
Context Sensitive Password
Anthony Y. Fu1,2 Robert C. Miller1 Greg Little1 Min Wu1

1Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, MA, USA

2Department of Computer Science, City University of Hong Kong, Hong Kong SAR

1. INTRODUCTION
There is a long history of people typing passwords into HTML
textboxes to verify their identities. However, textboxes are easy to
spoof by phishing websites. We propose a twist on the traditional
password input field which is more secure, while remaining easy-
to-use. This approach involves adding a positional component to
passwords, relative to a context string.. This method achieves
stronger security without requiring the user to install any special
plug-ins to their web browsers. Hence, they retain the stronger
security on any computer a user chooses to log in to. This method
is also easy to implement, requiring no additional work for
password verification modules. Context sensitive passwords are
also easy to save into traditional password management databases.
We discuss the general design of this idea in Section 2, and
present some examples of context sensitive passwords in Section
3. Then we cover related work in Section 4, and conclude our
work in Section 5.

2. CONTEXT SENSITIVE PASSWORD
DESIGN
2.1 Generating Context Sensitive Passwords
The generation of Context Sensitive Passwords has several steps.
First, the user creates a username and a secure code. The secure
code is like a lesser password which prompts the server to provide
a customized password input field. Note that it doesn’t need to be
as secure, since the server can generate fake customized password
fields based on any secure code, so an attacker will have difficulty
knowing whether they entered the correct secure code.
Next, the user creates the customized password field. This
consists of entering a string of text (the context string). Finally,
the user modifies the context string by inserting some number of
substrings to create the Context Sensitive Password. The Context
Sensitive Password is then saved in the server side database as a
traditional password.

2.2 Using Context Sensitive Passwords
When a user wants to log into a system protected by Context
Sensitive Password, they should provide their username and
secure code. The system should then provide the user with a
password field containing the context string, and prompt the user
to make the appropriate insertions. If the context string is a
meaningful string, then we believe it will be easy for the user to
remember where to make the insertions.
Now let’s analyze the interaction with a phishing site. First, it
asks the user for their username and secure code. Next, it needs to
display some context string, but it doesn’t know which one. This
should alert the user to something suspicious since they may not
know how to enter their password into the provided context
string. If they insert the substrings anyway, the phisher will still
not know the true insertion points.

If the attacker knows the secure code, and the N insertion strings,
and the context string has length L, then the attacker has only a

1)(−N
LC chance of inserting the strings correctly on each

attempt with the real server. However, some users may have
difficulty remembering more than 3 insertions. But even if they
have only 1 insertion, the attacker still has only a 1/L chance of
inserting it in the correct place. This can be made fairly small by
making the context string large. To help users create large context
strings, we can customize a paragraph of a novel or a news
column as a context sting. Even with long strings, users should
still be able to remember where they made their insertion, since
the string is semantically meaningful. Users can also reuse a small
set of context strings for different services in order to lower the
memory burden.

2.3 Verification
We simply check whether the string resulting from the insertions
to the context string matches the Context Sensitive Password
associated with the username and secure code.

3. EXAMPLES
3.1 Textual Version
Suppose Alice has an account in an e-banking system,
PseudoBanking. Her User Name is “Alice”, Secure Code is
“MIT”, Context string is “ALICELOVESBOB”, and insertion
string is “CSAIL” which is inserted between the letters “C” and
“E” in the word “ALICE”.
When Alice wants to login PseudoBanking, the login UI requests
her to input her username and secure code. Alice inputs “Alice”
and “MIT” into the two text boxes. The system then provides
Alice with a password box that looks like Figure 1a. It is a special
password box which has been filled with Alice’s personalized
context string. Alice remembers that she needs to modify the
string by inserting “CSAIL” between the letters “C” and “E” so
she moves the curser to this “E” to start inputting “CSAIL”. The
system then uses the password in Figure 2b to login, while the
real appearance of the password box is shown in Figure 2c. To
improve the security, Alice can use two insertion strings, like
“CS” and “AIL”. She might insert these as shown in Figure 1d.
Except for the “man-in-the-middle” attack, phishers have to guess
the positions that Alice is using to insert the substrings. On the
other hand, when Alice is trying to log into a phishing website,
the phishing website does not know the correct context string.
Hence, Alice does not know where to input her substrings. Even if
she enters them anyway, at some random location, the phisher
still cannot make a successful attack without knowing the
insertion points. Phishers have to guess what the insertion points
are. When Alice uses one insertion string, the attacker has a 1/14
chance of inserting it correctly, and when she uses two (assuming
the attackers knows what they are), the attacker has a 1/91 chance
of inserting them correctly.

ALICELOVESBOB
(a)

ALICCSAILELOVESBOB
(b)

ALIC*****ELOVESBOB
(c)

ALICCSELOVEAILSBOB
(d)

Figure 1. Context Sensitive Passwords

3.2 Icon Version
Alternatively, we can use icons to replace characters in the
context string. There are 26×2 letters + 10 numbers + 32 symbols
+ 1 space, giving us 95 icons to use. Figure 2 shows some
mapping samples of icons to characters (the icons are from [1]).
The complete table has 95 mappings. We replace characters in the
context strings of Figure 1a, b, and c with icons, and we show the
results in Figure 3a, b, and c respectively. Obviously, Alice only
needs to find the first “Mango” icon (which is in the middle of the
top row) and inserts her string their. The icon version may not be
superior to the textual version. However, there could be a way to
make a hybrid of the graphical and textual authentication methods
that may have some of the advantages of both, and we plan to
explore this in future work.

A B C E I L O

R S T U V Y Z

Figure 2. Icon to Character Mapping Samples

(a)

 C S A I L

(b)

 * * * * *

(c)

Figure 3. Icon Version of Context Sensitive Passwords

4. RELATED WORK
Min Wu et al show that visual indicators may not work well
through user studies [5]. They claim that users are always
focusing on the goal to finish their job, and do not remember to
check the display of toolbars or indicators every time they log in.
PWDHash [3] uses user passwords and domain names to hash the
real password for web browsers. Password Multiplier [2] is a
similar application which provides stronger cryptographic
protection and can be used out of web browsers. Graphical
Password [4] is a password authentication method that involves
clicking particular spots in an image instead of inputting
alphabetical passwords. This method forces users to look at
personalized images so that they can click them appropriately.
However, to achieve the same level of protection offered by
textual passwords, users may need to click an uncomfortable
number of times. Another problem with this approach is that it
takes time to click all of the images, which exposes the password
to people looking at a user’s screen. These three methods rely on
client plug-ins, which cannot protect users using computers
without such plug-ins. In our approach, we can integrate this
security into the standard HTML textbox, which does not require
a plug-in.

5. CONCLUSION AND FUTURE WORKS
The biggest goal of phishings is to steal users’ passwords. We
propose a novel password protection method, Context Sensitive
Password, to fight against such password stealers. There are three
preconditions for attackers to log into Context Sensitive Password
protected systems: 1. the attacker must know the username, secure
code, and context string; 2. the attacker must know the insertion
points; 3. the attacker must know the insertion substrings. They
cannot carry out a successful attack if they lack any one of the
three preconditions. We present a textual version and an icon
version of Context Sensitive Password. They are essentially
equivalent. However the different forms of representation could
affect usability. We would like to carry out related user studies to
compare these approaches. We would also like to provide an
easy-to-use programming API for Context Sensitive Password to
benefit future work in this area.

REFERENCES
[1]. AlienEntity Free Icons, http://www.entity.cc
[2]. Halderman, J., Waters B., and Felten, E., A Convenient

Method for Securely Managing Passwords, in the 14th
International World Wide Web Conference

[3]. Ross, B., Jackson, C., Miyake, N., Boneh, D., Mitchell, J.
Stronger Password Authentication Using Browser
Extensions, in the 14th Usenix Security, 2005.

[4]. Wiedenbeck, S., Waters, J., Birget, J., Brodskiy, A., Memon
N., Authentication using Graphical Passwords: Eeffects of
Tolerance and Image Choice, in SOUPS 2005

[5]. Wu, M., Miller, R., Garfinkel, S., Do Security Toolbars
Actually Prevent Phishing Attacks?, in the CHI 2006

