
PROVA: Rule-based Java-Scripting
for a Bioinformatics Semantic Web

Alexander Kozlenkov1 and Michael Schroeder2

1 City University, London, UK
2 Biotec/Dpet. of Computing, TU Dresden, Germany, ms@mpi-cbg.de

Abstract. Transparent information integration across distributed and heteroge-
neous data sources and computational tools is a prime concern for bioinformatics.
Recently, there have been proposals for a semantic web addressing these require-
ments. A promising approach for such a semantic web are the integration of rules
to specify and implement workflows and object-orientation to cater for computa-
tional aspects.
We present PROVA, a Java-based rule-engine, which realises this integration. It
enables one to separate a declarative description of information workflows from
any implementation details and thus easily create and maintain code. We show
how PROVA is used to compose an information and computation workflow in-
volving

– rules for specifying the workflow,
– rules for reasoning over the data,
– rules for accessing flat files, databases, and other services, and
– rules involving heavy-duty computations.

The resulting code is very compact and re-usable.
We give a detailed account of PROVA and document its use with a example
of a system, PSIMAP, which derives domain-domain interactions from multi-
domain structures in the PDB using the SCOP domain and superfamily defini-
tions. PSIMAP is a typical bioinformatics application in that it integrates dis-
parate information resources in different formats (flat files (PDB) and database
(SCOP)) requiring additional computations.
PROVA is available at comas.soi.city.ac.uk/prova

Keywords: Rules, Reasoning, Declarative and Object oriented Programming, Work-
flows.

1 Background

Systems integration is vital for progress in bioinformatics. Currently, users typically
use systems via the web limiting their possibilities. While there are systems, which
integrate a number of databases and tools, such as SRS, Expasy, NCBI, etc. these
systems are inflexible and it is not possible to freely customize information work-
flows. There are some efforts to tightly integrate data and computational resources
such as Edit2Trembl [MLFA99,MSA01,MKA00], which integrates annotations of tools



for transmembrane prediction, GeneWeaver [BLJJ00], which integrates genome anno-
tations, MyGrid [SRG03], which provides personalised access to bioinformatics re-
sources focusing on service management and discovery as part of the workflows.

However, many approaches are hard-wired and cannot adapt to changes in the un-
derlying information resources. They also rely on a hand-crafted mapping of schemata
of the different information resources. To this end, the semantic web promises a so-
lution to information integration through the use of shared ontologies, which serve as
common reference point for the information resources. Essentially, an ontology is a
hierarchically structured taxomomy, that maps out a domain. In bioinformatics, Ge-
neOntology [Con00] is a very prominent effort that defines a vocabulary for molecular
biology covering processes, functions, and location. Besides ontologies, a semantic web
will contain web services, which extend traditional web pages in that they allow access
to remote computations and resulting data.

Semantic web that consists of data specified with a hierarchical common ontology
and web services for computations can be programmed by marrying concepts from
declarative and object-oriented programming. Rules, reasoning, and logic are needed
for dealing with ontologies and for specifying workflows and relationships between the
data. Object-orientation is needed for reflecting the hierarchy of the ontology and for
implementing services and computations. Rule-based programming has another advan-
tage. It transparently extends the expressiveness and power of relational databases that
are often underlying bioinformatics databases. Rules serve as virtual table generators
that derive knowledge from elementary facts.

Rule-based programming and object-orientation serve complementary purposes.
Declarative programming style is very good for flexible data integration, inference, and
for specifying if-then logic. Object-orientation is optimal for modeling complex sys-
tems that are relatively stable and well understood. Declarative programming is good
for logic, while object-orientation is good for computation.

PROVA, the system presented in this paper, offers a clean way of integrating object-
oriented Java with rule-based programming, paving a way for intelligent knowledge-
intensive data integration useful in knowledge discovery for biomedical research.

2 Motivation

Before we formulate requirements for a more flexible and fruitful bioinformatics web
and how our language PROVA meets these requirements, let us analyse the available
data and their formats in detail. Although many bioinformatics data resources are kept
in flat files or more recently in XML, their nature is relational. End users typically
download these files, define database schemes and populate the databases with the data.

Example 1. Relational Databases
All major data source such as e.g. PDB, SCOP, GeneOntology, DIP, SWISSPROT, etc.
can be stored as relational tables. Let us consider two examples. PDB [Tea03], the pro-
tein databank, stores atomic coordinates of structures determined by X-Ray christallog-
raphy and nuclear magnetic resonance. Part of a PDB database will have a table with
the following schema



PDB: PDB ID, Atom ID, Atom type, x, y, z

SCOP [MBHC95], the structural classification of proteins, is based on PDB and
hierarchically groups domains of proteins according to their structural composition. A
SCOP database contains a table

Scop: PDB ID, superfamily, family, domain

PSIMAP [DBG+03,BDH+03] is a database of structural domain-domain interac-
tions derived from PDB and Scop. Such interactions can be stored in a table:

PSIMAP: superfamily, superfamily

Once data is available in a relational database format rather than the original flat
files, it can be queried using SQL, the structured querying language.

Example 2. SQL queries
SQL could answer queries such as the following:

– PDB: What are the atomic coordinates of the structure with PDB ID 1goj?
– Scop: How many domains does structure 1goj have?
– Scop: Does 1goj have a domain belonging to the P-loop superfamily?
– Interaction: What are the interaction partners of the P-loop?

However, sometimes SQL is not sufficiently expressive to answer queries.

Example 3. Expressiveness of SQL
SQL does not have the same computational expressiveness as a full programming lan-

guage. In particular, it cannot express transitive closure. Hence, the queries

– Interaction: List all superfamilies the P-loop can directly or indirectly interact with

There is another problem. Most useful queries will involve more than one data
source and thus there have to be joins across databases, which can be distributed.

Example 4. Joins across (distributed) databases

– SCOP/PDB: List all P-loop domains whose resolution is better than 1.5 Angstrom
– SCOP/PDB: For PDB entry 1goj list all atomic coordinates separated by their Scop

domains

Finally, many queries will have a computational component to them involving ad-
ditional tools and computations that process the integrated data.

Example 5. Computations
SCOP/PDB: For a given multi-domain structure in PDB, check for all its pairs of Scop
domains whether these domains have at least 5 residue pairs within 5 Angstrom and can
hence be said to interact.



Let us summarise the above observations.

1. Relational databases: Most information sources used in bioinformatics can be spec-
ified as relational databases.

2. Simple queries: For many purposes, SQL-type querying is useful and sufficient.
3. Expressive queries: Some queries require more expresiveness than SQL
4. Remote access: Resources are often distributed, but accessible through interfaces

such as HTML, database server, or web services.
5. Computation: As a rule, information integration also has computation-intensive

components.

These observations can serve as requirements, which need to be met to achieve
flexible and transparent systems integration. Additionally, a prime concern in systems
integration must be the separation of the workflow and the details of the data and com-
putation resources to be integrated.

Rules are a natural extension of relational databases to achieve more expressiveness.

Example 6. Rules as workflows
PSIMAP [DBG+03,BDH+03] considers each multi-domain protein in PDB and estab-
lishes an interaction between a pair of domains if they have at least 5 residue pairs within
5 Angstrom. An implementation of PSIMAP will have some complexity, as PDB and
Scop need to be wrapped and accessed. Most imperative approaches will mix the work-
flow with imlementation details such as wrappers and the actual computation. However,
using rules the workflow itself can be specified as a single simple rule:

PSIMAP(SF1,SF2) if
PDB(PDB_ID),
Scop(PDB_ID,SF1,F1,D1),
Scop(PDB_ID,SF2,F2,D2),
D1<>D2,
interact(D1,D2)

Superfamilies SF1 and SF2 interact if there is a PDB entry PDB ID for which there
is a Scop domain D1 of superfamily SF1 and a Scop domain D2 of superfamily SF2,
where D1 and D2 are different, and the two domains interact.

This is the pure workflow and it does not yet specify how the PDB entry is obtained,
where the Scop data comes from and how the computation is carried out. These are all
implementation details that are defined by separate rules, which in turn may require
access to a database or system calls.

Besides using rules to specify workflows, rules can be used to infer relationships
from the data. As shown in example 3, we might wish to know all superfamilies a given
superfamily such as the P-loop is directly or indirectly connected to.

Example 7. Inference and Rules
Two rules are needed to define if two superfamilies X and Y are connected, i.e. if they

can interact directly or indirectly. First, X and Y are connected if they interact (directly).
Second, X and Y are connected if X interacts directly with a third superfamily Z, which
is connected to Y. In rule format, this looks as follows:



connected(X,Y) if interact(X,Y).
connected(X,Y) if interact(X,Z), connected(Z,Y).

3 PROVA

Our system PROVA, which is based itself on Mandarax [Die], addresses the above re-
quirements by providing a rule-based Java scripting language. The use of rules allows
one to declaratively specify the integration needs at a high-level without any implemen-
tation details. The transparent integration of Java caters for easy access and integration
of database access, web services, and many other Java services. This way PROVA com-
bines the advantages of rule-based programming and object-oriented programming in
Java. This section presents rationales and design principles behind the PROVA lan-
guage. We position this language as a platform for knowledge-intensive ontology-rich
applications in biomedical research. We are aiming to satisfy the following design goals
with the proposed PROVA language:

– Combine the benefits of declarative and object-oriented programming;
– Merge the syntaxes of Prolog, as rule-based language, and Java as object-oriented

languages;
– Expose logic as rules;
– Access data sources via wrappers written in Java or command-line shells like Perl;
– Make all Java API from available packages directly accessible from rules;
– Run within the Java runtime environement;
– Be compatible with web- and agent-based software architectures;
– Provide functionality necessary for rapid application prototyping and low cost main-

tenance.

Consider the following PROVA code showing how knowledge can be inferred from
the available facts.

Example 8. (Declarative programming)
Consider a table of interacting proteins. We wish to infer all interactions, direct or indi-
rect. In PROVA, this can be specified as follows (:- is read as “if”):

% Facts (what we know)
interactDirect(a,b).
interactDirect(b,c).
interactDirect(c,d).

% Rules (how to derive new knowledge)
interact(X,Y):-interactDirect(X,Y).
interact(X,Z):-interactDirect(X,Y),interact(Y,Z).

The query :- solve(interact(a,X))., which can be read as “which pro-
teins X interact with protein a?”, will return the three answers X=b, X=c, and X=d.



Thus, PROVA follows classical Prolog closely by declaratively specifying relation-
ships with facts and rules. Now let us consider two examples, where access to Java
methods is directly integrated into rules.

Example 9. (Object-oriented programming)
The code below represents a rule whose body consists of three Java method calls: the
first to construct a String object, the second to append something to the string, and the
third to print the string to the screen.

hello(Name):-
S = java.lang.String("Hello "),
S.append(Name),
java.lang.System.out.println(S).

Java method calls can be used to wrap up computations. As an example, consider the
PSIMAP application, in which domain-domain interactions are computed by checking
whether 5 residue pairs are within 5 Angstrom. The exact PROVA code to carry out this
computation will be dicussed later. However, as an example for method call, consider
the line below in which the Java method interacts of object DomainA is invoked
with parameter DomainB.

scop_dom2dom(...):-
...
DomainA.interacts(DomainB).

Let us consider the PROVA syntax in detail. The first example above shows how
an object is constructed. The code is very similar to Java itself, only the new keyword
is missing. Once an object is available in PROVA, methods can be invoked on it in
the same way as in Java including both instance (DomainA.interacts) and static
calls (java.lang.System.out.println). The latter needs fully qualified class
names. An instance method can fail if an exception is raised or if the unification of the
optional returned object with the supplied pattern fails. There are two important rules
about the passing and returning of PROVA lists from Java methods. Essentially, all
PROVA lists are automatically converted to the Java ArrayList implementing the List
interface when passed to a Java method requiring a Collection for the corresponding
parameter. Conversely, when a Java Object array (Object[]) is returned from a Java
method, it is automatically converted into a PROVA list.

The full PROVA syntax in EBNF is shown in appendix A.

3.1 Programming with PROVA

Let us consider two example rules taken from the implementation of PSIMAP, the pro-
tein structure interaction map introduced earlier.

Given the general approach of decomposing an application workflow into the logic
and computational parts, we capture the knowledge-intensive part of the application in
PROVA rules directly while using Java, SQL, or command-line utilities based services
for accessing or generating data for which the highest level of performance is needed



and the logical component of the query is minimal. Consider the code fragment below,
which implements the following definition: “If there is a PDB entry and according to
SCOP this entry has two domains and according to the computation interacts at
least 5 residue pairs are within 5 Angstrom, then these two domains interact.”

% Given the open database connection DB
% and a unique protein identifier in Protein
% Data Bank PDB_ID, test whether the provided
% domains with IDs PXA and PXB interact
% (have at least 5 atoms within 5 angstroms)
scop_dom2dom(DB,PDB_ID,PXA,PXB) :-

access_data(pdb,PDB_ID,Protein),
scop_dom_atoms(DB,Protein,PXA,DomainA),
scop_dom_atoms(DB,Protein,PXB,DomainB),
DomainA.interacts(DomainB).

The code shows an example of a data integration rule used for computing the in-
teraction of protein domains. The scop dom2dom-predicate in the head of the rule
represents a virtual table (view) composed from computational wrappers and lower-
level predicates. The body of the rules includes a generic cache-based access to PDB
data via the predicate access data, which is discussed below and which implements
an active cache. Given a PDB entry, a pair of domains is returned by the predicate
scop dom atoms and returned in the variables DomainA and DomainB, respec-
tively. The predicate requires a variable DB, which contains a database connection from
where the data is read. The use of databases and SQL is discussed below. Finally, an
instance method interacts returning boolean either succeeds or fails depending on
whether the two domains interact or not.

The example shows how external Java based data wrappers fit into the rule-based
data integration. Java variables can be constructed and returned from predicates associ-
ated with Java calls while boolean methods can be used to test conditions.

Now let us consider how the caching of PDB is implemented. The code below shows
how logic representation helps dealing with the complexities of defining the caching
mechanism for retrieving any type of data. We represent the data items by the data type
(variable Type) and a unique ID of a particular data item (variable ID). The data is
stored in the cache represented by variable CacheData.

% Top-level rule for accessing Data
% given data Type and particular ID.
access_data(Type,ID,Data) :-

% Retrieve or create the cache for Type
cache(Type,CacheData),
access_data(Type,ID,Data,CacheData).

% Two alternative rules for either retrieving data
% from the cache or accessing the data from its
% original location and caching it.



access_data(Type,ID,Data,CacheData) :-
% Attempt to retrieve the data
Data=CacheData.get(ID),
% Success, Data (whatever object it is) is returned
!.

access_data(Type,ID,Data,CacheData) :-
% Retrieve the data from its location and update the cache
retrieve_data_general(Type,ID,Data),
update_cache(Type,ID,Data,CacheData).

The code above demonstrates a very high level of abstraction and flexibility offered
by rule-based systems. In particular, the cache variable is untyped which means that if
implementation for storing a cache changes the code will remain valid. Also, both the
ID and the Data itself are also untyped which allows one to use for instance complex
IDs represented as lists for unique IDs of the data items. The last two rules show how
IF-THEN logic is realised as alternative rules. If Data=CacheData.get(ID) suc-
ceeds, a cut operator (’!’) prevents further backtracking to another rule. Otherwise, the
retrieve data general predicate is used for fetching the data from its original
location. If there were several mirrors available for the original data, they are automati-
cally explored until the working mirror is identified.

The procedural code representing this type of logic would have been much more
cumbersome to write and maintain. Enhanced level of generality and flexibility is ex-
actly what is required for real-world data integration and manipulation projects involv-
ing access to multiple rapidly changing data sources.

3.2 Typing in PROVA

Because of the desired tight integration of PROVA rules with Java code and extended
use of types and classes in Java, we have decided to include a type system in PROVA.
This language feature is not commonly found in rule-based languages such as Pro-
log. The rationale behind the introduction of the type system was to offer the user
the option to restrict the applicability of rules and to control the level of generality
in queries. The notation for typed variables in PROVA normally involves prefixing a
variable name with a fully qualified name of the class to which the variable should be-
long. All classes in the java.lang package can be used without their full prefix specifying
their package. Consider a member predicate returning the members of a list. The query
member(X,[1,Double.D,"3"])), will return X=1,X=java.lang.Double.D,
and X=3. The query variable X could be further qualified as an integer. Then the query
member(Integer.X,[1,Double.D,"3"]))will return only java.lang.Integer.X
= 1, as the other assignments fail as they are double and string, respectively.

In the first query, an untyped variable X is used to query for list members. The first
variable in the target list is an Integer constant, while the second one is a Double vari-
able, and the last one is a string constant. Three solutions of this query demonstrate
this. The second query asks specifically for an Integer list members specifying an In-
teger variable as the first argument. As a result, only the first element, a constant 1, is
returned.



When more complex Java classes are used in PROVA, the following rules apply to
variable-variable unification. If the query and target variable are not assignable to each
other, the unification fails. Otherwise, the unification succeeds. If the query variable
belongs to a subclass of the class of the target variable, the query variable assumes the
type of the target variable. If the query variable belongs to a class that is a superclass
of the class of the target variable or is of the same class as the target variable, the query
variable retains its class.

3.3 PROVA SQL Integration

PROVA SQL integration has a crucial role in providing an efficient and flexible mech-
anism for data and ontology integration. PROVA offers a seamless integration of predi-
cates with most common SQL queries and updates. The language goes beyond provid-
ing embedded SQL calls and attempts to achieve a more flexible and natural integration
of queries with PROVA predicates.

:-eval(consult("utils.prova")).
:-eval(test()).

location(database,"jdbc string", "database_name",
"username","password").

test():-dbopen("database_name",DB).

Opening a database only requires calling the dbopen predicate and providing
the database name. The rules for the dbopen predicate together with accompany-
ing rules for caching and mirroring are provided with the supplied external module
utils.prova that needs to be included (consulted) at the beginning of a user file.
Opening database requires one or more location records to be present in the fact base.
The location records help organising the information about possible alternative loca-
tions of data sources. The data sources are organised according to their type, name,
and any required keys for a particular dataset to be retrieved. Caching for datasets is
automatically provided.

In the case of opening a database, the data source type is database, the data
source name is the database name provided as the second argument to location, a JDBC
connection string is provided as the third argument, and optional username and pass-
word can be provided as strings. If more than one record for a particular database is
provided, the system attempts to establish connection with the each one in turn un-
til a successful connection is established or all locations are exhausted and opening
the database fails. This mirroring technique is especially useful for web-intensive ap-
plications where configuration flexibility is needed. For example, if an application is
developed on one computer and then deployed on the web server, the rule system above
can be used to achieve complete code independence. The example below illustrates this
situation.

:-eval(consult("utils.prova")).

location(database,scop,"jdbc:mysql://comas.soi.city.ac.uk","u","p").



location(database,scop,"jdbc:mysql://localhost","u","p").
dbopen(scop,DB)

By default open database connections are cached. If the users wish to override the
default on how many database connections are cached they can override the correspond-
ing fact for the predicate cache capacity.

The main format for PROVA predicates dynamically mapped to SQL Select state-
ments is shown below:

sql_select(DB,Table,[N1,V1],...,[Nk,Vk],
[where,Where],[having,Having],[options,Options])

The built-in sql select predicate non-deterministically enumerates over all pos-
sible records in the result set corresponding to the query. The predicate fails if the result
set is empty or an exception occurs. It accepts a variable number of parameters of which
only the first two are required. DB corresponds to an open database connection and Ta-
ble is the name of the table to be queried. Note that the table name can be a variable that
only becomes instantiated during the execution of the code. Not only the table name can
be determined dynamically, but also all the remaining parameters can be either variables
or constants or even the whole list of parameters can be dynamically constructed.

The most important part of the syntax of sql select is 0 or more field name-
value pairs [N1,V1],...,[Nk,Vk]. N1,...,Nk correspond to field names in-
cluded in the query. As opposed to ordinary SQL Select statements, this list of fields
includes both the fields to be returned from the query and those that can be supplied in
the SQL Where clause. Whether a particular field Ni will be returned or used as a con-
straint depends on the values Vi corresponding to these field. If Vi is a constant at the
time of the invocation, it becomes a constraint in the automatically constructed Where
clause. Otherwise, Vi is an uninstantiated (free) variable and will be returned by the
query in each record in the result set. In addition to simple field names, N1,...,Nk
can be strings containing special SQL modifiers such as Distinct (for example, ”distinct
name”) or group functions such as Count (for example, ”count(px)”).

The remaining parameters are entirely optional. In the pair [where,Where],
”where” is a reserved word and Where is a variable or constant containing an explicit
SQL Where clause. This syntax is useful in situations requiring the use of such con-
straints as Like or Rlike, for example, [where, "pdb id like ’%%gs’"].
The pair [having,Having] allows specifying a post processing filter on the results
returned by the query, for example, [having,"count(px)>1"]. A large variety
of other modifiers for the query can be included with the [options,Optioons]
pair, for example,[options,"order by count(px) desc limit 10"]. A
number of examples of SQL Select mapped predicates working with SCOP are shown
below.

sql_select(DB,cla,[pdb_id,"1alx"],[px,Domain])
sql_select(DB,cla,[pdb_id,PDB_ID],[count(px),2])
sql_select(DB,cla,[pdb_id,PDB_ID],[count(px),Count])
sql_select DB,cla,[pdb_id,PDB_ID],[count(px),Count],

[where,"pdb_id like ’%%gs’"]
sql_select(DB,cla,["distinct pdb_id",PDB_ID],[options,"limit 10"])



Although only queries corresponding to a single table are supported at this mo-
ment, queries with joined tables can be constructed by combining several single table
queries. A future optimisation will provide an automatic construction of joins from
sql select predicates that have one or more common variables. The example below
shows how two sql select calls can be used to compute an inner join for table cla
finding two different domains PXA and PXB belonging to the same PDB file.

sql_select(DB,cla,[px,PXA],[pdb_id,PDB_ID]),
sql_select(DB,cla,[px,PXB],[pdb_id,PDB_ID]),
PXA<PXB

PROVA provides a built-in predicate sql insert providing a flexible mapping to
SQL Insert statements.

sql_insert(DB,Table,[N1,...,Nk],[V1,...,Vk])

The sql insert predicate is structured differently from sql select in that
it accepts the field names as a separate sublist in the third argument and the fourth
argument contains a sublist with values corresponding to these fields. The example
below shows a complete rule that parses a text-based database file with descriptions of
protein domains from the SCOP database.

db_import(DB,scop,des,Line) :-
tokenize_list(Line,"\t",[T|Ts]),
sql_insert(DB,des,[id,type,sccs,sid,description],[T|Ts]).

The predicate db import receives an open database connection DB, the name
scop of the database to be imported, the name of the table to insert records into, and a
Line from the text file. The built-in predicate tokenize list builds Line tokens
separated by tab characters and outputs them in the list [T|Ts]. Finally, sql insert
inserts a new record into the table des with the specified fields and the values copied
from the list of tokens.

4 Comparison and Conclusion

Rules play an important role in bioinformatics. They come in many guises such as
database views, logic programs, constraints, active rules, description logics, ontologies,
etc. They have been used in many different contexts such as constraints for structure pre-
diction [BWBB99,KB02,PKWM00], model checking of biochemical networks [CF03],
logic programming for consistent annotation of proteins [MLFA99,MSA01,MKA00],
ontologies for transparent access to bioinformatics databases [LJ03,LE03], ontologies
for health applications [GE01,GES01], and integration of an ontology with gene expres-
sion data [Bad03,BT03]. All but the first two applications involve systems integration
and therefore showcase the usefulness of rules, logic and ontologies for this task.

In this paper, we have argued that rules alone are not sufficient to easily facilitate
systems integration. We argued that a rule-based approach also needs to cater for com-
putation, database access, communication, web services, etc. All of these requirements



can be met by integrating a rule-based approach with an object-oriented approach such
as Java. The challenge is to make this integration transparent and get the best out of two
worlds.

There are a number of approaches that integrate object-orientation and deduction
such as Rock&Roll [FWPM94], ConceptBase [JGJ+95], and Flora [YK00]. These ap-
proaches aim for a conceptually coherent integration of the two different programming
paradigmns. In contrast to this, PROVA aims to provide a rule-engine for Java, which
caters for rule-based processing in Java. At first glance, this objective seems to be ad-
dressed also by catering for native method calls in Prolog engines. as exemplified by
systems such as JIProlog. There is however a difference to PROVA: PROVA emphasises
flexible integration as opposed to achieving simple interfacing of Java with Prolog. In
the following, we provide some comments for features listed in the table. This different
perspective leads to a host of features absent from JIProlog, but provided by PROVA
such as native syntax Java call, Java type system within the rules, access to static java
variables from the rules, automatic conversion of returned Java object lists into Prolog
lists, and interpretation instead of compilation. Furthermore, PROVA provides features
specifically useful for systems integration, namely variable arity and argument tails,
flexible database access, predicate names as variables, message-passing and reaction
rules for implementing active behaviour.

All in all, PROVA is a first step towards realising a semantic web for bioinformatics
by declaratively and transparently integrating data and rules including database access
and computations captured in procedural (Java) code. PROVA facilitates the separation
of declarative workflows from implementation details and thus leads to more compact
and maintainable code. We have shown how all of the above features are used to imple-
ment the PSIMAP system, which computes domain-domain interactions from SCOP
and PDB.

References

[Bad03] Liviu Badea. Functional discrimination of gene expression patterns in terms of the
Gene Ontology. In Proceedings of the Pacific Symposium on Biocomputing - PSB03,
2003.

[BDH+03] Dan Bolser, Panos Dafas, Richard Harrington, Jong Park, and Michael Schroeder.
Visualisation and graph-theoretic analysis of the large-scale protein structural inter-
actome network psimap. BMC Bioinformatics, 4(45), 2003.

[BLJJ00] K. Bryson, Michael Luck, Mike Joy, and D. T. Jones. Applying agents to bioinfor-
matics in geneweaver. In Cooperative Information Agents, pages 60–71, 2000.

[BT03] Liviu Badea and Doina Tilivea. Integrating biological process modelling with gene
expression data and ontologies for functional genomics (position paper). In Proceed-
ings of the International Workshop on Computational Methods in Systems Biology,
University of Trento, 2003. Springer-Verlag.

[BWBB99] Rolf Backofen, Sebastian Will, and Erich Bornberg-Bauer. Application of Con-
straint Programming Techniques for Structure Prediction of Lattice Proteins with
Extended Alphabets. Journal of Bioinformatics, 15(3):234–242, 1999.

[CF03] Nathalie Chabrier and François Fages. Symbolic model checking of biochemical
networks. In Proceedings of the First International Workshop on Computational



Methods in Systems Biology CMSB’03, LNCS, Riverto, Italy, March 2003. Springer-
Verlag.

[Con00] The Gene Ontology Consortium. Gene ontology: tool for the unification of biology.
Nat Genet, 25:25–29, 2000.

[DBG+03] Panos Dafas, Dan Bolser, Jacek Gomoluch, Jong Park, and Michael Schroeder. Fast
and efficient computation of domain-domain interactions from known protein struc-
tures in the PDB. In H.W. Frisch, D. Frishman, V. Heun, and S. Kramer, editors,
Proceedings of German Conference on Bioinformatics, pages 27–32, 2003.

[Die] J. Dietrich. Mandarax. http://www.mandarax.org.
[FWPM94] A.A.A. Fernandes, M.H. Williams, N. Paton, and M.L. Maria. Object-Oriented

Database Programming Languages Founded on an Axiomatic Theory of Objects.
In Workshop on Logical Foundations of Object-oriented Programming, 1994.

[GE01] Rolf Grütter and Claus Eikemeier. Development of a Simple Ontology Definition
Language (SOntoDL) and its Application to a Medical Information Service on the
World Wide Web. In Proceedings of the First Semantic Web Working Symposium
(SWWS ’01), pages 587–597, Stanford University, California, July/August 2001.

[GES01] Rolf Grütter, Claus Eikemeier, and Johann Steurer. Towards a Simple Ontology
Definition Language (SontoDL) for a Semantic Web of Evidence-Based Medical
Information. In S. Quaglini, P. Barahona, and S. Andreassen, editors, Artificial Intel-
ligence in Medicine. 8th Conference on Artificial Intelligence in Medicine in Europe,
AIME2001, Cascais, Portugal, July 2001. Springer-Verlag.

[JGJ+95] M. Jarke, R. Gallersdörfer, M.A. Jeusfeld, m. Staudt, and Stefan Eberer. CConcept-
Base - a deductive object base for meta data management. J. of Intelligent Informa-
tion Systems, February 1995.

[KB02] L. Krippahl and P. Barahona. PSICO: Solving Protein Structures with Constraint
Programming and Optimisation. Constraints, 7(3/4):317–331, July/October 2002.

[LE03] P. Lambrix and A. Edberg. Evaluation of ontology merging tools in bioinformatics.
In Proceedings of the Pacific Symposium on Biocomputing - PSB03, pages 589–600,
2003.

[LJ03] P. Lambrix and V. Jakoniene. Towards transparent access to multiple biological data-
banks. In Proceedings of the First Asia-Pacific Bioinformatics Conference, pages
53–60, Adelaide, Australia, 2003.

[MBHC95] A.G. Murzin, S.E. Brenner, T. Hubbard, and C. Chothia. SCOP: a structural classifi-
cation of proteins database for the investigation of sequences and structures. J. Mol.
Biol., 247:536–540, 1995.

[MKA00] S. Möller, E. V. Kriventseva, and R. Apweiler. A collection of well characterised
integral membrane proteins. Bioinformatics, 16(12):1159–1160, 2000.

[MLFA99] S. Möller, U. Leser, W. Fleischmann, and R. Apweiler. EDITtoTrEMBL: a dis-
tributed approach to high-quality automated protein sequence annotation. Bioinfor-
matics, 15(3):219–227, 1999.

[MSA01] S. Möller, M. Schroeder, and R. Apweiler. Conflict-resolution for the automated
annotation of transmembrane proteins. Comput. Chem., 26(1):41–46, 2001.

[PKWM00] P.N. Palma, L. Krippahl, J.E. Wampler, and J.J.G. Moura. BiGGER: A new (soft)
docking algorithm for predicting protein interactions. Proteins: Structure, Function,
and Genetics, 39:372–384, 2000.

[SRG03] Robert D. Stevens, Alan J. Robinson, and Carole A. Goble. mygrid: personalised
bioinformatics on the information grid. In Eleventh International Conference on
Intelligent Systems for Molecular Biology, volume 19, 2003.

[Tea03] The PDB Team. The protein data bank. In Structural Bioinformatics, pages 181–198.
Wiley, 2003.



[YK00] G. Yang and M. Kifer. FLORA: Implementing an efficient DOOD system using a
tabling logic engine. In LNAi 1861. Springer, 2000.

A Syntax of PROVA

prova ::= statements, end of file;
statements ::= statement, statements;
statement ::= (fact — rule — query), end of statement;

fact ::= relation;
rule ::= relation, ”:-”, atoms;

query ::= (”eval” — ”solve”), ”(”, relation, ”)”;
atoms ::= atom, ”,”, atoms;
atom ::= relation — arithmetic relation — java call — cut;

relation ::= predicate symbol, ”(”, terms, ”—”, argument tail, ”)”;
argument tail ::= variable;

predicate symbol ::= lowercase word — uppercase word;
java call ::= functional java call — predicate java call — constructor java call;

functional java call ::= left term, ”=”, predicate java call;
predicate java call ::= static java call — instance java call;

static java call ::= qualified java class,”.”,method name,”(”, terms,”)”;
instance java call ::= variable, ”.”, method name, ”(”, terms, ”)”;

constructor java call ::= left term,”=”,qualified java class,”(”,terms,”)”;
terms ::= term, ”,”, terms;
term ::= left term — (func, ”(”, terms, ”)”);

left term ::= variable — constant — prova list;
func ::= variable — constant;

variable ::= uppercase word — typed variable;
constant ::= lowercase word — (’”’, string, ’”’) ;

typed variable ::= qualified java class, uppercase word;
prova list ::= ”[]” — (”[”, head, ”—”, tail, ”]”);

arithmetic relation ::= left term, binary operator, term;
binary operator ::= ”=” — ”!=” — ”¿” — ”¡” — ”¿=” — ”¡=”;

head ::= term;
tail ::= variable;

uppercase word ::= [”A”-”Z”,” ”], lowercase word;
lowercase word ::= [”a”-”z”], word;

word ::= [”a”-”Z”,0-9]+;
cut ::= ”!”;

end of statement ::= ”.”;


