
CORS Sec Cons

4 Security Considerations

This section is non-normative.

Security requirements and considerations are listed throughout this specification. This

section lists advice that did not fit anywhere else.

Historically, cross-origin interactions, through hyperlinks, transclusion and form

submission, were the most important and distinguishing features of HTTP, HTML and

the World Wide Web. As the Web moved from being composed of static markup and

resources rendered by the user agent to also include active content, through plug-ins

and embedded scripting, and client-side state, through cookies, it quickly became clear

that unrestricted cross-origin interactions presented serious privacy and security risks.

To deal with these risks, user agents and plugin technologies introduced a set of

restrictions generally known as the Same Origin Policy. (SOP) Though many variants

of the SOP exist, they all generally 1) preserved the existing cross-origin interactions

allowed by HTML and HTTP while 2) restricting the ability of active content to read or

make new types of requests across origins.

This specification allows resources to voluntarily relax these restrictions. To do so
safely, it is important to understand both 1) the pre-existing security impacts of cross-
origin requests allowed by the legacy architecture of the Web as well as 2) the
distinction between the goal of this specification: authorizing cross-origin read access to
a resource in the user agent, and the possibly unintended consequences of authorizing
write/execute access to resources by applications from foreign origins executing in the
user agent.

4.1 Simple Requests

In this specification, A simple cross-origin requestst has beenare defined as congruent
the set of HTTP methods, headers and data which may with those which may be
generated sent cross-origin by currently deployed user agents that do not implement
CORS. not conform to this specification. Simple cross-origin requests generated
outside this specification (such as These include cross-origin form submissions using

GET or POST, cross-origin hyperlink dereferencing, resource transclusion (as with the img

tag), andor the special case of cross-origin GET requests resulting from the HTML

script elements) . Because such cross-origin requests are commonplace, they do not
require a preflight request. Simple cross-origin requests generated by user agents
through means other than CORS typically always include user credentials, so resources
conforming to this specification must always be prepared to expect simple cross-origin
requests with credentials.

Because of this, and independently of the existence of CORS, all resources for which
simple requests have significance other than retrieval must protect themselves from

Cross-Site Request Forgery (CSRF) by requiring the inclusion of an unguessable token
in the explicitly provided content of the request.[CSRF]

4.2 Allowing or Denying All Origins

This specification defines how to authorize an instance of an application from a foreign
origin, executing in the user agent, to access the representation of the resource in an
HTTP response. However, cCertain types of resources should not attempt to specify
particular authorized origins, but instead either deny or allow all origins. Some specific
instances are:

1. A resource that is not useful to applications from other origins, such as a login

page, oughtSHOULD notNOT to return an Access-Control-Allow-Origin
headerresponse header. The resource still must protect itself against CSRF
attacks, such as by requiring the inclusion of an unguessable token in the
explicitly provided content of the request. The security properties of such
resources are unaffected by user-agents conformant to this specification.

2. A resource that is publicly accessible resource , with no access control
checks,which is intended to uniformly process all incoming requests can always
safelybe reasonably made available to any cross-origin requests. Such

resources SHOULD return an Access-Control-Allow-Origin headerresponse

header whose value is "*".

3. A GET response whose entity body happens to parse as ECMAScript canMAY

return an Access-Control-Allow-Origin headerresponse header whose value is

"*" provided there are no sensitive comments, as the script content of such a
resourceit can be accessed cross-origin, independently of CORS, using an

HTML script element. If needed, such resources can implement access control
and CSRF protections as described above.

4.3 Cross-origin Requests and User Credentials

Care must always be taken by applications when making cross-origin requests with user
credentials. , and servers processing such requests must take care in the use of

credentials, including theOrigin header. In particular:

1. The Origin headerrequest header is intended to allow a server to grant read
access to a returned resource representation, across origins, in the user agent

context. Servers SHOULD use the value of the Origin headerrequest header to
return a correct and minimally scoped Access-Control-Allow-Origin response

header. Servers MAY, as a performance optimization, use the value of Origin
headerrequest header to decline to calculate or return thea resource
representation of a resource when requested by a disallowed origin. Servers
SHOULD NOT When requests have significance other than retrieval, and when

relying on the Origin headerrequest header as a credential, servers must be
careful to distinguish between authorizing a request and authorizing access to
the representation of that resource in the response to authorize write or execute
access to a resource.

Servers that do choose to userely on the Origin headerrequest header as a
credential for authorizing write or execute access to a resource are encouraged
to consider the following.

a) Authorization for a request should be performedServers SHOULD
authorize requests using only the intersection of the authority of the user
and the requesting origin(s). In the case of redirects, more than one value

for Origin may be present and all must be authorized.

b) Servers using the Origin headerrequest header to authorize requests are

encouraged to also verify that the Host headerrequest header matches its
expected value to prevent requests being forwarding attacksed by

malicious servers. Consider two sitesservers, corp.example and

corp.invalid. A web application at client instance from corp.example

makes a cross-origin request to corp.invalid, and the user agent sends

the Origin headerrequest header value “corp.example”. If corp.invalid
or the network is malicious, it may ay be able to cause the request to be

instead delivered to the corp.example server, with the result that

corp.example would receive a request that appears to originate from itself.

Verifying the Host headerrequest header would reveal that the user agent

intended the request for corp.invalid and it can be discarded. Even
better would be to exclusively use secure connections for cross-origin
requests to enable user agents to detect such misdirections.

c) Before honoring cross-origin requests with user credentials, iIt is often
appropriate for servers to require an authorization ceremonyto asking thea
user to consent that cross-originto such requests with credentials be
honored from each a given origin. In such cases,, passing security tokens
explicitly as part of the cross-origin request can remove any ambiguity as
to the scope of authorization. Such user authorization ceremonies and
authorization tokens of this sort are not part of this specification. OAuth is
provides an example of this alternative pattern. [OAUTH]

2. Use of user credentials in a cross-origin request is appropriate when:

a) A cross-origin request with credentials as defined in this specification is
used to substitute for alternate methods of authenticated resource sharing,
such as server-to-server back channels, JSONP, or cross-document
messaging. [JSONP][HTML]

This substitution can expose additional attack surface in some cases, as a
cross-site scripting vulnerability in the requesting origin can allow elevation
of privileges against the requested resource when compared to a server-
to-server back channel.

Relative toAs a substitute for JSONP-style cross-origin credentialed
requests, use of this specification significantly improves the security
posture of the requesting applicationn, as CORSit provides cross-origin
data access to data whereas JSONP operates via cross-origin code-
injection. The requesting application has tomust still validate that data

received from origins that are not completely trusted conforms to expected
formats and authorized values.

As a substitute for cross-origin communication techniques relying on

loading a resource, with credentials, into an HTML iframe element, and
subsequently employing cross-document messaging or other cross-origin
side channels, this specification provides a roughly equivalent security
posture. Again, data received from origins that are not completely trusted
has to be validated to conform to expected formats and authorized values.

b) For resources that are safe and idempotent per HTTP, and where the
credentials are used only to provide user-specific customization for
otherwise publicly accessible information. In this case, restricting access
to certain origins may protect user privacy by preventing customizations
from being used to identify a user, except at authorized origins.

2.3. When this specification is used for requests which have significance other than
retrieval and which involve coordination between or data originating from more
than two origins, (e.g. between resources enabling editing, printing and storage,
each at distinct origins) requests ought toSHOULD set the omit credentials flag
and servers ought toSHOULD perform authorization using security tokens
explicitly provided in the content of the request, especially if the origins are not all
mutually and completely trusted.

In such multi-origin scenarios, a malicious resource at one of the origins may be
able to enlist the user-agent as a confused deputy and elevate its privileges by
abusing the user's ambient authority. Avoiding such attacks requires that the
coordinating applications have explicit knowledge of the scope of privilege for
each origin and that all parameters and instructions received are carefully
validated at each step in the coordination to ensure that effects implied do not
exceed the authority of the originating principal. [CONFUSED]

Given the difficulty of avoiding such vulnerabilities in multi-origin interactions it is
recommended that, instead of using implicit the ambient authority of user
credentials such as cookies, security tokens which specify the particular
capabilities and resources authorized should be passed explicitly as part of each
request. OAuth again provides an example of such a pattern.

4.4 Malicious Content

Authors of client-side Web applications are strongly encouraged to validate content
retrieved from a cross-origin resource as it might be harmful.

4.5 Boundaries More Granular than An Origin

Authors of client-side Web applications using boundaries more granular than an origin
(for example identifying the security principal responsible for a resource by aa URL of

the type people.example.org/~author-name/) are will not be able to securely utilize the
mechanism in this specification. Oto be aware that only cross-origin security is

provided by this and related specifications and that therefore using a distinct origin
rather than distinct path is vital for secure client-side Web applications.

