
ICE States
W3C WebRTC

Aug 2012
Cullen Jennings

Review of ICE State in RFC 5245

• Controlling / non controlling

• Check List: Running, Failed, Completed

• For each candidate:
• State: Waiting, In Progress, Succeeded, Failed, Frozen
• Nominated or not Nominated

• 5 states for each candidate, lots of candidates

Things to keep in mind while designing this

• In some cases such as no multiplexing, there are a bunch of
ICE machines running at the same time in the
PeerConnection

• For some apps, need to know when gathering is done so you
know offer will not get more candidates

• For some apps, need to know when checking is done so you
know path will not changes. (Changing the path changes
latency, congestion, etc)

• After everything is connected and stable, new interfaces can
be added

• UX need rapid notification of when things get connected or
fail

ICE State Summarization for Single Flow

• At pretty much any time you can be gathering or not
gathering and simultaneously checking or not checking and
may or may not have connectivity across the flow

• Leads to states of:
• Idle: not started yet, waiting for stun/turn servers etc
• Gathering
• Waiting: gathering has completed but no remote to start checking
• Checking + Gathering
• Checking
• Checking + Gathering + Connected
• Checking + Connected
• Connected: found at least one path to remote side
• Failed: all candidates have been checked an no path found
• Closed

• Important events for the JS are:
• Done gathering, (re)started gathering
• Got connected, No longer connected
• Done checking, (re)started checking

Multiple ICE Machines
Idle Gathering

Checking +
Gathering Waiting Checking

Check+Gath
+ Connected

Checking +
Connected Connected Failed Closed

Idle

Gathering

Checking +
Gathering

Waiting

Checking

Check+Gath
+ Connected

Checking +
Connected

Connected

Failed

Closed

Idle

x gathering

x gathering gathering

x gathering gathering waiting

x gathering gathering checking checking

x partially
connected

partially
connected

partially
connected

partially
connected

connected

x
partially

connected
partially

connected
partially

connected
partially

connected connected connected

x partially
connected

partially
connected

partially
connected

partially
connected

connected connected connected

x
partially
failed

partially
failed

partially
failed

partially
failed

partially
failed

partially
failed

partially
failed failed

x x x x x x x x x Closed

What to do?

Proposal A

• Have an enum with states from previous table:
• Idle, gathering, waiting, checking, partially connected, connected, partially failed, failed,

closed

• Event any time the state changes

• Somewhere deep in the statistics interface be able to get the
exact state of each ICE machine for detailed debugging

Issues with Proposal A

• No event when all gathering is done if one ice machines gets
connected before the other ice machines finnish gathering -
probably not a big deal

• If there are three ice machines, no event when 2nd one
becomes connected

• Is it more important to notify of failure or connected?

• No event when all paths have stopped changing (could fix by
adding an allConnected state)

• Code ends up with lots of logical combinations of states
• if connected or partially connected

Proposal B

• Have a few few functions that return if all, some, or none of
the ICE state machines are doing the following:
• isGathering()
• isChecking()
• isConnected()
• isFailed()
• and a boolean isClosed()

• Have events for
• gathering has (re) started, all gathering has completed
• checking has (re) started, all checking is completed
• any ICE machine becomes connected, all ICE machines are connected
• any ICE machine goes to failed

• Somewhere deep in the statistics interface be able to get the
exact state of each ICE machine for detailed debugging

Issues with Proposal B

• Not as much experience writing code with this API. Might be
ugly

