
1

W3C SysApps WG

TCP and UDP Socket API based on Streams

W3C San Jose F2F meeting April - 2014

Claes Nilsson

Technology Research / Sony Mobile

claes1.nilsson@sonymobile.com

mailto:claes1.nilsson@sonymobile.com

2

Background

• W3C SysApps TCP and UDP Socket API provides

interfaces to UDP sockets, TCP Client sockets

and TCP Server sockets.

• There is an ongoing rewrite of this API to be based

on a general Streams API.

http://www.w3.org/2012/sysapps/tcp-udp-sockets/
http://www.w3.org/2012/sysapps/tcp-udp-sockets/
http://www.w3.org/2012/sysapps/tcp-udp-sockets/
http://www.w3.org/2012/sysapps/tcp-udp-sockets/

3

Motivations for this potential re-design

• Reusing a general standardized solution for

handling the complexity of sending, receiving,

buffering, backpressure and other issues related

to streaming and asynchronous APIs.

• Reusing a solution for piping a source stream to a

destination stream.

4

Streams API activities

• Ongoing work on a general Streams API:

• W3C Streams API

• WHAT WG Github Streams API (including node.js

community)

• Work on aligning these activities is in progress.

• Currently the work to rewrite the TCP and UDP

Socket API is based on the WHAT WG Streams

API

https://dvcs.w3.org/hg/streams-api/raw-file/tip/Overview.htm
https://github.com/whatwg/streams
https://github.com/whatwg/streams
https://github.com/whatwg/streams
https://github.com/whatwg/streams

5

What is a Streams API?

• A streams API provides an interface for creating,

composing, and consuming streams of data.

• The work on Streams deals with similar issues as

we do with the TCP and UDP Socket API, e.g.:

• ”don’t lose data”

• ”don’t overflow send buffers”

• ”keep it simple for developers”

• The Streams API is designed to be used in

conjunction with other APIs.

6

Stream Producers

• APIs which can produce a Stream object are

identified as Producers.

Examples:

• XMLHTTPRequest

• FileReader

• Media Capture

• MediaStream Recording API

• Web Cryptography API

• WebSockets

• RTCPeerConnection

• TCP and UDP Sockets

7

Stream Consumers

• APIs which read and act on a Stream object are

identified as consumers.

Examples:

• XMLHttpRequest

• Web Audio

• Web Cryptography API

• WebSockets

• RTCPeerConnection

• FileWriter

• TCP and UDP Sockets

8

Reading push-based data sources

(such as TCP) - requirements

• Handling new data pushed from the source

• Mechanism for pausing and resuming the flow

of data.

• A way to signal that the source has no more

data

• A way to signal when there is an error in getting

data

• Buffering logic in the stream primitive itself to

assure that we don’t lose data.

9

Writing data - requirements

• The Stream object must handle the complexity of

buffering sequential writes, e.g. the case when the

send buffer becomes full due to slow network. For

example:

• A method to write data

• A way to signal that the buffer is getting full (reached the

“high water mark”)

• A way to signal that the buffer is drained and can

receive more data

• Must be possible to signal that the underlying sink

should be closed.

• Must be possible to detect “abort” signal

10

Piping streams - requirements

• A common way of consuming streams is to pipe

them to each other. This is one essence of

streaming APIs: getting data from a readable

stream to a writable one, while buffering as little

data as possible in memory.

• Example: Create a read stream from a file,

possibly transforming it, and pipe it to a write TCP

socket stream.

11

How to use the Streams API for TCP

and UDP Sockets? 1(5)

Before:

[Constructor (DOMString remoteAddress, unsigned short remotePort,

optional TCPOptions options)]

interface TCPSocket : EventTarget {

 readonly attribute DOMString remoteAddress;

 readonly attribute unsigned short remotePort;

 readonly attribute DOMString localAddress;

 readonly attribute unsigned short localPort;

 readonly attribute boolean addressReuse;

 readonly attribute boolean noDelay;

 readonly attribute unsigned long bufferedAmount;

 readonly attribute ReadyState readyState;

 attribute EventHandler ondrain;

 attribute EventHandler onopen;

 attribute EventHandler onclose;

 attribute EventHandler onerror;

 attribute EventHandler ondata;

 void close ();

 void halfclose ();

 void suspend ();

 void resume ();

 boolean send ((DOMString or Blob or ArrayBuffer or ArrayBufferView) data);

};

http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/

12

Now:

[Constructor (DOMString remoteAddress, unsigned short remotePort,

optional TCPOptions options)]

interface TCPSocket : {

 readonly attribute DOMString remoteAddress;

 readonly attribute unsigned short remotePort;

 readonly attribute DOMString localAddress;

 readonly attribute unsigned short localPort;

 readonly attribute boolean addressReuse;

 readonly attribute boolean noDelay;

 readonly attribute ReadyState readyState;

 readonly attribute Promise opened;

 readonly attribute Promise closed;

 readonly attribute ReadableStream output; // ReadableStream is defined by Streams API

 readonly attribute WriteableStream input; // WritableStream is defined by Streams API

 void socketClose ();

 void socketHalfClose ();

};

How to use the Streams API for TCP

and UDP Sockets? 2(5)

http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://www.w3.org/2012/sysapps/tcp-udp-sockets/
http://www.w3.org/2012/sysapps/tcp-udp-sockets/
http://www.w3.org/2012/sysapps/tcp-udp-sockets/
http://www.w3.org/2012/sysapps/tcp-udp-sockets/
http://www.w3.org/2012/sysapps/tcp-udp-sockets/
http://www.w3.org/2012/sysapps/tcp-udp-sockets/
http://www.w3.org/2012/sysapps/tcp-udp-sockets/
http://www.w3.org/2012/sysapps/tcp-udp-sockets/

13

• Each Streams API based API must provide an

adaptation layer to the Streams API.

• The adaptation layer to Streams API is created

through implementation of a number of functions

that are given as input arguments to the

constructors of the Readable/WritableStreams

objects and called by the Streams API

implementation.

• These functions then calls the internal methods of

the Streams API to do stuff.

How to use the Streams API for TCP

and UDP Sockets? 3(5)

14

How to use the Streams API for TCP

and UDP Sockets? 4(5)

For example, the ReadableStream’s constructor is

passed the following functions that must be

implemented by the TCP and UDP Socket API:

• start(): Called immediately by Streams implementation.

Used to adapt to the underlying TCP implementation.

• pull(): Used to start the flow of TCP data after a “buffer

getting full” condition.

• cancel(): Called when the readable stream is canceled.

Used here to close the TCP connection.

15

How to use the Streams API for TCP

and UDP Sockets? 5(5)

• For example, the ReadableStream’s constructors

start() function does the following:

• Performs TCP connection setup handshake.

• Pushes received TCP data into the internal buffer by

calling the Streams API’s internal push() function.

• When push() return value says “high watermark

reached” then stops receiving TCP data through the

TCP flow control mechanism.

16

// Echo client

 var mySocket = new TCPSocket("127.0.0.1", 6789);

 mySocket.input.write("Hello World").then(

 () => {

 console.log("Data has been sent to server");

 mySocket.output.wait().then(

 () => {

 console.log("Data received from server:" + mySocket.output.read());

 mySocket.socketClose();

 },

 e => console.error("Receiving error: ", e);

);

 },

 e => console.error("Sending error: ", e);

);

Application code example

17

“SONY” or “make.believe” is a registered trademark and/or trademark of Sony Corporation.

Names of Sony products and services are the registered trademarks and/or trademarks of Sony Corporation or its Group companies.

Other company names and product names are the registered trademarks and/or trademarks of the respective companies.

