
Dear Working Group Members,

I send you this letter on behalf of Computer Technology Institute and Press (CTI) "Diophantus"

(http://www.cti.gr/) a member of "The Community Network Game" (CNG) project's consortium

(http://www.cng-project.eu/). CNG is a research and development project funded by European Commission

under FP7/ICT programme.

During our research and development work in CNG, one of the activities we are responsible for is the

identification of possible contribution to standards. Given that our work also included research and

development activities on Web Technologies we have the following interesting idea that may contribute to

your standardization processes within W3C.

Our idea is the support of Real-Time Messaging Protocol (RTMP) in the future JavaScript standard. RTMP is a

protocol developed by Adobe for the support of a higher-level multimedia stream. Its current specification is

available at the following link:

http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/rtmp/pdf/rtmp_specificat

ion_1.0.pdf

Since the earlier versions of JavaScript did not include features for video/audio capturing/playback, flash

objects were widely used for the implementation of web-based applications for video-on-demand and

video/audio conferencing. These objects covered both media capturing/playback and interaction with the

multimedia server. RTMP was developed to support the networking part of these applications and it was

widely accepted. It requires the existence of an RTMP server and for this reason many RTMP server's

implementations were launched not only from Adobe but also from other developers. An indicative list of

the current RTMP server's implementation can be found at the following link:

http://www.flashrealtime.com/list-of-available-rtmp-servers/. Among others there are several open-source

implementations of RTMP server (e.g., Red5).

The reason we believe that JavaScript should support RTMP protocol is that RTMP has become very popular

and many multimedia services have been based on it. Therefore in order to make a smooth migration from

flash-based to non-flash-based chat applications we should secure a backward compatibility with the existing

services, which are mainly based on RTMP. This kind of backward compatibility towards the legacy services

will increase the acceptance of non-flash-based applications both within the users and within the chat

service providers. Therefore the support of RTMP will be widely exploited by the future multimedia

applications that rely on JavaScript.

More information on the necessary methods/commands as well as the related technical references can be

found in the Annex below.

I am available to provide you any further information on this.

Sincerely,

Christos J. Bouras, Professor

Department of Computer Engineering and Informatics, University of Patras

and Computer Technology Institute & Press «Diophantus»

ANNEX: JavaScript for RTMP Support

This document outlines to Real Time Messaging Protocol (RTMP) [1] implementation as a JavaScript API. It

should be noted that streams are captured according to Media capture API described in [2].

NetConnection

• connect. The client sends the connect command to the server to request connection to a server

application instance. Parameter: URL of the server having the following format:

protocol://servername:port/appName/appInstance

• call. The call method of the NetConnection object runs Remote Procedure Calls (RPC) at the receiving

end. The called RPC name is passed as a parameter to the call command.

• createStream. The client sends this command to the server to create a logical channel for message

communication .The publishing of audio, video, and metadata is carried out over stream channel

created using the createStream command.

NetStream

• play. The client sends this command to the server to play a stream. A playlist can also be created using

this command multiple times. Parameters:

o streamName, name of the stream to play.

o start, an optional parameter that specifies the start time in seconds.

o duration, an optional parameter that specifies the duration of playback in seconds.

o reset, an optional Boolean value or number that specifies whether to flush any previous playlist.

• play2. Unlike the play command, play2 can switch to a different bit rate stream without changing the

timeline of the content played. The server maintains multiple files for all supported bitrates that the

client can request in play2. Parameters:

o startTime, an encoded object that stores a number value. The value in this field specifies the

beginning position of the stream, in seconds. If 0 is passed in the Start Time field, the stream is

played from the current timeline.

o oldStreamName, an encoded object that stores a string value. Its value is a string containing the

stream name parameter and the old stream name.

o streamName, an encoded object that stores a string value. It stores the name of the stream that is

played.

o duration, an encoded object that stores a number value. The value stored in it specifies the total

duration of playing the stream.

o transition, an encoded object that stores a string value. Its value defines the playlist transition

mode (switch or swap mode) switch: Performs multi-bitrate streaming by switching 1-bit rate

version of a stream to another swap: Replaces the value in oldStreamName with the value in

streamName, and stores the remaining playlist queue as is. However, in this case, the server does

not make any assumptions about the content of the streams and treats them like different

content. Hence, it either switches at the stream boundary or never.

• deleteStream. NetStream sends the deleteStream command when the NetStream object is getting

destroyed. Parameter:

o streamID, ID of the stream that is destroyed on the server.

• receiveAudio. NetStream sends the receiveAudio message to inform the server whether to send or not

to send the audio to the client. Parameter:

o receiveFlag, true or false to indicate whether to receive audio or not.

• receiveVideo. NetStream sends the receiveVideo message to inform the server whether to send the

video to the client or not. Parameter:

o receiveFlag, true or false to indicate whether to receive video or not.

• Publish. the client sends the publish command to publish a named stream to the server. Using this

name, any client can play this stream and receive the published audio, video, and data messages.

Parameters:

o publishingName, name with which the stream is published.

o publishingType, type of publishing. Set to “live”, “record”, or “append”.

� record: the stream is published and the data is recorded to a new file. The file is stored on the

server in a subdirectory within the directory that contains the server application. If the file

already exists, it is overwritten.

� append: the stream is published and the data is appended to a file. If no file is found, it is

created.

� live: live data is published without recording it in a file.

• Seek. The client sends the seek command to seek the offset (in milliseconds) within a media file or

playlist. Parameter:

o msecs, number of milliseconds to seek into the playlist.

• Pause. The client sends the pause command to tell the server to pause or start playing. Parameter:

o pause/unpause, true or false, to indicate pausing or resuming play.

References

[1] RTMP specification (online):

http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/rtmp/pdf/rtmp_speci

fication_1.0.pdf

[2] Media capture API (online): http://www.w3.org/TR/mediacapture-streams/

