UniProt in RDF Format:

Use Cases and Open Issues

By Eric Jain, Swiss Institute of Bioinformatics
August 18, 2004

UniProt [http://uniprot.org/] is a comprehensive repository of protein sequence
and annotation data. We have recently created an experimental version of the
data in RDF format and developed several applications that demonstrate the
usefulness of this approach [http://www.isb-sib.ch/~ejain/rdf/]. Following is

an overview of use cases and open issues that we consider to be important.

Use Cases

1. Build tools that work with data from different data sets

Some tools are necessarily specific to a single data set. Most code however is
concerned with moving data between different representations such as
relational and file system storage. By using a generic data model this code

does not need to be rewritten or adapted for each data set.

2. Merge data from different data sets

The boundaries between different data sets are more often than not dictated
by practical rather than logical considerations. Unless data sets are logically or
physically merged building queries that span several data sets requires
detailed knowledge of the physical layout of the different data sets that are
being queried. But writing code to merge two data sets can be time consuming

unless both data sets use the same data model.



3. Change data layout without breaking existing tools

Minor changes to the way we represent data are introduced nearly every

month; major changes several times per year. Some changes will inevitably

cause some applications to break, but no application that does not directly rely

on a piece of data that has been changed should break.

4. Detect conflicts and missing data

Data validation is usually too complex a task to be enforced completely by the
representation of the data. The task of loading data into a rule engine is
simplified a lot with a generic data model. A schema language helps define

basic rules.

5. Allow third party annotations

A generic linking mechanism allows users to attach their own information to
our data without requiring any special software to be set up or running into

any intellectual property issues.

6. Track provenance of data

We need to indicate what data is supported by experimental evidence, and
what data is based on specific prediction programs and models. Reification

provides a logically correct way to represent this kind of information.

Open Issues

The XML serialization syntax is confusing and difficult to process because it is

very flexible. A possible solution is to restrict the syntax to a subset.



2.

The representation of ordered values is awkward. While most tools support
collections and lists, few query engines support natural queries on such

constructs.

3.

Direct support for reification is often neglected: owL does not allow definition of
complete subclasses of rdf:Statement. Neither BRQL nor N3 contain any
constructs for convenient expression of reification. Most parsers return triples
rather than quads, which complicates handling and reduces efficiency when

working with data that contains a lot of reified statements.

4.

There is no support for negation. It should be possible to assert that a
statement is not present. For example, a biologist may decide that a sequence
feature prediction program generated a false positive hit. We would now like to
add a statement that will cause a conflict if someone later on asserts that the

feature is present.

5.

There is no reliable way to split a URI into a namespace and name part. While
RDF itself is only concerned about complete uris, many tools require such

processing for simplicity and efficiency.

6.

Creating web services that return rRDF data is complicated and inefficient.

Arguably the same could be said of web services in general...



7.

The LsiD [http://www.i3c.org/wgr/ta/resources/Isid/docs/] resolver mechanism
is too complex and not suitable for batch lookups. A possible solution would be
to decouple resolution from data retrieval and use a lightweight mechanism
based on HTTP redirection, similar to the way pois [http://doi.org/] are

resolved.

8.

There doesn't seem to be a mechanism for defining inline resource references.
While we try to minimize such occurrences we are not able to avoid them
completely. Example: "The authors of {#paper-1} disagree with {#paper-2}
on..." The same problem can also be seen in the RDF version of the data
provided by the Cyc project [http://www.cyc.com/2004/06/04/cyc].

9.

The xML serialization format assumes that related groups of statements can be
managed by storing them into separate files. Therefore no mechanism for
grouping statements within a file is provided. This is unfortunate, as this

approach is not feasible when using files to exchange large data sets.

10.

There are currently no RDF editors available that are suitable for rapid data
entry. Protégé is an excellent tool for defining classes and properties, but not

efficient enough for fast data entry as too much clicking is required.

11.

Currently very few life science resources have stable uris. This complicates

linking. Resolver services could be set up as a temporary workaround.



