The Future of the Web is not the Past of Windows

Sarah Allen, Laszlo Systems

XML is well-suited to GUI development. With an appropriate set of primitives, it can provide the
familiar feel of a markup language while enabling the broad range of capabilities required for
application development. Its declarative approach removes a lot of unnecessary procedural code. It
simplifies the programmer's task of creating the initial structure of an application, facilitating
prototyping and flexible design. Declarative programming is effective for frequently used elements
and patterns, and can be combined with scripting to allow procedural code for specific tasks.

XML provides a hierarchical structure which is effective for layout as well as for encapsulating
various logical states of an application. It is also convenient to work with a concise textual
representation of the application. In contrast to binary formats or the verbose code of traditional
GUI programming in Java or C++, XML files are easy to work with. Text files work easily with
standard tools, such as revision control systems, facilitating the development of applications by both
individuals and teams.

Like HTML, XML also supports the separation of assets created by graphic artists from the files that
contain application code. By including references to external resources in XML an application
specification, the people who develop the application and interaction logic can work effectively with
the people who create graphic elements and other media.

XML Ul languages are commonly used to accelerate and simplify development and distribution of
desktop-like applications. Languages like XUL and XWT encapsulate the set of Windows Ul
elements, and the ability to rapidly assemble a Windows-like Web application using XML is valuable
and has many advantages over building a similar application in Visual Basic, let alone MFC or Swing.

Unfortunately, using XML as a way to assemble interactive components that are defined using classic
GUI toolkits leads to homogeneity and artificial simplicity, and does not reflect the diversity of

today’s Web.

Here’s a selection of eight commercial web sites:

What do they have in common? graphics, text, hyperlinks. The appearance, layout, navigation — in
other words, the user experience — is unique to each. From a design perspective, they have more in
common with their offline counterparts than with each other.

HTML, perhaps inadvertently, provides the ability to create custom presentations of information
with a visual design that may be unique to the document. The same flexibility is now required for
interaction design. Like it or not — and many Ul specialists don’t — the Web is a varied, diverse
place, where the lines between application functionality, content, and branding are already blurred
and becoming more so over time. Even desktop operating systems are morphing, becoming more
graphical and media-like. The age of standardized, rule-based Ul design — “any color you like, as long
as it’s black” -- is coming to an end, and the underlying systems need to take this into account.

If an XML Ul language is to have any relevance to the evolution of Ul on the Web, it will have to
embrace this diversity rather than try to stifle it. Usability experts often claim that “different” user
experiences are confusing. The Web proves that different designs aren’t necessarily confusing — bad
designs are confusing. Look and feel should not be mandated. It must be driven by the needs and
desires of its audience, not only by technologists. What technologists can offer in this evolution is a
better way to create, structure, and maintain diverse interactive experiences.

Enabling Freedom of Expression

Freedom of expression is essential for a Ul markup language. But this doesn’t mean it shouldn’t be
systematized — any particular user experience will have its component parts and representative
behaviors. Homogenous design need not be the logical consequence of using structured XML for
application development.

A platform for web applications must provide standard Ul components for application developers to
be productive in assembling standard application elements; however, those components must be
examples of what is possible in the environment, rather than the extent of what is possible. When
the Ul components are implemented natively in the environment, it ensures that the platform has
sufficient flexibility and power to create arbitrary Ul controls and support innovative design.

“Skinning” and styling are effective ways of providing minimal changes in appearance to match the
color schemes and texture, but the Ul framework must also provide mechanism for changing how a
component works or developing a new component entirely. For example, a developer must be able
to create a button or window with a unique look and feel.

It is insufficient for XML to merely allow the composition of components that are defined using an
external procedural language. Such an architecture limits the creative flexibility of the user
presentation. The XML language must provide lower-level mechanisms such as: views, keyboard and
mouse input, focus, modality, events, layout, animation, media, constraints, and data-binding.
Developers need the ability to combine these lower-level capabilities into higher level components.
Any frequently used application element must be able to be represented as a tag. To create tags,
developers should be able to write declarative XML and not need to resort to “code-behind” or
similar approach where they must create the element using entirely procedural code.

Application development (component assembly) and component development are not distinct
activities to be undertaken by different personnel. Developers end up doing both, so the transition
between the two should be fluid.

Providing very basic building blocks and the ability the combine those into higher level abstractions
enables the production of a highly branded user experience. Businesses and individuals publishing
today’s web applications value the ability to establish a unique identity in their web presence. Just as
a consumer appliances appear in different form-factors with unique knobs and dials, so must the
software applications that are available on the web.

Laszlo’s XML application language, LZX, offers these capabilities. The following screenshots are
taken from applications implemented in LZX. These examples illustrate how applications are
adapted for various target audiences, ranging from desktop Ul to highly branded user experience.

Enhanced Module [minimize |

B
a
u
]
=
a
I

POWERED BY LASZLO
Example A: Earthlink Personal Start Page, column layout: users may resize columns by dragging. When columns are
resized the information inside is arranged to fit. In small sizes, summary information is displayed.

Enhanced Module [minimize |
: . San Francisco, CA E
48 r.\F Partly Cloudy
! Hi:60° Low:43" -

4 {Reuters) Irag-Syria Train Service Resumesain

y
4

POWERED BY LASZLO fotescdelayed afdeast 15 minutes. nio @ Eigl: i
Example B: Earthlink Personal Start Page, panoramic layout, troplcal theme: the same data is displayed as in example A,
including “ambient” data. The message in the bottle represents that the user has new mail. The treasure in the chest
indicates that the stock market is up.

Sun 11/23/03 B:19 pm

Example C: This calendar application uses very few standard Ul components. Above are two different states of the app.
Click on a day shows the details in place with a smooth transition between the two visual states. Choosing to create a
new event causes the panel on the right to slide in.

B Lt e i o

| [e |
papeiain |ﬂ 1z

Example D: This contacts application provides a

Example E: This photo application provides a
look and feel that matches the Windows OS.

look and feel that matches the Mac OS,
including a functioning “dock” to switch to
other applications.

|

e |3 i ok phora l Laved T B B BRI ELL 'l

Frer: fehoose e 1]

e b opraeg s |l g ey

Example F: A highly branded photo sharing application. Note the custom scrollbar with its thumb colored to match the

corporate brand. This application combines standard Ul elements, such as combobox, button, radio, slider and tabs,
along with custom Ul to display photos and music lists.

