
Simple part-whole relations in OWL Ontologies

 

Simple part-whole relations in OWL Ontologies  

W3C Editor's Draft 24 Mar 2005

This version: 
... 

Latest version: 
... 

Previous versions: 
This is the first public version 

Editors: 
Alan Rector, University of Manchester 
Chris Welty, IBM Research 

Copyright © 2004 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark, 
document use and software licensing rules apply.

Abstract

Representing part-whole relations is a very common issue for those developing ontologies for 
the Semantic Web. OWL does not provide any built-in primitives for part-whole relations (as it 
does for the subclass relation), but contains sufficient expressive power to capture most, but not 
all, of the common cases. The study of part-whole relations is an entire field in itself - 
"mereology" - this note is intended only to deal with straightforward cases for defining classes 
involving part-whole relations. 

Status of this Document

This section describes the status of this document at the time of its publication. Other 
documents may supersede this document. A list of current W3C publications and the latest 
revision of this technical report can be found in the W3C technical reports index at http://www.
w3.org/TR/.

This document will be a part of a larger document that will provide an introduction and overview 
of all ontology design patterns produced by the Semantic Web Best Practices and Deployment 
Working Group.

http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/ (1 of 14)3/28/2005 9:37:02 AM

http://www.w3.org/
http://www.cs.man.ac.uk/mig/people/rector/
http://www.research.ibm.com/people/w/welty/
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/copyright-software
http://www.w3.org/TR/
http://www.w3.org/2001/sw/BestPractices/
http://www.w3.org/2001/sw/BestPractices/
mcdaniel
Note
My comments on this paper are included in notes like this throughout the document. However, my overall review is that the document is fairly well written for the intended purpose. I believe there are significant exception cases to the examples and the explanations within body of the document about those cases should be a bit better. In addition, some references in the earlier sections to the exceptional or contradictory cases would be helpful.There is great difficulty with adopting the classic mereological axioms for our part-whole relations. Real-world situations and modelling are complex enough that such principles as reflexivity and anti-symmetry may not apply cleanly. This document should be more explicit about the fact that OWL does not contain primitives for these relationships (perhaps just mentioned much earlier in this document).One specific linguistic change I recommend is that partOf_directly and hasPart_directly be replaced with directPartOf and directlyHasPart, respectively. Overall, however, I think the examples and explanations of OWL's approach are fairly well written and clean.Bill McDanielAdobe Systems



Simple part-whole relations in OWL Ontologies

This document is a W3C Working Draft and is expected to change. The SWBPD WG does not 
expect this document to become a Recommendation. Rather, after further development, review 
and refinement, it will be published and maintained as a WG Note.

As a candidate Public Working Draft, we encourage public comments. Please send comments 
to public-swbp-wg@w3.org

Open issues, todo items: 

●     update faults examples from actual ontology 
●     fix camel case vs. underlining 
●     get new picture 
●     replace "work around" when needed 
●     add references for "flavours" of part-whole relations 

Publication as a draft does not imply endorsement by the W3C Membership. This document is a 
draft and may be updated, replaced or made obsolete by other documents at any time. It is 
inappropriate to cite this document as other than work in progress.

General issues

Basics

Many applications require representation of part-whole relations - catalogues of parts, fault 
diagnosis, anatomy, geography, etc. The study of part-whole relations is a large field in its own 
right - "mereology" and "mereotopology" and has been the topic of many papers, see the 
references section for a useful list.

OWL does not contain specific primitives for part-whole relations (as it does for the subclass 
relation, for example), but it does support sufficient machinery to express most of what one may 
want to represent about part-whole relations. Where it does not, there are a number of "work-
arounds" that suffice in most situations. This note will provide basic schemas for expressing 
part-whole relations in OWL.

Transitive relations - parts and direct parts.  

An important and common requirement for the basic relation from a part to its whole that it is 
transitive, i.e.  if A is part of B, and B is part of C, then A is part of C.  OWL provides a general 
construct for declaring properties to be transitive.  If we define a property, say partOf, to be 
transitive, then any reasoner conformant with OWL will draw the conclusions that the parts of C 
include both A and B.  

In many applications, what is needed is not a list of all parts but rather a list of the next level 
breakdown of parts, the "direct parts" of a given entity. It is therfore often useful to use the 
property hierarchy to define a subproperty of partOf that is not transitive and links each 

http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/ (2 of 14)3/28/2005 9:37:02 AM

mailto:public-swbp-wg@w3.org


Simple part-whole relations in OWL Ontologies

subpart just to the next level. For these examples we shall call this suproperty 
partOf_directly. 

Choosing whether to use partOf or hasPart  

OWL supports inverse relations, so we can define an inverse of partOf, say hasPart.  For 
any two individuals I1 and I2,  if "I1 partOf I2" then "I2 hasPart I1". However, care 
must be taken when using inverses in restrictions on classes. To say that "All As are parts of 
some B" does not imply that "All Bs have some As as parts", i.e. the restriction 
 

A partOf someValuesFrom(B) 
 
does not imply  
 

B hasPart someValuesFrom(A) 

Therefore, if we want to say both that "all As are parts of Bs" and "all Bs have part some A", we 
have to assert each statement separately. Such pairs of statements are sometimes called 
"reciprocals". 

Unfortunately, all current OWL reasoners scale very badly for large part-whole hierarchies 
connected by both  hasPart and partOf.  Therefore, if reasoners are to be used, it is usually 
necessary to choose to use either partOf or hasPart but not both. Almost always it is 
preferable to use partOf because the most common queries and class definitions are for the 
parts of things, e.g. the class of all parts of a car.  

Use cases

Parts and wholes are ubiquitous in many applications:

1.  A parts inventory for the devices made in a factory in which we want to be able to find the 
"explosion" of parts required. 

2.  A fault finding system for an device in which we want to progressively narrow down the 
functional region of the fault. 

3.  An anatomy representation such as the Digital Anatomist Foundational Model of 
Anatomy (??URL??) 

4.  A document retrieval system, in which documents are divided into chapters, sections, 
paragraphs etc. (However, note that parthood, as explained in this document, does not 
take order into account). 

Representation Pattern 1: Representing a part-whole hierarchy

1.  Define a transitive property partOf with an inverse hasPart (Choose your own naming 
conventions to suit). 

2.  If a level by level explosion is required, define a subproperty partOf_directly with an 
inverse hasPart_directly. 

http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/ (3 of 14)3/28/2005 9:37:02 AM

mcdaniel
Note
I think directPartOf would be a better name for the subproperty. Using the adverbial form connotes an active relationship that is confusing  here.

mcdaniel
Note
Here the adverbial form works bette fo rth einverse, I think. directlyHasPart makes more sense to me, though.



Simple part-whole relations in OWL Ontologies

3.  Choose whether to use the partOf or hasPart relation as the basic relation amongst 
classes. If in doubt, choose partOf. 

4.  Exress the part-whole relations amongst individuals using hasValue() with 
partOf_directly (if defined, otherwise with partOf). 

5.  Express the part-whole relations amongst classes using hasSomeValuesFrom() with 
partOf_directly 

6.  If there are any universal (allValuesFrom) constraints, add those. 

There should now be sufficient information to make basic inferences about parts, e.g. to define 
a class of all parts of the car, car door, etc.

Examples

Consider a (over simplified) catalog of Vehicle parts, all subsumed by the class Item

Cars have parts  Motor, Headlight, Wheel

Motors have parts  Crankcase, Carburetor 

Headlights have parts  head_light_bulb, reflector 

A fragment of the N3 for the above example would then be:

partOf 
      a       owl:TransitiveProperty , owl:ObjectProperty ; 
      owl:inverseOf hasPart .  
partOf_directly 
      a       owl:ObjectProperty ; 
      rdfs:subPropertyOf partOf ; 
      owl:inverseOf hasPart_directly .  
Car 
      a       owl:Class ; 
      rdfs:subClassOf Item   
Motor 
      a       owl:Class ; 
      rdfs:subClassOf Item ; 
      rdfs:subClassOf 
              [ a       owl:Restriction ; 
                owl:onProperty partOf_directly ; 
                owl:someValuesFrom Car 
              ] .  
Crankcase 
      a       owl:Class ; 
      rdfs:subClassOf Item ; 
      rdfs:subClassOf 
              [ a       owl:Restriction ; 
                owl:onProperty partOf_directly ; 
                owl:someValuesFrom Motor 
              ] . 

http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/ (4 of 14)3/28/2005 9:37:02 AM

mcdaniel
Note
I see an issue of temporality here. This doesn't allow for any concept of a part migrating from being part of one thing to being part of another... or for being a part of two things simultaneously. For example, the Transitive Property IS part of Mathematics, but it is ALSO part of Logic.In the example below, A specific Crankcase can be part of Motor A one minute and part of Motor B the next. How do we represent such migratory properties?



Simple part-whole relations in OWL Ontologies

 
... 
etc. 

Discussion

Several issues arise even from such a simple example.  To begin with, the representation using 
existential restrictions (i.e. owl:someValuesFrom)  does not clearly communicate all of the 
semantics we may want for car parts.  For example, a strict reading of the definition of the 
Crankcase class above is that a crankcase is part of at least one motor.  In point of fact, a 
crankcase cannot be part of more than one motor. We may be tempted to add a cardinality 
restriction (e.g. maxCardinality 1) on partOf to the definition of crankcase, but this would be a 
mistake; since partOf is transitive, a crankcase is also part of the car the motor is part of.  Note 
also that OWL-DL does not allow transitive properties to have any cardinality restrictions. In 
general it is best to avoid placing restrictions (including range restrictions) on transitive 
properties at all.

It would make more sense to add a restriction on the partOf_directly property in the definition of 
these classes, when it is appropriate.  A single crankcase cannot be a direct part of more than 
one motor, a motor cannot be a direct part of more than one car, etc., so in these cases a 
maxCardinality restriction would make the semantics more clear.  On the other hand, there is 
always a tradeoff when employing a reasoner between how precise your semantics are and 
how much information the reasoner has to consider.  In this case, adding a cardinality restriction 
on all the partOf_directly properties would significantly increase the amount of information 
handed to a reasoner.  One must consider precisely what the ontology will be used for to 
determine which is more important (enforcing semantic constraints vs. classification). The 
examples in this note are aimed primarily at use-cases in which no instances of the classes are 
present. 

When considering restrictions on the partOf_directly property for different kinds of parts, the 
issue of using a universal (owl:allValuesFrom) vs. an existential restriction arises. Many 
different kinds of things have motors (boats, planes, etc.), and in fact even car motors can exist 
without being part of a car.  This indicates that, ontologically, the existential restriction is simply 
not true  We will discuss this further in the subsequent sections.   

Representation Pattern 2: Defining classes for Parts

1.  Extend ontology with classes of parts for each level in the part hierarchy (e.g. Car Parts, 
Motor Parts, etc.), in such a way that a taxonomy can be derived automatically. 

Examples

Extending the ontology in pattern 1, we can define the classes: CarPart and 
CarPart_directly. Informally:

CarPart = partOf someValuesFrom(Car)

http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/ (5 of 14)3/28/2005 9:37:02 AM



Simple part-whole relations in OWL Ontologies

CarPart_directly = partOf_directly someValuesFrom(Car)

In N3:

CarPart_directly 
      a       owl:Class ; 
      owl:equivalentClass 
              [ a       owl:Restriction ; 
                owl:onProperty partOf_directly ; 
                owl:someValuesFrom Car 
              ] .  
CarPart 
      a       owl:Class ; 
      owl:equivalentClass 
              [ a       owl:Restriction ; 
                owl:onProperty partOf ; 
                owl:someValuesFrom Car 
              ] .  

A classifier could then infer that CarPart_directly subsumes

Motor 
Headlight 
Wheel

and that CarPart subsumes

Motor 
Crankcase 
Carburator 
Headlight 
Headlight_bulb 
Reflector 
Wheel 

This simple list may not be what we want, in which case it is necessary systematically to define 
a class for the parts of each part, e.g.

MotorPart 
    a       owl:Class ;
    owl:equivalentClass
         [ a       owl:Restriction ;
           owl:onProperty partOf ;
           owl:someValuesFrom Motor
         ] .

If all are defined in this way we get a hierarchy from the classifier: 

CarPart

http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/ (6 of 14)3/28/2005 9:37:02 AM



Simple part-whole relations in OWL Ontologies

  Motor
    MotorPart
        Headlight
            HeadlightPart
                  Headlight_bulb
  ...

Discussion 

These classes exemplify one of the main reasons to choose existential restrictions on the direct 
part properties over universal restrictions (as discussed in the previous pattern).  A classifier 
would not be able to infer the hierarchy above using universal restrictions on the partOf_direct 
property in the first pattern, unless there were minimum cardinality restrictions on the property 
as well. 

Ontologically, these classes by themselves are reasonable, a "car part" is indeed anything that 
is part of a car, however when combined with the existential restrictions on the direct properties, 
a classifier would infer the hierarchy above.  These kinds of hierarchies seem harmless at first 
glance, but in some contexts are completely wrong: not all motors are car parts, some are boat 
motors, etc.  On the other hand, a motor for a 1969 Porsche 911E is generally considered a 
"car part" regardless of whether it is in a car or not (it may be for sale). When this is not obvious 
from the scope of the ontology, it is good practice to reflect these issues in the names of the 
class, e.g. CarHeadlight. 

Representation Pattern 3: Faults in parts and wholes

1.  Extend ontology with classes of faults that account for the part hierarchy, e.g. allow a 
reasoner to conluce that a fault in a part is a fault in the whole. 

Distinguishing parts from kinds

Although both part-whole relations and subclassOf generate hierarchies, it is important not to 
confuse the part-whole hierarchy with the subclassOf hierarchy. This is easily done because 
in many library and related applications, part-whole and subclass relations are deliberately 
conflated into a single "broader than / narrower than" axis. For example consider the following: 

Vehicle 
  Car 
   Wheel 
     Tire 
      Pneumatic tire 
    

"Car" is a kind of "Vehicle", but "Wheel" is a part of a "Car", "Tire" is a part of a "Wheel", but 
"Pneumatic tire" is a kind of "Tire". Such hierarchies serve well for navigation, however they are 
not in general true. Statements about "all vehicles" do not necessarily, or even probably, hold 

http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/ (7 of 14)3/28/2005 9:37:02 AM

mcdaniel
Cross-Out

mcdaniel
Replacement Text
Conclude



Simple part-whole relations in OWL Ontologies

for "all tires".

Examples

However, such hierarchies do need to be recreated in situations that obey the rule "A fault of 
the part is a kind of fault of the whole". For example you can call for assistance with a fault in 
your car if you puncture a pneumatic tire. The following hierarchy is a correct subclassOf or 
"kind of" hierarchy of a type that we need to reproduce often in OWL: 

  Fault in Car 
    Fault in Wheel 
     Fault in Tire 
      Fault in Pneumatic tire 
    

The easy way to say that what we really mean when we talk about a "fault in a car" is a "fault in 
a car or any of its parts" [1]:  If we use the property hasLocus to locate the fault in a particular 
part of the car, then: 
 

Fault_in_car =  Fault AND hasLocus somevaluesFrom(Car OR partOf 
someValuesFrom(Car)) 

 
This is shown diagrammaticaly in Figure 1: 

UML style diagram of SEP triple mechanism described above and in N3 below

 
Figure 1: UML style diagram of relation of faults to to a thing or its parts  

 
 
Using this pattern, the first two "Fault in ..." classes would be defined as: 

Fault_in_car 
  a  owl:Class ; 

http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/ (8 of 14)3/28/2005 9:37:02 AM

mcdaniel
Note
This uml diagram was not available online 

mcdaniel
Note
The issue of locus and distinguishing between kindof properties and partof properties is important for performance of clsiifiers and reasoners. We should discuss this a bit more perhaps. For example, reasoners should, PERHAPS, be designed to jump directly from 'fault in part' to 'fault in whole' and should be designed to ignore kindof properties when detecting faults. 



Simple part-whole relations in OWL Ontologies

  owl:equivalentClass 
    [ a  owl:Class ; 
      owl:intersectionOf (Fault [ a  owl:Restriction ; 
         owl:onProperty hasLocus ; 
         owl:someValuesFrom 
           [ a  owl:Class ; 
             owl:unionOf (Car [ a  owl:Restriction ; 
               owl:onProperty partOf ; 
               owl:someValuesFrom Car 
            ]) 
         ] 
       ]) 
    ] . 
 
Fault_in_wheel 
  a  owl:Class ; 
  owl:equivalentClass 
    [ a  owl:Class ; 
      owl:intersectionOf (Fault [ a  owl:Restriction ; 
         owl:onProperty hasLocus ; 
         owl:someValuesFrom 
         [ a  owl:Class ; 
          owl:unionOf (Wheel[ a  owl:Restriction ; 
             owl:onProperty partOf ; 
             owl:someValuesFrom Wheel            ]) 
         ] 
       ]) 
    ] . 

This may look tedious, but can actually be achieved quite simply with scripting tools or the 
ability to "clone and edit" classes easily. 

Discussion 

In certain domains, most notably medicine, we generally understand that while body parts (e.g. 
a heart) can exist outside of a body, they do not normally do so.  Thus it makes sense to say, in 
general, "A fault in the heart is a fault in the body," without having a particular heart or body in 
mind, and it makes sense to reason over classes defined that way.  For other domains, most 
notably manufacturing, it is more common for parts to exist outside of some whole, and so it 
may not generally be true that a fault in an engine is a fault in a car (if the engine is not in a car), 
just as it may not be generally true that an engine is a car part.  In these cases, the capability to 
reason over classes may not be that useful, and again the existential restriction on the direct 
properties may not make sense. 

Representation Pattern 4: Reflexive parts

1.  Extend ontology with classes that approximate the fact that a whole is often considered 

http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/ (9 of 14)3/28/2005 9:37:02 AM



Simple part-whole relations in OWL Ontologies

part of itself (reflexivity). 

Examples

Classically, the part of relation is reflexive, that is it includes the thing itself, e.g. that a "car is a 
part of a car".   OWL does not have any built-in primitives for reflexivity (as it does for transitivity 
and inverses), but as shown above, we can use a pattern in defining classes to approximate 
this by combining the class with the class of its parts.  It is sometimes convenient to define a "...
_Reflexive" class for each item, e.g.: 

CarPart_reflexive = Car OR CarPart 

In N3:  

CarPart_reflexive 
      a       owl:Class ; 
      owl:equivalentClass 
              [ a       owl:Class ; 
                owl:unionOf (Car [ a       owl:Restriction ; 
                            owl:onProperty partOf ; 
                            owl:someValuesFrom Car 
                          ]) 
              ] . 

When reflexive parts are defined, it simplifies the definition of faults (in fact, this is often used as 
a logical argument for why the partOf relation is reflexive): 

Fault_in_car = Fault AND hasLocus someValuesFrom(CarPart_reflexive)

In N3:

Fault_in_car 
  a  owl:Class ; 
  owl:equivalentClass 
    [ a  owl:Class ; 
    owl:intersectionOf (Fault [ a  owl:Restriction ; 
       owl:onProperty hasLocus ; 
       owl:someValuesFrom CarPart_reflexive 
       ]) 
    ]. 

Discussion 

Logically these classes do not give us reflexivity at all, a reflexive property is one that holds 
between an object and itself, not between an object and something in the same class.  It is not 
possible in OWL to state such a restriction or inference, however, and when reasoning only 
over the classes and properties in an ontology this will suffice. 

http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/ (10 of 14)3/28/2005 9:37:02 AM

mcdaniel
Note
This whole reflexive property bothers me. It is exactly the sort of self-referential hole that many reasoning systems get lost in. I understand the set theoretical and the mereological reasoning for applying a reflexive property, but seems very counterintuitive to the real world. I do not consider my CAR to be a part of my CAR. It is my CAR, not a PART of my car. The whole is a synergistic result (an emergent property) of the combination of the parts. For that matter, if I have a collection of the parts of a car in a pile, i do not have a CAR. If I have a CAR, but it is missing some of its parts, I still have a CAR. Saying that a CAR is a part of a CAR seems to lead me to the point where I can equate a wheel with a car.

mcdaniel
Note
I think we need to state this more strongly



Simple part-whole relations in OWL Ontologies

OWL code for examples

[N3] [RDF-Abrev]  [RDF/XML]  

Considerations

●     Transitive properties should not be functional or inverse functional. It is not illegal, but it 
makes no sense, since the whole point is that transitive properties link chains of entitites 
together.  Hence if there is only one value, there is no point in a property being transitive; 
and if there is a point there will be more than one value.  In practice,  almost any ontology 
containing a functional or inverse transitive relation will be unsatisfiable. 

●     It is possible to approximate a tree by making the partOf_directly subproperty non-
transitive and functional, with a local range restriction (owl:allValuesFrom) to the "next 
larger" class of parts. 

●     If a classifier is to be used, then ontologies containing both partOf and hasPart will 
rarely scale beyond a few tens of classes.  If a classifier is not to be used, then this need 
not be considered.  

●     The patterns described here can be generalised to work with individuals. This will be 
covered in a further note.  

Additional Background

Other relations that follow the same pattern as faults

A number of other relations follow the same pattern as faults, e.g. "Repairs on a part are kinds 
of repairs on the whole". However, not all relations follow this pattern, e.g. "Purchase of a part is 
not purchase of the whole"

Relation to clasic Mereology 

The classic study of parts and wholes,  mereology, has three axioms: the part-of relation is 

●     Transitive - "parts of parts are parts of the whole" -  If A is part of B and B is part of C, 
then A is part of C 

●     Reflexive - "Everything is part of itself" - A is part of A 
●     Antisymmetric - "Nothing is a part of its parts" -  if A is part of B and A != B then B is not 

part of A. 

OWL does have built-in primitives for antisymmetric or reflexive properties, nor is there any 
work around for them. In most cases this causes no problems, but it does mean that if you 
create a cycle in the part-of hierarchy (usually by accident) it will go unnoticed by the classifier 
(although it may cause the classifier to run forever.) 

Furthermore, in mereology, since everything is a part of itself, we have to define "proper parts"  
as "parts not equal to the whole".  Whereas in OWL we have to do the reverse: i.e. define 

http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/ (11 of 14)3/28/2005 9:37:02 AM

http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/car-example.n3
http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/car-example.owl
http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/car-example.n3
mcdaniel
Note
It strikes me that given an ontology, either the partof or the haspart properties can be derived as long as one of them exists. Providing both DOES cause scaling problems, but we don't mention clearly that it is a workable solution to provide only one and to DERIVE the inverse on demand.

mcdaniel
Note
I am not sure these axioms apply completely. Certainly, I am not pleased with the reflexive property defining self referential sets and the Anti-symmetiric property bothers me when I consider circular data systems. A set of references may be a part of a document, but the document itself may be one of the references which makes it, in turn, a part of one of its parts.Does our OWL logic have to follow classic mereology in this or should it be more flexible as it attempts to model real world relationships???

mcdaniel
Inserted Text
not

mcdaniel
Cross-Out

mcdaniel
Replacement Text
work-around

mcdaniel
Note
classifiers should be architected to detect this and should be designed to ignore certain self referential constructs.



Simple part-whole relations in OWL Ontologies

"parts" (analogous to "proper parts") and then define "reflexive parts" in terms of "parts". 

Relations that are not simple part-whole relations in the sense above

There are a number of relations easily confused with part-whole relations. Interested readers 
should consult [Flavours of part of]. However, a brief list includes:

●     

Containment- the fact that I am contained in my room does not mean that I am part of my 
room 

●     

Membership-as flocks of geese and committees. Membership is not transitive. For 
example, the goose's leg is part of the goose but not part of the flock of geese. Slightly 
more awkwardly, even though we often talk of members of a committee being "part of a 
committee", being a member of a subcommittee that is part of a committee may, or may 
not, confer membership in the committee as a whole. Admittedly, whether membership is 
a part-whole relation is subject to debate. 

●     

Connections and branches-That the lamp is connected to the main electricity system 
does not make it part of that system. Similarly, the tributary is not part of the river, rather 
a brach of the river. If we want to talk about parts, we usually speak of the "river system". 

●     

Constituents- more controversially, many ontologists distiguish between the relation 
between clay and a statue made of clay - the clay "constitutes" or "is a constituent of" the 
statue, rather than being part of the statue in the same sense that the arm or leg is part of 
the statue. At the very least, there are a set of different issues involved in this relationship 
that are beyond the scope of this document. 

●     

subClassOf- As discussed in Pattern 3, being a part of something is not the same as 
being a subclass of it. 

More on partOf and hasPart

In some contexts it is "more universal" to use partOf, in others to use hasPart. For 
example, all cars have wheels, but not all wheels are parts of cars. On the other hand, all 
leaves are parts of plants (at least at some time), but not all plants have leaves. The inability of 
existing classifiers to cope with ontologies mixing partOf and hasPart is a significant 
limitation. In the usual case where partOf is used, the best option may then be not to enter a 
saying that "all wheels are parts of cars" but rather to define notions of as "Wheel of a car".

Wheel_of_car 
   a   owl:Class ; 
   owl:equivalentClass 
    [a owl:Class ; 
    owl:intersectionOf (Wheel [a owl:Restriction ; 
       owl:onProperty partOf ; 
       owl:someValuesFrom Car ]) 
    ]).

http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/ (12 of 14)3/28/2005 9:37:02 AM

file:///D:/rector/Projects/Best%20Practice/Parts-and-wholes/simple-part-whole-relations-v0-2.html#ref-flavours-of-part-of
mcdaniel
Note
We should reference this section of the paper in earlier sections to alert readers to the fact that simple partof relationships are not sufficient to handle the complexities of real world modelling



Simple part-whole relations in OWL Ontologies

By defintion, all Wheel_of_cars are parts of cars, and any Wheel that is a part of a car is a 
Wheel_of_car. This is a work around, and not ideal, but at least all statements in the 
ontology are logically true. 

Flavours of part-whole relations 

Many authors discuss different subtypes of of the part_of relation. In most cases these can be 
represented as subproperties of partOf, but the various flavours of part-whole relation are 
beyond the scope of this note. See [Flavours of part of]. 
 

Notes

[1]  This mechanism is a variant of the SEP triple approach first suggested by Hahn and 
Schulz : Hahn, U., Schulz, S. and Romacker, M. Part-whole reasoning: a case study in medical 
ontology engineering. IEEE Intelligent Systems and their Applications, 14 (5). 59-67 

References

[Specified Values] 
Representing Specified Values in OWL: "value partitions" and "value sets", Alan Rector, 
Editor, W3C Working Draft, 3 August 2004, http://www.w3.org/TR/swbp-specified-
values/ . 

[OWL Overview] 
OWL Web Ontology Language Overview, Deborah L. McGuinness and Frank van 
Harmelen, Editors, W3C Recommendation, 10 February 2004, http://www.w3.org/
TR/2004/REC-owl-features-20040210/ . Latest version available at http://www.w3.org/TR/
owl-features/ . 

[OWL Guide] 
OWL Web Ontology Language Guide, Michael K. Smith, Chris Welty, and Deborah L. 
McGuinness, Editors, W3C Recommendation, 10 February 2004, http://www.w3.org/
TR/2004/REC-owl-guide-20040210/ . Latest version available at http://www.w3.org/TR/
owl-guide/ . 

[OWL Semantics and Abstract Syntax] 
OWL Web Ontology Language Semantics and Abstract Syntax, Peter F. Patel-
Schneider, Patrick Hayes, and Ian Horrocks, Editors, W3C Recommendation, 10 
February 2004, http://www.w3.org/TR/2004/REC-owl-semantics-20040210/ . Latest 
version available at http://www.w3.org/TR/owl-semantics/ . 

[RDF Primer] 
RDF Primer, Frank Manola and Eric Miller, Editors, W3C Recommendation, 10 February 
2004, http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ . Latest version available at 
http://www.w3.org/TR/rdf-primer/ . 

[RDF Semantics] 
RDF Semantics, Pat Hayes, Editor, W3C Recommendation, 10 February 2004, http://
www.w3.org/TR/2004/REC-rdf-mt-20040210/ . Latest version available at http://www.w3.

http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/ (13 of 14)3/28/2005 9:37:02 AM

http://www.w3.org/TR/swbp-specified-values/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/2004/REC-owl-guide-20040210/
http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/2004/REC-owl-semantics-20040210/
http://www.w3.org/TR/owl-semantics/
http://www.w3.org/TR/owl-semantics/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.w3.org/TR/rdf-mt/


Simple part-whole relations in OWL Ontologies

org/TR/rdf-mt/ . 
[RDF Vocabulary] 

RDF Vocabulary Description Language 1.0: RDF Schema, Dan Brickley and R. V. Guha, 
Editors, W3C Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-rdf-
schema-20040210/ . Latest version available at http://www.w3.org/TR/rdf-schema/ . 

[Flavours of part of]   
Odell, J.J. Six different kinds of composition. Journal of Object Oriented Programming, 5 
(8). 10-15. 
Winston, M., Chaffin, R. and Hermann, D. A taxonomy of part-whole relations. Cognitive 
Science, 11. 417-444 
Artale, A., Franconi, E. and Pazzi, L. Part-whole relations in object-centered systems: An 
overview. Data and Knowledge Engineering, 20. 347-383 

 
 

Changes

●     renamed relations in examples (need to update OWL source files) using more 
camelCase.   

●     Cleaned up formatting and made pattern sections structurally consistent with each other. 
●     cleaned up partonomy, removed cylinder, made accurate wrt cars 
●     added a discussion section for each pattern that mentions potential problems 

http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/ (14 of 14)3/28/2005 9:37:02 AM

http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/rdf-schema/
mcdaniel
Note
We need more references in the early part of the document to the descriptions of exceptions noted later in the document


	w3.org
	Simple part-whole relations in OWL Ontologies


