
Name: Andrew Newman 
 
Student Number: 41227462 
 
Supervisor: Jane Hunter 
 
Project Title: Querying the Semantic Web using a 
Relational Based SPARQL 
 



Table Contents 

INTRODUCTION 3 

LITERATURE REVIEW 4 

METHODOLOGY 6 

PRELIMINARY STUDY USING A SIMPLE EXAMPLE 7 

PLAN AND TIMELINE FOR PROJECT 10 

Semester 1 11 

Semester 2 11 

REFERENCES 11 
 
 
Tables and Figures 
FIGURE 1. THE JRDF REPRESENTATION OF RDF NODES AND TYPES.  THE NODE VALUE 

TYPES: URI REFERENCE (URI), BLANK NODE (BNODE) AND LITERAL EXTEND THE 
POSITIONAL TYPES: SUBJECT, PREDICATE AND OBJECT........................................................... 8 

TABLE 1.  RDF AND RELATIONAL COMPONENTS .................................................................................. 8 



Introduction 
The Semantic Web is an attempt to allow data from different sources to be combined 
in a consistent way by extending the current World Wide Web. It is useful when the 
data schemas are heterogeneous, change over time, or consensus on a common 
format cannot be reached ahead of time.  It is used in areas such as Bio-Informatics, 
Life Sciences, GIS (Geographic Information Systems), Knowledge Management and 
Material Sciences. 
  
A part of the W3C’s Semantic Web initiative is RDF (Resource Description 
Framework).  RDF is a simple graph-based data model for representing information 
on the Web [1]. It has a formal data model with formal semantics and is designed to 
be simple, open, and extensible [1].  An RDF graph consists of a set of triples; each 
triple consists of a Subject, Predicate and Object.  Triples are used to create 
relationships between the subject and object using different predicates [1]. 
 
SPARQL (SPARQL Protocol And Query Language) is the W3C’s proposed standard for 
querying RDF [2].  Similar to other query languages SPARQL allows users’ to 
declaratively specify the conditions required for data to be retrieved rather than 
explicitly describing the individual steps required to return the data.  SPARQL 
provides: 

• Simple matching of RDF data, 
• The ability to combine multiple matches together, 
• Matching data types such as integers, literals, etc. based on conditions such 

as greater than, equal to, etc. 
• Optionally matching data – that is, if certain data does exist it must meet a 

certain criteria but does not fail if the data doesn’t exist, 
• Combining RDF data sets together to query at the same time, and 
• Ordering and limiting matched data. 

 
A formal set-based model for SPARQL has not currently been provided.  The lack of a 
formal set-based model means that there exist some incompatibilities between 
SPARQL and the RDF model.   
 
To provide a compatible set-based model an existing formal model, the relational 
model seems to be appropriate.  This model has been used as the basis for database 
management and as defined by Date, it consists of three components: structure, 
integrity and manipulation [3]. 
  
An alternative is to use a common commercial implementation of a query language 
such as SQL (Structured Query Language).  SQL has been reconstructed using bags 
(a collection of values that allow duplicates) rather than sets (a collection of values 
that allows no duplicates) [5].  The operations available in SQL such as DISTINCT 
and aggregate functions are only applicable as operations over bags not sets [5].  
This is incompatible with the RDF model and for this reason SQL has not been used. 
 
Previous work has centred on either mapping SQL to SPARQL [6][7], creating a 
formal algebra for RDF without relating it back to SPARQL [8], or providing an RDF 
query language without consideration of SPARQL [10][11]. There exist only 
incomplete examples of producing a formal model or a mapping to other formal 
models such as the relational model or SQL [6][7][8]. 
 
As both the RDF model and the relational model are set-based it is likely that a 



compatible model for querying RDF can be provided.  This will lead to two direct 
advantages for users and implementers: 

1. It provides a formal model that unambiguously outlines a consistent set of 
principles to create a coherent foundation for the formulation of queries.  This 
provides a stable set of fundamentals that remain constant as 
implementations or syntaxes evolve over time. 

2. It allows the continuing work being done on the relational model to be applied 
to querying RDF. 

 
An extensive review of the literature available on the subject indicates that when 
developing SPARQL implementations the use of the relational model is considered 
important as a way to leverage existing work.  This is especially relevant concerning 
the efficient execution of queries [7][8]. 
 
However, it is also apparent that there are numerous difficulties in mapping between 
SPARQL operations and the relational model.  The main issues are: 

• The existence of SPARQL’s DISTINCT operator, 
• Differences between unbound and NULL values, 
• Order dependency when processing constraints such as OPTIONAL, and 
• Processing FILTER operations. 

 
This project proposes to: 

• Investigate extending the relational model to support RDF data, 
• Specify a query language that closely follows the syntax and operations 

defined by the SPARQL specification while using an underlying relational 
model, 

• Investigate improvements that can be made in performance, scalability, 
distribution and usability when querying Semantic Web data using the new 
query language, 

• Compare the differences between the SPARQL specification and the relational 
model and create recommendations for changing the SPARQL specification to 
align it with the relational model, and 

• Use an existing RDF API to add appropriate relational bindings and to map 
these operations to SPARQL syntax and operations. 

 
This project is limited by time constraints and this may restrict the number of 
SPARQL features implemented in the working prototype, however a set of core 
features will be incorporated. 
 

Literature Review 
A data model defined by Date, “…provides an abstract, self-contained, logical 
definition of data structures, data operators and so forth, that together make up the 
abstract machine with which the user interacts” [4]. 
 
It is understood [10] that the “…underlying data model directly influences the set of 
operations that should be provided by a query language.” And further it is 
highlighted that the design of an RDF query language should support:  

• The RDF abstract data model,  
• Formal semantics and inference,  
• Support for XML schema data types and 
• Support for incomplete or missing information. 

 



The set of relational operators combined with the relational model are collectively 
called the relational algebra [3]. The operations on relations originally defined by 
Codd include: set operations, projection, join, Cartesian product, and restriction [4].  
It is from these relational operations that you can derive a primitive set of 
restrictions that includes: restrict, project, join, union and semi difference [3].  This 
is reinforced by [12] where basic algebraic operations of selection, projection, 
Cartesian product, set difference and set union are highlighted.  These operations 
are analogous with SPARQL operations. 
 
While SQL does provide similar operations to relational algebra it has a number of 
problems [5], “…no one really knows what SQL is, since there are many different 
versions, it is widely accepted that any version of SQL has at least two features 
which are not present in the relational algebra: aggregate operators…[and] allows a 
limited form of nesting by using the GROUP-BY construct…one needs bag semantics 
for the correct evaluation of aggregate functions.”   
 
An alternative operation that is compatible with the set-base, relational model and 
used by Date [3] is the SUMMARIZE operation which provides summaries such as 
COUNT, SUM, MAX and MIN that “…are not aggregate operators, though most of 
them do have the same names as aggregate operators (SQL confuses the two 
notions, with unfortunate results).” SQL also allows duplicate values and can cause 
problems with both optimisation and query processing [3]. 
 
The main work to date dealing with mapping the relational model and SPARQL has 
been performed by Cyganik and Harris [7][8].  The motivation for their work is to 
make available the previous experience dealing with query planning and 
optimisation. Harris [8] specifically mentions that RDF implementations do not take 
advantage of database engines’ built in query optimisers and knowledge of indexes. 
 
Along similar lines, the paper by Frasincar et al [9], in rationalizing the requirement 
for an RDF algebra, states that issues of query optimisation “…are mostly neglected”.  
The types of optimisations proposed include efficiently performing extraction of data 
and constructing results. 
 
Cyganik [7] notes that NULLs in SPARQL lead to several inconsistencies with the 
relational model, “The SPARQL model does not, for example, distinguish between an 
OPTIONAL variable that is unbound in some solutions, and a variable that is not used 
in the query at all.”  This result leads to confusion as to what an unbound result 
means. 
 
A parallel occurs in commercial databases using NULLs to indicate missing 
information [3].  The issues related to NULL values has been debated by Date and 
Codd [3], “…nulls have no place in the relational model. (Codd thought otherwise…” 
Henly [9] has applied this to the field of geoscience and notes that NULL information 
can be indicative of multiple reasons such as “not worthy of comment”, “to be added 
later”, “lost” or indicates that the value is between known ranges but has not 
registered significantly to be recorded.  
 
SPARQL defines the OPTIONAL operator, as defined by Harris [7] “…is used to signify 
a subset of the query that should not cause the result to fail if it cannot be 
satisfied…it is roughly analogous to the left outer join of relational algebra.”  Again, 
Cyganik [6] has shown that the semantics of OPTIONAL is not compatible with 
relational algebra.  SPARQL provides “only conflicts cause join failure” whereas 



relational algebra provides “unbound variable causes join failure”.  This creates an 
order dependency on the use of OPTIONAL. 
 
This is similar to the outer join feature implemented in Edutella, a peer-to-peer 
based system for performing distributed RDF searches [12].  Where, “In outer join 
all the answers terminate in true.  You never get an empty answer. In cases where 
you ask questions with many variables and some do not match, you get an answer, 
but the result for those variables that did not match are filled by NULL.”  It was 
found that “…inconsistencies in the answers depend on which order the outer join 
body literals are interpreted in.”  It is clear that order dependency in executing 
queries leads to inefficient distribution and uncertainty in which results will be 
returned from a query.  
 
A solution to efficiently and unambiguously implementing outer joins in relational 
algebra was presented by Galindo-Legaria [13].  It includes a “…hierarchical view of 
data…where relational attributes may be set-based” and “Instead of having one tuple 
with parent-child information for each child, we present the children as a set 
associated with the parent”.  This also effectively removes the requirement for NULLs 
as place fillers when tables of different attributes are joined. 
 
Galindo-Legaria went on to show that outer join; or rather minimum union 
(otherwise know as “outer union”) can be implemented using disjunctions.  The 
advantages are that “disjunction is commutative and associative, which is a 
significant property for intuition, formalisms, and generation of execution plans…” 
[14]. 
 
Harris [6] further defines three cases where the relational model will have problems 
processing value constraints - specifically within FILTER operations.  They are: 

• Non-relational expressions such as regular expressions,  
• Late bound expressions where variables are created outside their local blocks 

and 
• Placing constraints in a required block on variables that are only bound in an 

OPTIONAL block.   
 
Similarly, Cyganik [6] defines a problem for relational algebra where a selection, for 
example during a FILTER operation, can only access variables within it’s own block. 
 
Previous work has highlighted specific limitations of the current SPARQL 
implementations and the need for an underlying formal model.  It has also been 
shown that the problems associated with current SPARQL operations can be solved 
using existing relational techniques.  However, little work has been done in 
developing and evaluating an RDF query language that is built of formal set-based 
models while maintaining a focus on SPARQL.  This is the focus of my project. 
 

Methodology 
This project intends to determine the feasibility of providing a formal model of 
SPARQL using the relational model.  This includes:  

• Demonstrating how SPARQL operations can be adapted to use the relational 
model,  

• Extending the relational model using previously discovered methods, 
• Developing a working prototype, and  
• Comparing the working prototype with another SPARQL implementation. 



 
SPARQL defines a series of operations, use cases and semantics.  These will be 
modified to be consistent with an extended relational model and the operations of 
relational algebra.  The mappings will then be contrasted with the existing SPARQL 
operations and any benefits associated will be highlighted. 
 
The prototype query engine will provide a user interface to allow queries to be 
processed.  The prototype will be developed using Java 5.0 and will include a user 
interface developed using Swing.  This query engine will be implemented using the 
RDF library JRDF.  This will include making the following modifications: 

• Creating mappings from the RDF model to the relational model,  
• Implementing the relational operations, and 
• Performing SPARQL queries using the relational operations.  For example, 

extending relational algebra to allow querying of missing data provided by the 
SPARQL operation OPTIONAL. 

 
A comparative review, using a set of criteria to be defined, of the relational system 
and a non-relational system will be made. These differences are expected to include 
a more consistent model, improvements in performance, a greater ability to scale 
and distribute work, and an increased precision of the results returned.  The sample 
data, based on FOAF or another data set, and a list of use cases based on the 
developed criteria, will be used to show the practical advantages of implementing a 
query engine in this way. 
 

Preliminary Study using a Simple Example 
An initial investigation into extending the relational model to store and query RDF 
has been performed. The purpose of which is to ascertain whether it is practical to 
use the relational model to make simple queries of RDF data. 
 
In order to create a simple example, the components of the various systems must be 
clearly defined and contrasted.  The various components include: 

• The relational model - Consisting of Types, Attribute names, Attributes, 
Tuples, Headings and Relations [3].   

• Relational Operators – A small selection including: Restrict, Project and Join. 
• The RDF model - consisting of RDF triples that can further be broken down 

into positional elements: Subject, Predicate and Object [1].  Each of the 
positional elements can be of a certain type.  Subjects are either URI 
References or blank nodes; predicates must be URI References; and objects 
can be URI References, blank nodes or literals. 

 
Figure 1 shows the hierarchical structure of these node types as modelled by 
JRDF.



 

Figure 1. The JRDF Representation of RDF Nodes and Types.  The node value 
types: URI Reference (URI), blank node (BNode) and literal extend the 

positional types: Subject, Predicate and Object.  

Using this hierarchy of node types we can create a mapping between the relational 
and RDF components, as shown below in Table 1. 
 
Component Name Description Relational Examples RDF Examples 
Type Name A data type integer, char, sno, 

name 
subject, predicate, 
object, uri, literal and 
bnode 

Attribute Name A distinct, 
descriptive 
name 

status, city, sno, 
sname 

Variables: s?, ?city. 
Node Postions: 
subject, predicate, 
object 

Attributes A combination 
of type name 
and attribute 
name 

status:integer, 
char:city, sno:sno, 
sname:name 

s?:subject, 
p1:predicate, 
?city:object 

Tuple or Tuple 
Value 

When a value is 
associated with 
an attribute 

sno sno('s1'), sname 
name('smith'), status 
20, city 'london' 

s?:subject(#s1), 
p1:predicate(#name), 
o1:object(‘smith’) 

Heading A set of 
attributes 

sno sno, sname name, 
status integer, city 
char 

s? subject, p1 
predicate, o1 object 

Table 1.  RDF and Relational Components 



A relation contains a heading and a body.  The body contains a set of tuples. Using 
the typical supplier and part examples [3] the following relations have been created: 
 
Suppliers 
sno:sno sp:sp 
S1 P1 
S1 P2 
S2 P1 
S2 P2 
 

Parts 
sp:sp char:city 
P1 ‘London’ 
P2 ‘Paris’ 

 
 

 
A similar representation using relations modified to use RDF components (RDF 
relations) is shown below: 
 
Suppliers and Parts 
s1:subject p1:predicate o1:object 
S1 #sno S1* 
S1 #sp P1 
S1 #sp P2 
S2 #sno S2* 
S2 #sp P1 
S2 #sp P2 
P1 #sp P1* 
P2 #sp P2* 
P1 #city ‘London’ 
P2 #city ‘Paris’ 
 
* The current use of these S1 and P1 as Subjects may change in the future to be 
replaced by blank nodes. 
  
A sample SPARQL query can be devised to return all the supplier numbers (sno), 
part numbers (pno) and cities. 
 
Sample Query 
 
 
 
 
 
 
 
 
 
This results in the following relations being created for each constraint (using 
relational restrict operation): 
 
First Relation (?sno #sno S1) 
?sno:subject p1:predicate o1:object 
S1 #sno S1 
 

select ?sno ?pno ?city 
... 
where ?sno #sno S1 
?sno #sp ?pno 
?pno #city ?city 



Second Relation (?sno #sp ?pno) 
?sno:subject p2:predicate ?pno:object 
S1 #sp P1 
S1 #sp P2 
S2 #sp P1 
S2 #sp P2 
P1 #sp P1 
P2 #sp P2 
 
Third Relation (?pno #city ?city) 
?pno:subject P3:predicate ?city:object 
P1 #city ‘London’ 
P2 #city ‘Paris’ 
 
By performing joins the following results are obtained: 
 
Join of First and Second Relation 
?sno:subject P1:predicate O1:object P2:predicate ?pno:object 
S1 #sno S1 #sno P1 
S1 #sno S1 #sno P2 

 
Join of First, Second and Third Relation 
?sno:subject P1:predicate O1:object P2:predicate ?pno:object P3:predicate ?city:object 
S1 #sno S1 #sno P1 #city ‘London’ 
S1 #sno S1 #sno P2 #city ‘Paris’ 
 
Using the relational project to produce only the variables defined in the SELECT part 
of the SPARQL query the final result is: 
 
Query Result 
?sno:subject ?pno:object ?city:object 
S1 P1 ‘London’ 
S1 P2 ‘Paris’ 
 
This is consistent with the expected result when performing a SPARQL query using 
current SPARQL implementations. 
 

Plan and Timeline for Project 
The work to be completed has been divided by semester.  The first set of tasks 
relates to creating the relational structures (tuples, relations, etc.) and providing a 
typing system to map the RDF model to the relational model. 
 
The second set of tasks relates to creating the user interface in which queries will be 
submitted and allowing data to be loaded into the system.  Furthermore, the 
complete set of relational operations will be mapped to SPARQL and any other 
provisions to be made to implement the queries. 
 
This will then allow the comparison to be made using the test cases, test data and an 
existing non-relational implementation of SPARQL. 



 
Semester 1 

Time Frame Tasks 
Weeks 1 – 4 General project set-up – IDE, Wiki, build environment. 

Annotated bibliography. 
Initial investigation of mapping RDF to relational data types. 
Validation and review of design and creation of issue matrix. 

Weeks 5 – 8 Literature review and survey of further required reading. 
Further development work on JRDF. 
Progress Report Draft and Delivery. 

Weeks 9 – 13 Completion and review of SPARQL interpreter in JRDF. 
Begin initial implementation of relational operators. 
Draft Seminar and preparation. 
Presentation of Seminar. 
Finish demonstration of a subset of SPARQL operations mapped to 
the relational model. 
Constraint trees/diagrams describing how the relational operators 
perform SPARQL operations. 

 
Semester 2 

Time Frame Tasks 
Weeks 1-4 
 
  

Completion of relational operators. 
Review of algebra for thesis. 
Finalisation of data sets to use as examples 
Optimisation and review of the code based on data sets and 
completed operators 

Weeks 5-8 Initial investigation of non-relational system with selected data sets 
(FOAF or other data set). 
Begin work on poster and abstract 
Review and finalise UI work for demonstration purposes. 

Weeks 9-13 Perform metrics and comparative evaluation of relational and non-
relational systems. 
Complete and deliver poster and abstract. 
Complete and deliver thesis. 
Complete and deliver presentation. 
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