domain name.
name of type DOMString
An RFC822-conformant [TODO: REF] representation of the verified peer identity. This identity will have been verified via the procedures described in [RTCWEB-SECURITY-ARCH].
5.1.14 RTCStatsElement dictionary
Each RTCStatsElement object consists of two RTCStatsReport objects, one corresponding to local stats and one to remote stats.
dictionary RTCStatsElement {
 RTCStatsReport local;
 RTCStatsReport remote;
};
5.1.14.1 Dictionary RTCStatsElement Members
local of type RTCStatsReport
The stats corresponding to local properties.
remote of type RTCStatsReport
The stats corresponding to remote properties.
5.1.15 RTCStatsReport Type
Each RTCStatsReport has a timestamp. Individual statistics are accessed by passing string names to the getValue() method. Note that while stats names are standardized [[OPEN ISSUE: Need to define an IANA registry for this and populate with pointers to existing things such as the RTCP statistics.]], any given implementation may be using experimental values or values not yet known to the Web application. Thus, applications MUST be prepared to deal with unknown stats.
Stats need to be synchronized with each other in order to yield reasonable values in computation; for instance, if “bytesSent” and “packetsSent” are both reported, they both need to be reported over the same interval, so that “average packet size” can be computed as “bytes / packets” - if the intervals are different, this will yield errors. Thus implementations MUST return synchronized values for all stats in a RTCStatsReport.
interface RTCStatsReport {
 readonly attribute long timestamp;
 any getValue (DOMString statName);
};
5.1.15.1 Attributes
timestamp of type long, readonly
The timestamp in milliseconds since the UNIX epoch (Jan 1, 1970, UTC).
5.1.15.2 Methods
getValue
The getValue() method returns the value for the statistic that corresponds to statName.
	Parameter
	Type
	Nullable
	Optional
	Description

	statName
	DOMString
	✘
	✘
	

Return type: any
5.1.16 RTCPeerConnection Interface
typedef MediaStream[] MediaStreamArray;
[Constructor (RTCConfiguration configuration, optional MediaConstraints
 constraints)]
interface RTCPeerConnection : EventTarget {
 void createOffer (RTCSessionDescriptionCallback successCallback, optional RTCPeerConnectionErrorCallback failureCallback, optional MediaConstraints constraints);
 void createAnswer (RTCSessionDescriptionCallback successCallback, optional RTCPeerConnectionErrorCallback? failureCallback = null, optional MediaConstraints constraints = null);
 void setLocalDescription (RTCSessionDescription description, optional RTCVoidCallback successCallback, optional RTCPeerConnectionErrorCallback failureCallback);
 readonly attribute RTCSessionDescription localDescription;
 void setRemoteDescription (RTCSessionDescription description, optional RTCVoidCallback successCallback, optional RTCPeerConnectionErrorCallback failureCallback);
 readonly attribute RTCSessionDescription remoteDescription;
 readonly attribute RTCPeerState readyState;
 void updateIce (optional RTCConfiguration? configuration = null, optional MediaConstraints? constraints = null);
 void addIceCandidate (RTCIceCandidate candidate);
 readonly attribute RTCGatheringState iceGatheringState;
 readonly attribute RTCIceState iceState;
 readonly attribute MediaStreamArray localStreams;
 readonly attribute MediaStreamArray remoteStreams;
 DataChannel createDataChannel ([TreatNullAs=EmptyString] DOMString label, optional DataChannelInit dataChannelDict);
 attribute EventHandler ondatachannel;
 void addStream (MediaStream stream, optional MediaConstraints constraints);
 void removeStream (MediaStream stream);
 void setIdentityProvider (DOMString provider, optional DOMString protocol, optional optional DOMString username);
 void getIdentityAssertion ();
 readonly attribute RTCIdentityAssertion? peerIdentity;
 void getStats (MediaStreamTrack? selector, RTCStatsCallback successCallback, optional RTCPeerConnectionErrorCallback failureCallback);
 void close ();
 attribute EventHandler onnegotationneeded;
 attribute EventHandler onicecandidate;
 attribute EventHandler onopen;
 attribute EventHandler onstatechange;
 attribute EventHandler onaddstream;
 attribute EventHandler onremovestream;
 attribute EventHandler ongatheringchange;
 attribute EventHandler onicechange;
 attribute EventHandler onidentityresult;
};
Attributes
iceGatheringState of type RTCGatheringState, readonly
The iceGatheringState attribute MUST return the gathering state of the RTCPeerConnection ICE Agent connection state.
iceState of type RTCIceState, readonly
The iceState attribute MUST return the state of the RTCPeerConnection ICE Agent ICE state.
localDescription of type RTCSessionDescription, readonly
The localDescription attribute MUST return the RTCSessionDescription that was most recently passed to setLocalDescription(), plus any local candidates that have been generated by the ICE Agent since then.
A null object will be returned if the local description has not yet been set.
localStreams of type MediaStreamArray, readonly
Returns a live array containing the local streams (those that were added with addStream()).
onaddstream of type EventHandler
This event handler, of event handler event type addstream, MUST be fired by all objects implementing the RTCPeerConnection interface It is called any time a MediaStream is added by the remote peer. This will be fired only as a result of setRemoteDescription. Onnaddstream happens as early as possible after the setRemoteDescription. This callback does not wait for a given media stream to be accepted or rejected via SDP negotiation. Later, when the SDP accepts something, you get the addTrack callback. Later if SDP ended a media flow, that would result in trackEnded callback.
ondatachannel of type EventHandler
This event handler, of type datachannel , MUST be supported by all objects implementing the RTCPeerConnection interface.
ongatheringchange of type EventHandler
This event handler, of event handler event type icechange, MUST be fired by all objects implementing the RTCPeerConnection interface. It is called any time the iceGatheringState changes.
onicecandidate of type EventHandler
This event handler, of event handler event type onicecandidate , MUST be supported by all objects implementing the RTCPeerConnection interface. It is called any time there is a new ICE candidate added to a previous offer or answer.
onicechange of type EventHandler
This event handler, of event handler event type icechange, MUST be fired by all objects implementing the RTCPeerConnection interface. It is called any time the iceState changes.
onidentityresult of type EventHandler
This event handler, of event handler event type identityresult, MUST be fired by all objects implementing the RTCPeerConnection interface. It is called any time an identity verification succeeds or fails.
onnegotationneeded of type EventHandler
This event handler, of event handler event type negotiationneeded , MUST be supported by all objects implementing the RTCPeerConnection interface.
onopen of type EventHandler
This event handler, of event handler event type open , MUST be supported by all objects implementing the RTCPeerConnection interface.
NOTE
Open issue if the "onopen" is needed or not.
onremovestream of type EventHandler
This event handler, of event handler event type removestream, MUST be fired by all objects implementing the RTCPeerConnection interface. It is called any time a MediaStream is removed by the remote peer. This will be fired only as a result of setRemoteDescription.
onstatechange of type EventHandler
This event handler, of event handler event type statechange , MUST be supported by all objects implementing the RTCPeerConnection interface. It is called any time the readyState changes, i.e., from a call to setLocalDescription, setRemoteDescription, or code. It does not fire for the initial state change into new
peerIdentity of type RTCIdentityAssertion, readonly, nullable
Contains the peer identity assertion information if an identity assertion was provided and verified.
readyState of type RTCPeerState, readonly
The readyState attribute MUST return the RTCPeerConnection object's RTCPeerConnection readiness state.
remoteDescription of type RTCSessionDescription, readonly
The remoteDescription attribute MUST return the RTCSessionDescription that was most recently passed to setRemoteDescription(), plus any remote candidates that have been supplied viaaddIceCandidate() since then.
A null object will be returned if the remote description has not yet been set.
remoteStreams of type MediaStreamArray, readonly
Returns a live array containing the streams that the remote streams. (those that were added by the remote side).
This array is updated when addstream and removestream events are fired.
Methods
addIceCandidate
The addIceCandidate() method provides a remote candidate to the ICE Agent, which will be added to the remote description. Connectivity checks will be sent to the new candidates as long as the "IceTransports" constraint is not set to "none". This call will result in a change to the state of the ICE Agent, and may result in a change to media state if it results in different connectivity being established.
A TBD exception will be thrown if candidate parameter is malformed.
	Parameter
	Type
	Nullable
	Optional
	Description

	candidate
	RTCIceCandidate
	✘
	✘
	

Return type: void
addStream
Adds a new stream to the RTCPeerConnection.
When the addStream() method is invoked, the user agent MUST run the following steps:
1. If the RTCPeerConnection object's RTCPeerConnection readiness state is closed (3), throw an INVALID_STATE_ERR exception.	Comment by w00193976:
2. If stream is already in the RTCPeerConnection object's localStreams object, then abort these steps.
3. Add stream to the end of the RTCPeerConnection object's localStreams object.
4. Parse the constraints provided by the application and apply them to the MediaStream, if possible. NOTE - need to deal with throwing an exception here.
5. Fire a negotiationneeded event.
ISSUE 8
ISSUE: Should this fire if the RTCPeerConnection is in "new"?
	Parameter
	Type
	Nullable
	Optional
	Description

	stream
	MediaStream
	✘
	✘
	

	constraints
	MediaConstraints
	✘
	✔
	

Return type: void
close
When the close() method is invoked, the user agent MUST run the following steps:
1. If the RTCPeerConnection object's RTCPeerConnection readiness state is closed (3), throw an INVALID_STATE_ERR exception.	Comment by w00193976:
2. Destroy the RTCPeerConnection ICE Agent, abruptly ending any active ICE processing and any active streaming, and releasing any relevant resources (e.g. TURN permissions).
3. Set the object's RTCPeerConnection readiness state to closed (3).	Comment by w00193976:
No parameters.
Return type: void
createAnswer
The createAnswer method generates an [SDP] answer with the supported configuration for the session that is compatible with the parameters in the remote configuration. Like createOffer, the returned blob contains descriptions of the local MediaStreams attached to this RTCPeerConnection, the codec/RTP/RTCP options negotiated for this session, and any candidates that have been gathered by the ICE Agent. The constraints parameter may be supplied to provide additional control over the generated answer.
As an answer, the generated SDP will contain a specific configuration that, along with the corresponding offer, specifies how the media plane should be established. The generation of the SDP must follow the appropriate process for generating an answer.
Session descriptions generated by createAnswer must be immediately usable by setLocalDescription without generating an error if setLocalDescription is called from the successCallback function. Like createOffer, the returned description should reflect the current state of the system. The session descriptions MUST remain usable by setLocalDescription without causing an error until at least the end of the successCallback function. Calling this method is needed to get the ICE user name fragment and password.
An answer can be marked as provisional, as described in [RTCWEB-JSEP], by setting the type to "pranswer".
If the PeerConnection is configured to generate Identity assertions, then the session description SHALL contain an appropriate assertion.
The failureCallback will be called if the system cannot generate an appropriate answer given the offer.
A TBD exception is thrown if the constraints parameter is malformed.
	Parameter
	Type
	Nullable
	Optional
	Description

	successCallback
	RTCSessionDescriptionCallback
	✘
	✘
	

	null
	RTCPeerConnectionErrorCallback? failureCallback =
	✘
	✔
	

	null
	MediaConstraints constraints =
	✘
	✔
	

Return type: void
createDataChannel
Creates a new DataChannel object with the given label. The DataChannelInit dictionary can be used to configure properties of underlying channel such as data reliability. A correspondingDataChannel object is dispatched at the other peer if the channel setup was successful.
When the createDataChannel() method is invoked, the user agent MUST run the following steps.
1. If the RTCPeerConnection object’s RTCPeerConnection readiness state is closed (3), throw an INVALID_STATE_ERR exception.	Comment by w00193976:
2. Let channel be a newly created DataChannel object.
3. Initialize channel’s label attribute to the value of the first argument.
4. Initialize channel’s reliable attribute to true.
5. If the second argument is present and it contains a reliable dictionary member, then set channel’s reliable attribute to the dictionary member value.
6. Return channel and continue these steps in the background.
7. Create channel’s associated underlying data transport.
	Parameter
	Type
	Nullable
	Optional
	Description

	label
	DOMString
	✘
	✘
	

	dataChannelDict
	DataChannelInit
	✘
	✔
	

Return type: DataChannel
createOffer
The createOffer method generates a blob of SDP that contains a RFC 3264 offer with the supported configurations for the session, including descriptions of the local MediaStreams attached to this RTCPeerConnection, the codec/RTP/RTCP options supported by this implementation, and any candidates that have been gathered by the ICE Agent. The constraints parameter may be supplied to provide additional control over the offer generated.
As an offer, the generated SDP will contain the full set of capabilities supported by the session (as opposed to an answer, which will include only a specific negotiated subset to use); for each SDP line, the generation of the SDP must follow the appropriate process for generating an offer. In the event createOffer is called after the session is established, createOffer will generate an offer that is compatible with the current session, incorporating any changes that have been made to the session since the last complete offer-answer exchange, such as addition or removal of streams. If no changes have been made, the offer will be include the capabilities of the current local description as well as any additional capabilities that could be negotiated in an updated offer.
Session descriptions generated by createOffer MUST be immediately usable by setLocalDescription without causing an error as long as setLocalDiscription is called within the successCallback function. If a system has limited resources (e.g. a finite number of decoders), createOffer needs to return an offer that reflects the current state of the system, so that setLocalDescription will succeed when it attempts to acquire those resources. The session descriptions MUST remain usable by setLocalDescription without causing an error until at least end of the successCallback function. Calling this method is needed to get the ICE user name fragment and password.
If the PeerConnection is configured to generate Identity assertions, then the session description SHALL contain an appropriate assertion.
The failureCallback will be called if the system can not generate an appropriate offer given the state of the RTCPeerConnection.
A TBD exception is thrown if the constraints parameter is malformed.
To Do: Discuss privacy aspects of this from a finger printing point of view - it's probably around as bad as access to a canvas :-)
	Parameter
	Type
	Nullable
	Optional
	Description

	successCallback
	RTCSessionDescriptionCallback
	✘
	✘
	

	failureCallback
	RTCPeerConnectionErrorCallback
	✘
	✔
	

	constraints
	MediaConstraints
	✘
	✔
	

Return type: void
getIdentityAssertion
Initiates the process of obtaining an identity assertion. Applications need not make this call. It is merely intended to allow them to start the process of obtaining identity assertions before a call is initiated. If an identity is needed, either because the browser has been configured with a default identity provider or because setidentityprovider() method was called, then an identity will be automatically requested when an offer or answer is created.
Queue a task to run the following substeps.
1. If the connection’s PeerConnection readiness state is CLOSED (3), abort these steps.	Comment by w00193976: ->closed 	Comment by w00193976:
2. Instantiate a new IdP proxy and request an identity assertion.
No parameters.
Return type: void
getStats
When the getStats() method is invoked, the user agent MUST queue a task to run the following substeps:
1. If the RTCPeerConnection object's RTCPeerConnection readiness state is closed (3), throw an INVALID_STATE_ERR exception.	Comment by w00193976:
2. Gather the stats indicated by the selector. If the selector is invalid, call the failureCallback.
3. Call the successCallback, supplying the relevant statistics object.
The “selector” may be a MediaStreamTrack that is a member of a MediaStream on the incoming or outgoing streams. The callback reports on all relevant statistics for that selector. If the selector is blank or missing, stats for the whole PeerConnection are reported. TODO: Evaluate the need for other selectors than MediaStreamTrack.
The returned structure contains a list of StatsElements, each reporting stats for one object that the implementation thinks is relevant for the selector. One achieves the total for the selector by summing over all the elements; for instance, if a MediaStreamTrack is carried by multiple SSRCs over the network, the getStats function may return one StatsElement per SSRC (which can be distinguished by the value of the “ssrc” stats attribute).
A PC MUST return consistent stats for each element in the array, adding new elements to the end as needed; this is needed so that an application can simply correlate a value read at one moment to a value read at a later moment.
	Parameter
	Type
	Nullable
	Optional
	Description

	selector
	MediaStreamTrack
	✔
	✘
	

	successCallback
	RTCStatsCallback
	✘
	✘
	

	failureCallback
	RTCPeerConnectionErrorCallback
	✘
	✔
	

Return type: void
removeStream
Removes the given stream from the localStream array in the RTCPeerConnection and fires negotiationneeded.
When the other peer stops sending a stream in this manner, a removestream event is fired at the RTCPeerConnection object.
When the removeStream() method is invoked, the user agent MUST run the following steps:
1. If the RTCPeerConnection object's RTCPeerConnection readiness state is closed (3), throw an INVALID_STATE_ERR exception.	Comment by w00193976:
2. If stream is not in the RTCPeerConnection object's localStreams object, then abort these steps. TODO: Do we need an exception here?
3. Remove stream from the RTCPeerConnection object's localStreams object.
4. Fire a negotiationneeded event.
	Parameter
	Type
	Nullable
	Optional
	Description

	stream
	MediaStream
	✘
	✘
	

Return type: void
setIdentityProvider
Sets the identity provider to be used for a given PeerConnection object. Applications need not make this call; if the browser is already configured for an IdP, then that configured IdP will be used to get an assertion.
When the setidentityprovider() method is invoked, the user agent MUST run the following steps:
1. Set the current identity values to the triplet provider, protocol, username.
2. If the PeerConnection object's PeerConnection readiness state is active, and any of the identity settings have changed, queue a task to run the following substeps:
1. If the connection’s PeerConnection readiness state is CLOSED (3), abort these steps.	Comment by w00193976: ->closed	Comment by w00193976:
2. Instantiate a new IdP proxy and request an identity assertion.
3. If/when the assertion is obtained, fire a negotiationneeded event.
	Parameter
	Type
	Nullable
	Optional
	Description

	provider
	DOMString
	✘
	✘
	

	protocol
	DOMString
	✘
	✔
	

	username
	optional DOMString
	✘
	✔
	

Return type: void
setLocalDescription
The setLocalDescription() method instructs the RTCPeerConnection to apply the supplied RTCSessionDescription as the local description.
This API changes the local media state. In order to successfully handle scenarios where the application wants to offer to change from one media format to a different, incompatible format, the RTCPeerConnection must be able to simultaneously support use of both the old and new local descriptions (e.g. support codecs that exist in both descriptions) until a final answer is received, at which point the RTCPeerConnection can fully adopt the new local description, or roll back to the old description if the remote side denied the change.
ISSUE 7
ISSUE: how to indicate to roll back?
To Do: specify what parts of the SDP can be changed between the createOffer and setLocalDescription
Changes to the state of media transmission will occur when a final answer is successfully applied. localDescription MUST return the previous description until the new description is successfully applied.
The failureCallback will be called if the RTCSessionDescription is a valid description but cannot be applied at the media layer, e.g., if there are insufficient resources to apply the SDP. The user agent MUST roll back as necessary if the new description was partially applied when the failure occurred.
A TBD exception is thrown if the SDP content is invalid.
	Parameter
	Type
	Nullable
	Optional
	Description

	description
	RTCSessionDescription
	✘
	✘
	

	successCallback
	RTCVoidCallback
	✘
	✔
	

	failureCallback
	RTCPeerConnectionErrorCallback
	✘
	✔
	

Return type: void
setRemoteDescription
The setRemoteDescription() method instructs the RTCPeerConnection to apply the supplied RTCSessionDescription as the remote offer or answer. This API changes the local media state.
If a=identity attributes are present, the browser verifies the identity following the procedures in [XREF sec.identity-proxy-assertion-request].
Changes to the state of media transmission will occur when a final answer is successfully applied. remoteDescription MUST return the previous description until the new description is successfully applied.
The failureCallback will be called if the RTCSessionDescription is a valid description but cannot be applied at the media layer, e.g., if there are insufficient resources to apply the SDP. The user agent MUST roll back as necessary if the new description was partially applied when the failure occurred.
A TBD exception is thrown if the SDP content is invalid.
	Parameter
	Type
	Nullable
	Optional
	Description

	description
	RTCSessionDescription
	✘
	✘
	

	successCallback
	RTCVoidCallback
	✘
	✔
	

	failureCallback
	RTCPeerConnectionErrorCallback
	✘
	✔
	

Return type: void
updateIce
The updateIce method updates the ICE Agent process of gathering local candidates and pinging remote candidates. If there is a mandatory constraint called "IceTransports" it will control how the ICE engine can act. This can be used to limit the use to TURN candidates by a callee to avoid leaking location information prior to the call being accepted.
This call may result in a change to the state of the ICE Agent, and may result in a change to media state if it results in connectivity being established.
NOTE
This method was previously used to restart ICE. We should document the new procedure in the correct place.
A TBD exception will be thrown if constraints parameter is malformed.
	Parameter
	Type
	Nullable
	Optional
	Description

	null
	RTCConfiguration? configuration =
	✘
	✔
	

	null
	MediaConstraints? constraints =
	✘
	✔
	

Return type: void
5.1.17 Garbage collection
A Window object has a strong reference to any RTCPeerConnection objects created from the constructor whose global object is that Window object.
6. IANA Registrations
IANA is requested to register the constraints defined in Constraints Section as specified in [RTCWEB-CONSTRAINTS].
1 6.1 Constraints
TOOD: Need to change the naming and declaration of these constraints to match the constraints draft once that is a bit further along. The names here now are likely not quite right but they serve as a place holder.
ISSUE 9
ISSUE: there are multiple ways to add constraints. How are multiple values reconciled?
The following new constraints are defined that can be used with a RTCPeerConnection object:
OfferToReceiveVideo
This is a enum type constraint that can take the values "true" and "false". The default is a non mandatory "true" for a RTCPeerConnection object that has a video stream at the point in time when the constraints are being evaluated and is non mandatory "false" otherwise.
In some cases, a RTCPeerConnection may wish to receive video but it is not going to send any video. The RTCPeerConnection needs to know if it should signal to the remote side if it wishes to receive video or not. This constraint allows an application to indicate its preferences for receiving video when creating an offer.
OfferToReceiveAudio
This is a enum type constraint that can take the values "true" and "false". The default is a non mandatory "true".
In some cases, a RTCPeerConnection may wish to receive audio but it is not going to send any audio. The RTCPeerConnection needs to know if it should signal to the remote side if it wishes to receive audio. This constraints allows an application to indicate its preferences for receiving audio when creating an offer.	Comment by w00193976: ->constraint
VoiceActivityDetection
This is a enum type constraint that can take the values "true" and "false". The default is a non mandatory "true".
Many codecs and system are capable of detecting "silence" and changing their behavior in this case by doing things such as not transmitting any media. In many cases, such as when dealing with sounds other than spoken voice or emergency calling, it is desirable to be able to turn off this behavior. This constraints allows the application to provide information about if it wishes this type of processing enable or disabled.	Comment by w00193976: ->constraint
IceTransports
This is a enum type constraint that can take the values "none", "relay", and "all". The default is a non mandatory "all".
This constraint indicates which candidates the ICE engine is allowed to use. The value "none" means the ICE engine MUST not send or receive any packets at this point. The value "relay" indicates the ICE engine MUST only use media relay candidates such as candidates passing through a TURN server. This can be used to reduce leakage of IP addresses in certain use cases. The value of "all" indicates all values can be used.
RequestIdentity
This is a enum type constraint that can take the values "yes", "no", and "ifconfigured". The default is a non mandatory "ifconfigured".
This constraint indicates whether an identity should be be requested. The constraint may be used with either of the createOffer(), createAnswer() calls or with the constructor.The value "yes" means that an identity must be requested. The value "no" means that no identity is to be requested. The value "ifconfigured" means that an identity will be requested if either the user has configured an identity in the browser or if the setIdentityProvider() call has been made by the JS. As this is the default value, an identity will be requested if and only if the user has configured an IdP in some way. Note that as long as DTLS-SRTP is in used, fingerprints will be sent regardless of the value of this constraint.
TODO items - need to register with IANA.
7. Simple Example
When two peers decide they are going to set up a connection to each other, they both go through these steps. The STUN/TURN server configuration describes a server they can use to get things like their public IP address or to set up NAT traversal. They also have to send data for the signaling channel to each other using the same out-of-band mechanism they used to establish that they were going to communicate in the first place.
EXAMPLE 1
var signalingChannel = createSignalingChannel();
var pc;
var configuration = ...;

// run start(true) to initiate a call
function start(isCaller) {
 pc = new RTCPeerConnection(configuration);

 // send any ice candidates to the other peer
 pc.onicecandidate = function (evt) {
 signalingChannel.send(JSON.stringify({ "candidate": evt.candidate }));
 };

 // once remote stream arrives, show it in the remote video element
 pc.onaddstream = function (evt) {
 remoteView.src = URL.createObjectURL(evt.stream);
 };

 // get the local stream, show it in the local video element and send it
 navigator.getUserMedia({ "audio": true, "video": true }, function (stream) {
 selfView.src = URL.createObjectURL(stream);
 pc.addStream(stream);

 if (isCaller)
 pc.createOffer(gotDescription);
 else
 pc.createAnswer(gotDescription);

 function gotDescription(desc) {
 pc.setLocalDescription(desc);
 signalingChannel.send(JSON.stringify({ "sdp": desc }));
 }
 });
}

signalingChannel.onmessage = function (evt) {
 if (!pc)
 start(false);

 var signal = JSON.parse(evt.data);
 if (signal.sdp)
 pc.setRemoteDescription(new RTCSessionDescription(signal.sdp));
 else
 pc.addIceCandidate(new RTCIceCandidate(signal.candidate));
};
8. Advanced Example
This example shows the more complete functionality.
EXAMPLE 2
TODO
9. Call Flow Browser to Browser
NOTE
Editor Note: This example flow needs to be discussed on the list and is likely wrong in many ways.
This shows an example of one possible call flow between two browsers. This does not show every callback that gets fired but instead tries to reduce it down to only show the key events and messages.

The following flow show a more complete set of the callbacks and events that happen.

10. Call Flow Browser to MCU
NOTE
Editor Note: This example flow needs to be discussed on the list and is likely wrong in many ways.
This shows an example of one possible call flow between a centralized conferencing server and a browser. This does not show every callback that gets fired but instead tries to reduce it down to only show the key events and messages.

11. Peer-to-peer Data API
The Peer-to-peer Data API lets a web application send and receive generic application data peer-to-peer.
ISSUE 10: More Open Issues
· Data channel setup signaling (signaling via SDP and application specific signaling channel or first channel via SDP and consecutive channels via internal signaling).
· What can be shared with the WebSocket API specification regarding actual interfaces.
11.1 DataChannel
The DataChannel interface represents a bi-directional data channel between two peers. A DataChannel is created via a factory method on a RTCPeerConnection object. The corresponding DataChannelobject is then dispatched at the other peer if the channel setup was successful.
Each DataChannel has an associated underlying data transport that is used to transport actual data to the other peer. The transport properties of the underlying data transport, such as reliability mode, are configured by the peer taking the initiative to create the channel. The other peer cannot change any transport properties of a offered data channel. The actual wire protocol between the peers is out of the scope for this specification.
A DataChannel created with createDataChannel() MUST initially be in the connecting state. If the DataChannel object’s underlying data transport is successfully set up, the user agent MUST announce theDataChannel as open.
When the user agent is to announce a DataChannel as open, the user agent MUST queue a task to run the following steps:
1. If the associated RTCPeerConnection object’s RTCPeerConnection readiness state is closed (3), abort these steps.	Comment by w00193976:
2. Let channel be the DataChannel object to be announced.
3. Set channel’s readyState attribute to open.
4. Fire a simple event named open at channel.
When an underlying data transport has been established, the user agent, of the peer that did not initiate the creation process MUST queue a task to run the following steps:
1. If the associated RTCPeerConnection object’s RTCPeerConnection readiness state is closed (3), abort these steps.	Comment by w00193976:
2. Let configuration be an information bundle with key-value pairs, received from the other peer as a part of the process to establish the underlying data channel.
3. Let channel be a newly created DataChannel object.
4. Initialize channel’s label attribute to value that corresponds to the "label" key in configuration.
5. Initialize channel’s reliable attribute to true.
6. If configuration contains a key named "reliable", set channel’s reliable attribute to the corresponding value.
7. Set channel’s readyState attribute to open.
8. Fire a datachannel event named datachannel with channel at the RTCPeerConnection object.
When the process of tearing down a DataChannel object’s underlying data transport is initiated, the user agent MUST run the following steps:
1. If the associated RTCPeerConnection object’s RTCPeerConnection readiness state is closed, abort these steps.
2. Let channel be the DataChannel object which is about to be closed.
3. If channel’s readyState is closing or closed, then abort these steps.
4. Set channel’s readyState attribute to closing.
5. Queue a task to run the following steps:
6.
1. Close channel’s underlying data transport.
NOTE
The data transport protocol will specify what happens to, e.g. buffered data, when the data transport is closed.
2. Set channel’s readyState attribute to closed (3).	Comment by w00193976:
3. Fire a simple event named close at channel.
interface DataChannel : EventTarget {
 readonly attribute DOMString label;
 readonly attribute boolean reliable;
 readonly attribute DataChannelState readyState;
 readonly attribute unsigned long bufferedAmount;
 attribute EventHandler onopen;
 attribute EventHandler onerror;
 attribute EventHandler onclose;
 void close ();
 attribute EventHandler onmessage;
 attribute DOMString binaryType;
 void send (DOMString data);
 void send (ArrayBuffer data);
 void send (Blob data);
};
11.1.1 Attributes
binaryType of type DOMString
NOTE
FIXME: align behavior with WebSocket API
bufferedAmount of type unsigned long, readonly
NOTE
FIXME: align behavior with WebSocket API
label of type DOMString, readonly
The DataChannel.label attribute represents a label that can be used to distinguish this DataChannel object from other DataChannel objects. The attribute MUST return the value to which it was set when the DataChannel object was created.
onclose of type EventHandler
This event handler, of type close , MUST be supported by all objects implementing the DataChannel interface.
onerror of type EventHandler
This event handler, of type error , MUST be supported by all objects implementing the DataChannel interface.
onmessage of type EventHandler
This event handler, of type message , MUST be supported by all objects implementing the DataChannel interface.
onopen of type EventHandler
This event handler, of type open , MUST be supported by all objects implementing the DataChannel interface.
readyState of type DataChannelState, readonly
The DataChannel.readyState attribute represents the state of the DataChannel object. It MUST return the value to which the user agent last set it (as defined by the processing model algorithms).
reliable of type boolean, readonly
The DataChannel.reliable attribute returns true if the DataChannel is reliable, and false otherwise. The attribute MUST return the value to which it was set when the DataChannel was created.
11.1.2 Methods
close
Closes the DataChannel . It may be called regardless if the DataChannel object was created by this peer or the remote peer.
When the close() method is called, the user agent MUST initiate the process of tearing down the DataChannel object’s underlying data transport.
No parameters.
Return type: void
send
NOTE
FIXME: align behavior with WebSocket API
	Parameter
	Type
	Nullable
	Optional
	Description

	data
	DOMString
	✘
	✘
	

Return type: void
send
NOTE
FIXME: align behavior with WebSocket API
	Parameter
	Type
	Nullable
	Optional
	Description

	data
	ArrayBuffer
	✘
	✘
	

Return type: void
send
NOTE
FIXME: align behavior with WebSocket API
	Parameter
	Type
	Nullable
	Optional
	Description

	data
	Blob
	✘
	✘
	

Return type: void
dictionary DataChannelInit {
 boolean reliable;
};
11.1.3 Dictionary DataChannelInit Members
reliable of type boolean
FIXME: write description
enum DataChannelState {
 "connecting",
 "open",
 "closing",
 "closed"
};
	Enumeration description

	connecting
	The user agent is attempting to establish the underlying data transport. This is the initial state of a DataChannel object created with createDataChannel() .

	open
	The underlying data transport is established and communication is possible. This is the initial state of a DataChannel object dispatched as a part of a DataChannelEvent .

	closing
	The process of closing down the underlying data transport has started.

	closed
	The underlying data transport has been closed or could not be established.

11.2 Examples
This example shows how to create a DataChannel object and perform the offer/answer exchange required to connect the channel to the other peer. The DataChannel is used in the context of a simple chat application and listeners are attached to monitor when the channel is ready, messages are received and when the channel is closed.
NOTE
This example uses the negotiationneeded event to initiate the offer/answer dialog. The exact behavior surrounding the negotiationneeded event is not specified in detail at the moment. This example can hopefully help to drive that discussion. An assumption made in this example is that the event only triggeres when a new negotiation should be started. This means that an action (such as addStream()) that normally would have fired the negotiationneeded event will not do so during an ongoing offer/answer dialog.
EXAMPLE 3
var signalingChannel = createSignalingChannel();
var pc;
var configuration = "...";
var channel;

// call start(true) to initiate
function start(isInitiator) {
 pc = new PeerConnection(configuration);

 // send any ice candidates to the other peer
 pc.onicecandidate = function (evt) {
 signalingChannel.send(JSON.stringify({ "candidate": evt.candidate }));
 };

 // let the "negotiationneeded" event trigger negotiation
 pc.onnegotiationneeded = function () {
 pc.createOffer(localDescCreated);
 }

 if (isInitiator) {
 // create data channel and setup chat
 channel = pc.createDataChannel("chat");
 setupChat();
 } else {
 // setup chat on incoming data channel
 pc.ondatachannel = function (evt) {
 channel = evt.channel;
 setupChat();
 };
 }
}

function localDescCreated(desc) {
 pc.setLocalDescription(desc, function () {
 signalingChannel.send(JSON.stringify({ "sdp": pc.localDescription }));
 });
}

signalingChannel.onmessage = function (evt) {
 if (!pc)
 start(false);

 var message = JSON.parse(evt.data);
 if (message.sdp)
 pc.setRemoteDescription(new SessionDescription(message.sdp), function () {
 if (pc.remoteDescription.type == "offer")
 createAnswer(localDescCreated);
 });
 else
 pc.addIceCandidate(new IceCandidate(message.candidate));
};

function setupChat() {
 channel.onopen = function () {
 // e.g. enable send button
 enableChat(channel);
 };

 channel.onmessage = function (evt) {
 showChatMessage(evt.data);
 };
}

function sendChatMessage(msg) {
 channel.send(msg);
}
11.3 Garbage Collection
A DataChannel object MUST not be garbage collected if its
· readyState is connecting and at least one event listener is registered for open events, message events, error events, or close events.
· readyState is open and at least one event listener is registered for message events, error events, or close events.
· readyState is closing and at least one event listener is registered for error events, or close events.
· underlying data transport is established and data is queued to be transmitted.
12. Statistics Model
The basic statistics model is that the browser maintains a set of statistics indexed by selector. The “selector” may be a MediaStreamTrack that is a member of a MediaStream on the incoming or outgoing streams. The calling Web application provides the selector to the getStats() method and the browser returns (in the JavaScript) a set of statistics that it believes is relevant to the selector.
The statistics returned are designed in such a way that repeated queries yield the same statistics in the same place in the structure. Thus, a Web application can make measurements over a given time period by requesting measurements at the beginning and end of that period.
12.1 Example
Consider the case where the user is experiencing bad sound and the application wants to determine if the cause is is it packet loss. The sound track is audio track 0 of remote stream 0 of pc1. The following example code might be used:	Comment by w00193976: delete
EXAMPLE 4
var baseline, now;
var selector = pc.remoteStreams[0].audioTracks[0];

pc.getStats(selector, function (stats) {
 baseline = stats;
});

// ... wait a bit
setTimeout(function () {
 pc.getStats(selector, function (stats) {
 now = stats;
 processStats();
 });
}, aByte);

function processStats() {
 // Real code would:
 // - Check that timestamp of “local stats” and “remote stats”
 // are reasonably consistent.
 // - Sum up over all the elements rather than just accessing
 // element zero.

 var packetsSent = now[0].remote.getValue("packetsSent") -
 baseline[0].remote.getValue("packetsSent");

 var packetsReceived = now[0].local.getValue("packetsReceived") -
 baseline[0].local.getValue("packetsReceived");

 // if fractionLost is > 0.3, we have probably found the culprit
 var fractionLost = (packetsSent - packetsReceived) / packetsSent;
}
13. Identity Provider Interaction
WebRTC offers and answers (and hence the channels established by PeerConnection objects) can be authenticated by using web-based Identity Providers. The idea is that the entity sending the offer/answer acts as the Authenticating Party (AP) and obtains an identity assertion from the IdP which it attaches to the offer/answer. The consumer of the offer/answer (i.e., the PeerConnection on which setRemoteDescription() is called acts as the Relying Party (RP) and verifies the assertion.
The interaction with the IdP is designed to decouple the browser from any particular identity provider; the browser need only know how to load the IdP's JavaScript--which is deterministic from the IdP's identity--and the generic protocol for requesting and verifying assertions. The IdP provides whatever logic is necessary to bridge the generic protocol to the IdP's specific requirements. Thus, a single browser can support any number of identity protocols, including being forward compatible with IdPs which did not exist at the time the browser was written. The generic protocol details are described in [RTCWEB-SECURITY-ARCH]. This document specifies the procedures required to instantiate the IdP proxy, request identity assertions, and consume the results.
13.1 Peer-Connection/IdP Communications
In order to communicate with the IdP, the browser must instantiate an isolated interpreted context [TODO: What's the technical term?], such as an invisible IFRAME. The initial contents of the context are loaded from a URI derived from the IdP's domain name. [RTCWEB-SECURITY-ARCH; Section XXX].
For purposes of generating assertions, the IdP shall be chosen as follows:
1. If the setIdentityProvider() method has been called, the IdP provided shall be used.
2. If the setIdentityProvider() method has not been called, then the browser shall use an IdP configured into the browser. If more than one such IdP is configured, the browser should provide the user with a chooser interface.
In order to verify assertions, the IdP domain name and protocol shall be equal to the "domain" and "protocol" fields of the identity assertion.
The context MUST have a MessageChannel named window.TBD which is "entangled" to the PeerConnection and is unique to that subcontext. This channel is used for messaging between the PeerConnection and the IdP. All messages sent via this channel are strings, specifically the JSONified versions of JS structs.
All messages sent from the PeerConnection to the IdP context MUST have an origin of rtcweb://peerconnection/. The fact that ordinary Web pages cannot set their origin values arbitrarily is an essential security feature, as it stops attackers from requesting WebRTC-compatible identity assertions from IdPs. For this reason, the origin must be included in the identity assertion and verified by the consuming PeerConnection.
13.2 Requesting Assertions
The identity assertion request process involves the following steps.
1. The PeerConnection instantiates an IdP context as described in the previous section.
2. The IdP serves up the IdP JS code to the IdP context.
3. Once the IdP is loaded and ready to receive messages it sends a "READY" message ([RTCWEB-SECURITY-ARCH; Section 5.6.5.2]. Note that this does not imply that the user is logged in, merely that enough IdP state is booted up to be ready to handle PostMessage calls.
4. The IdP sends a "SIGN" message (Section 5.6.5.2.2) to the IdP proxy context. This message includes the material the PeerConnection desires to be bound to the user's identity.
5. If the user is not logged in, at this point the IdP will initiate the login process. For instance, it might pop up a dialog box inviting the user to enter their (IdP) username and password.
6. Once the user is logged in (potentially after the previous step), the IdP proxy generates an identity assertion (depending on the authentication protocol this may involve interacting with the IDP server).
7. Once the assertion is generated, the IdP proxy sends a response (Section 5.6.5.2.2) containing the assertion to the PeerConnection over the message channel.
8. The PeerConnection stores the assertion for use with future offers or answers. If the identity request was triggered by a createOffer() or createAnswer(), then the assertion is inserted in the offer/answer.
13.3 Verifying Assertions
The identity assertion request process involves the following steps.
1. The PeerConnection instantiates an IdP context as described in the previous section.
2. The IdP serves up the IdP JS code to the IdP context.
3. Once the IdP is loaded and ready to receive messages it sends a "READY" message ([RTCWEB-SECURITY-ARCH; Section 5.6.5.2]. Note that this does not imply that the user is logged in, merely that enough IdP state is booted up to be ready to handle PostMessage calls.
4. The IdP sends a "VERIFY" message (Section 5.6.5.2.2) to the IdP proxy context. This message includes assertion from the offer/answer which is to be verified.
5. The IdP proxy verifies the identity assertion (depending on the authentication protocol this may involve interacting with the IDP server).
6. Once the assertion is verified the IdP proxy sends a response containing the verified assertion results (Section 5.6.5.2.3) to the PeerConnection over the message channel.
7. The PeerConnection displays the assertion information in the browser UI and stores the assertion in the peerIdentity attribute for availability to the JS application. The assertion information to be displayed shall contain the domain name of the IdP and the identity returned by the IdP and must be displayed via some mechanism which cannot be spoofed by content. [[OPEN ISSUE: The identity information should also be available in the inspector interface defined in [RTCWEB-SECURITY-ARCH; Section 5.5].
13.4 Examples
The identity system is designed so that applications need not take any special action in order for users to generate and verify identity assertions; if a user has configured an IdP into their browser, then the browser will automatically request generate assertions and the other side will automatically verify them and display the results. However, applications may with to exercise tighter control over the identity system as shown by the following examples.	Comment by w00193976: wish?
This example shows how to configure the identity provider and protocol.
EXAMPLE 5
pc.setIdentityProvider("example.com", "default", "alice@example.com");
This example shows how to consume identity assertions inside a Web application.
EXAMPLE 6
pc.onidentityresult = function(result) {
 console.log("IdP= " + pc.peerIdentity.idp +
 " identity=" + pc.peerIdentity.name);
};
14. Event definitions
14.1 RTCPeerConnectionIceEvent
The onicecandidate event of the RTCPeerConnection uses the RTCPeerConnectionIceEvent interface.
Firing a RTCPeerConnectionIceEvent event named e with an RTCIceCandidate candidate means that an event with the name e, which does not bubble (except where otherwise stated) and is not cancelable (except where otherwise stated), and which uses the RTCPeerConnectionIceEvent interface with the candidate attribute set to the new ICE candidate MUST be created and dispatched at the given target.
[Constructor(DOMString type, RTCPeerConnectionIceEventInit
 eventInitDict)]
interface RTCPeerConnectionIceEvent : Event {
 readonly attribute RTCIceCandidate candidate;
};
dictionary RTCPeerConnectionIceEventInit : EventInit {
 RTCIceCandidate candidate;
};
14.1.1 Attributes
candidate of type RTCIceCandidate, readonly
The candidate attribute is the RTCIceCandidate object with the new ICE candidate that caused the event.
14.1.2 Dictionary RTCPeerConnectionIceEventInit Members
candidate of type RTCIceCandidate

14.2 MediaStreamEvent
The addstream and removestream events use the MediaStreamEvent interface.
Firing a stream event named e with a MediaStream stream means that an event with the name e, which does not bubble (except where otherwise stated) and is not cancelable (except where otherwise stated), and which uses the MediaStreamEvent interface with the stream attribute set to stream, MUST be created and dispatched at the given target.
[Constructor(DOMString type, MediaStreamEventInit eventInitDict)]
interface MediaStreamEvent : Event {
 readonly attribute MediaStream? stream;
};
dictionary MediaStreamEventInit : EventInit {
 MediaStream stream;
};
14.2.1 Attributes
stream of type MediaStream, readonly, nullable
The stream attribute represents the MediaStream object associated with the event.
14.2.2 Dictionary MediaStreamEventInit Members
stream of type MediaStream

14.3 DataChannelEvent
The datachannel event use the DataChannelEvent interface.
Firing a datachannel event named e with a DataChannel channel means that an event with the name e, which does not bubble (except where otherwise stated) and is not cancelable (except where otherwise stated), and which uses the DataChannelEvent interface with the channel attribute set to channel, MUST be created and dispatched at the given target.
[Constructor(DOMString type, DataChannelEventInit eventInitDict)]
interface DataChannelEvent : Event {
 readonly attribute DataChannel channel;
};
dictionary DataChannelEventInit : EventInit {
 DataChannel channel;
};
14.3.1 Attributes
channel of type DataChannel, readonly
The channel attribute represents the DataChannel object associated with the event.
14.3.2 Dictionary DataChannelEventInit Members
channel of type DataChannel

15. Event summary
This section is non-normative.
The following event fires on DataChannel objects:
	Event name
	Interface
	Fired when...

	open
	Event
	The DataChannel object’s underlying data transport has been established (or re-established).

	MessageEvent
	Event
	A message was successfully received. TODO: Ref where MessageEvent is defined?

	error
	Event
	TODO.

	close
	Event
	The DataChannel object’s underlying data transport has was closed.

The following events fire on RTCPeerConnection objects:
	Event name
	Interface
	Fired when...

	connecting
	Event
	TODO

	open
	Event
	TODO

	addstream
	MediaStreamEvent
	A new stream has been added to the remoteStreams array.

	removestream
	MediaStreamEvent
	A stream has been removed from the remoteStreams array.

	negotiationneeded
	Event
	The browser wishes to inform the application that session negotiation needs to be done at some point in the near future.

	statechange
	Event
	TODO

	icechange
	Event
	TODO

	icecandidate
	RTCPeerConnectionIceEvent
	TODO

	identityresult
	RTCIdentityEvent
	TODO

16. Security Considerations
TBD.
17. Change Log
This section will be removed before publication.
Changes since Aug 16, 2012
1. Replaced stringifier with serializer on RTCSessionDescription and RTCIceCandidate (used when JSON.stringify() is called).
2. Removed offer and createProvisionalAnswer arguments from the createAnswer() method.
3. Removed restart argument from the updateIce() method.
4. Made DataChannel an EventTarget
5. Updated simple PeerConnection example to match spec changes.
6. Added section about DataChannel garbage collection.
7. Added stuff for identity proxy.
8. Added stuff for stats.
9. Added stuff peer and ice state reporting.
10. Minor changes to sequence diagrams.
11. Added a more complete DataChannel example
12. Various fixes from Dan's Idp API review.
13. Patched the Stats API.
Changes since Aug 13, 2012
1. Made the RTCSessionDescription and RTCIceCandidate constructors take dictionaries instead of a strings. Also added detailed stringifier algorithm.
2. Went through the list of issues (issue numbers are only valid with HEAD at fcda53c460). Closed (fixed/wontfix): 1, 8, 10, 13, 14, 16, 18, 19, 22, 23, 24. Converted to notes: 4, 12. Updated: 9.
3. Incorporate changes proposed by Li Li.
4. Use an enum for DataChannelState and fix IDLs where using an optional argument also requires all previous optional arguments to have a default value.
Changes since Jul 20, 2012
1. Added RTC Prefix to names (including the notes below).
2. Moved to new definition of configuration and ice servers object.
3. Added correlating lines to candidate structure.
4. Converted setLocalDescription and setRemoteDescription to be asynchronous.
5. Added call flows.
Changes since Jul 13, 2012
1. Removed peer attribute from RTCPeerConnectionIceEvent (duplicates functionality of Event.target attribute).
2. Removed RTCIceCandidateCallback (no longer used).
3. Removed RTCPeerConnectionEvent (we use a simple event instead).
4. Removed RTCSdpType argument from setLocalDescription() and setRemoteDescription(). Updated simple example to match.
Changes since May 28, 2012
1. Changed names to use RTC Prefix.
2. Changed the data structure used to pass in STUN and TURN servers in configuration.
3. Updated simple RTCPeerConnection example (RTCPeerConnection constructor arguments; use icecandidate event).
4. Initial import of new Data API.
5. Removed some left-overs from the old Data Stream API.
6. Renamed "underlying data channel" to "underlying data transport". Fixed closing procedures. Fixed some typos.
Changes since April 27, 2012
1. Major rewrite of RTCPeerConnection section to line up with IETF JSEP draft.
2. Added simple RTCPeerConnection example. Initial update of RTCSessionDescription and RTCIceCandidate to support serialization and construction.
Changes since 21 April 2012
1. Moved MediaStream and related definitions to getUserMedia.
2. Removed section "Obtaining local multimedia content".
3. Updated getUserMedia() calls in examples (changes in Media Capture TF spec).
4. Introduced MediaStreamTrackList interface with support for adding and removing tracks.
5. Updated the algorithm that is run when RTCPeerConnection receives a stream (create new stream when negotiated instead of when data arrives).
Changes since 12 January 2012
1. Clarified the relation of Stream, Track, and Channel.
Changes since 17 October 2011
1. Tweak the introduction text and add a reference to the IETF RTCWEB group.
2. Changed the first argument to getUserMedia to be an object.
3. Added a MediaStreamHints object as a second argument to RTCPeerConnection.addStream.
4. Added AudioMediaStreamTrack class and DTMF interface.
Changes since 23 August 2011
1. Separated the SDP and ICE Agent into separate agents and added explicit state attributes for each.
2. Removed the send method from PeerConenction and associated callback function.
3. Modified MediaStream() constructor to take a list of MediaStreamTrack objects instead of a MediaStream. Removed text about MediaStream parent and child relationship.
4. Added abstract.
5. Moved a few paragraphs from the MediaStreamTrack.label section to the MediaStream.label section (where they belong).
6. Split MediaStream.tracks into MediaStream.audioTracks and MediaStream.videoTracks.
7. Removed a sentence that implied that track access is limited to LocalMediaStream.
8. Updated a few getUserMedia()-examples to use MediaStreamOptions.
9. Replaced calls to URL.getObjectURL() with URL.createObjectURL() in example code.
10. Fixed some broken getUserMedia() links.
11. Introduced state handling on MediaStreamTrack (removed state handling from MediaStream).
12. Reintroduced onended on MediaStream to simplify checking if all tracks are ended.
13. Aligned the MediaStreamTrack ended event dispatching behavior with that of MediaStream.
14. Updated the LocalMediaStream.stop() algorithm to implicitly use the end track algorithm.
15. Replaced an occurrence the term finished track with ended track (to align with rest of spec).
16. Moved (and extended) the explanation about track references and media sources from LocalMediaStream to MediaStreamTrack.
A. Acknowledgements
The editors wish to thank the Working Group chairs and Team Contact, Harald Alvestrand, Stefan Håkansson and Dominique Hazaël-Massieux, for their support. Substantial text in this specification was provided by many people including Harald Alvestrand, Justin Uberti, and Eric Rescorla.
B. References
B.1 Normative references
[GETUSERMEDIA]
D. Burnett, A. Narayanan. getusermedia: Getting access to local devices that can generate multimedia streams 22 December 2011. W3C Editors draft (Work in progress.) URL:http://dev.w3.org/2011/webrtc/editor/getusermedia.html
[HTML5]
Ian Hickson; David Hyatt. HTML5. 29 March 2012. W3C Working Draft. (Work in progress.) URL: http://www.w3.org/TR/html5
[ICE]
J. Rosenberg. Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols. April 2010. Internet RFC 5245. URL:http://tools.ietf.org/html/rfc5245
[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Internet RFC 2119. URL: http://www.ietf.org/rfc/rfc2119.txt
[RTCWEB-CONSTRAINTS]
D. Burnett. IANA Registry for RTCWeb Media Constraints. URL: http://datatracker.ietf.org/doc/draft-burnett-rtcweb-constraints-registry/
[SDP]
J. Rosenberg, H. Schulzrinne. An Offer/Answer Model with the Session Description Protocol (SDP). June 2002. Internet RFC 3264. URL: http://tools.ietf.org/html/rfc3264
[STUN]
J. Rosenberg, R. Mahy, P. Matthews, D. Wing. Session Traversal Utilities for NAT (STUN). October 2008. Internet RFC 5389. URL: http://tools.ietf.org/html/rfc5389
[STUN-URI]
S. Nandakumar, G. Salgueiro, P. Jones, and M. Petit-Huguenin. URI Scheme for Session Traversal Utilities for NAT (STUN) Protocol. 12 March 2012. Internet Draft (work in progress). URL:http://tools.ietf.org/html/draft-nandakumar-rtcweb-stun-uri
[TURN]
P. Mahy, P. Matthews, J. Rosenberg. Traversal Using Relays around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN). April 2010. Internet RFC 5766. URL:http://tools.ietf.org/html/rfc5766
[TURN-URI]
M. Petit-Huguenin, S. Nandakumar, G. Salgueiro, and P. Jones. Traversal Using Relays around NAT (TURN) Uniform Resource Identifiers. 12 March 2012. Internet Draft (work in progress). URL:http://tools.ietf.org/html/draft-petithuguenin-behave-turn-uris
[WEBIDL]
Cameron McCormack. Web IDL. 27 September 2011. W3C Working Draft. (Work in progress.) URL: http://www.w3.org/TR/2011/WD-WebIDL-20110927/
B.2 Informative references
[RTCWEB-JSEP]
J. Uberti, C. Jennings. Javascript Session Establishment Protocol. URL: http://datatracker.ietf.org/doc/draft-ietf-rtcweb-jsep/

	2012-9-24
	华为保密信息,未经授权禁止扩散
	第2页, 共67页

image1.png

image2.jpeg
\
)

LHUAWEI

