
10/8/2008 6:32 PM9/25/2008 11:19 AM Page 1 of 6

Testing Interoperability of SML & SML-IF Implementations 1

 2

Change Log: 3
Date Person Remarks

4/4/2008 Kumar Pandit Created initial draft.

9/24/08 Kumar Pandit Updated base on group’s comment on 9/18 and 9/11/08.

10/5/2008 Kumar Pandit Added Ginny’s text in section 2. Other updates based on WG discussion on 10/2/2008.

 4

1. Overview 5

In order to progress from Candidate Recommendation status to Proposed Recommendation, SML and 6

SML-IF must satisfy the exit criteria for Candidate Recommendation agreed upon by the Director and the 7

chairs of the SML Working Group. At a minimum, the W3C process document requires that each 8

specification have at least one implementation of each feature, and preferably two inter-operable 9

implementations; additional exit criteria may be (and often are) agreed by the Director and chairs. As a 10

consequence, the basic requirement for our test plan is that the SML WG must construct a test suite 11

suitable for documenting (a) which features of the spec have been implemented and (b) for each feature 12

implemented more than once, whether the implementations are consistent and interoperable. This 13

document defines the approach adopted by the SML working group to meet that goal. 14

This is defined in the following sections: 15

1. Test packaging 16

2. Test storage and organization 17

3. Test execution 18

4. Analyzing test results 19

5. Test Cases 20

 21

2. Test Packaging 22

Each test involves processing a set of schema, rule, and instance documents that constitute the SML 23

model. SML-IF provides a convenient way to specify all documents required for each test. Therefore, 24

each test will be represented by an SML-IF document. 25

 26

The packaging of the schema, rule, and instance documents for a test can occur in one of two ways. The 27

documents for each test can be kept in the test’s SML-IF document to completely encapsulate each test 28

or they can be kept as separate documents that could (potentially) be reused across several tests and 29

referenced from the SML-IF document. 30

 31

One, or both, of the following approaches may be used to construct a test. 32

 33

10/8/2008 6:32 PM9/25/2008 11:19 AM Page 2 of 6

1. Keep each schema, rule, and instance document for a test in separate files and, possibly, reuse 1

documents across multiple tests. The test’s SML-IF document will reference these files via the 2

<locator> element. There are several ramifications of this approach: 3

a. If a file is used in several tests, changes to a single file potentially affects multiple tests. 4

This can help when making the same change across multiple tests but can also cause a 5

test to fail if the change has an inconsistent effect across multiple tests. 6

b. Sending a complete test case to someone requires gathering the files that are part of 7

the test and combining these files into a package suitable for transfer. This package 8

must contain all the test files, including the SML-IF document that references them or 9

may just be the SML-IF document with all files embedded. 10

c. Some consumers may not support the <locator> element since it is optional. In this case, 11

some test harness code may be required to insert the referenced documents into the 12

SML-IF document prior to test execution. 13

d. This approach will be required to test the <locator> element. 14

 15

2. Keep all the schema, rule, and instance document for a test embedded in the test’s SML-IF 16

document. There are several ramifications of this approach: 17

a. Changes to each test are localized to that test. This can also cause multiple files to be 18

changed if the same change has to be made across (similar) tests but could also serve to 19

isolate changes to a single test. 20

b. No special packaging is needed to send out the test case since the test’s SML-IF 21

document is already complete. 22

c. All SML-IF consumers will be able to process this file with no additional test harness 23

code since the <locator> element is not used. 24

d. If we do not anticipate reuse of the test documents, this is the simpler approach for the 25

previous reasons. 26

Each test involves processing a set of schema/rule documents and instance documents. There are two 27

basic approaches to package these documents. 28

1. Keep each document in its own file and have a test-description file per test that points to files 29

involved in that test. 30

 31

Although this method saves disk space by eliminating duplication of files, it has the following 32

disadvantages: 33

a. Change to a single file potentially affects multiple tests. 34

b. The test-description file must store information about file category 35

(definition/instance/rule), file URLs (aliases), schema-completeness, rule bindings, etc. 36

In other words, this file must define and use syntax that is already defined for the SML-37

IF files. 38

c. Sending a complete test case to someone is complicated because one needs to carefully 39

copy all required files and the associated test-description file. 40

10/8/2008 6:32 PM9/25/2008 11:19 AM Page 3 of 6

d. A test harness must have additional code must be written that understands how to use 1

the information in the test-description file. 2

 3

2. Package all files required for a test in a single SML-IF file. 4

 5

Although this method requires more disk-space than the previous method, the actual amount of 6

disk space additional disk-space is insignificant compared to current disk sizes. This method has 7

the following advantages: 8

a. Changes to each test are localized to that test. 9

b. No special syntax needs to be invented because SML-IF already defines it. 10

c. Sending a complete test case to someone is easy because one needs to send only 1 file. 11

d. An SML-IF consumer already knows how to process an SML-IF file therefore that part 12

does not have to be implemented by a test harness. 13

 14

In view of the above, each SML test case is packaged in a single SML-IF file. There is only one exception. 15

Testing non-embedded documents pointed to by a locator element requires multiple files per test. 16

However, since support for the locator element is optional, that test is not included in interoperability 17

testing. Note that a test for the locator element is still required to prove that an implementation, that 18

supports locator elements, processes them correctly. 19

 20

Tests that test the locator element typically use more than one file per test. All other tests use a single 21

SML-IF file that directly embeds necessary model documents. 22

3. Test Storage and Organization 23

Test cases and associated files are stored on W3C servers so that they can be accessed by people who 24

need them. There are less than 200 test cases that cover SML & SML-IF. This allows the test cases to be 25

stored in a relatively flat directory structure. They are stored under the sml directory in the cvs 26

repository as shown below. 27

 SML 28

o test 29

 testsForRequiredFeatures 30

 testsForOptionalFeatures 31

 documentation 32

 33

The testsForRequiredFeatures directory has the SML-IF files that contain tests for the required features. 34

The testsForOptionalFeatures directory has the SML-IF files that contain tests for the optional features. 35

The documentation directory has test documentation, including this document. 36

 37

10/8/2008 6:32 PM9/25/2008 11:19 AM Page 4 of 6

4. Test Execution 1

How the test case files are supplied to a test harness and how the test harness is invoked depends on 2

each implementation. This document does not define requirements for the following: 3

1. Hardware configuration 4

2. Operating System or its version 5

3. Test execution behavior of any test harness. 6

 7

5. Analyzing Test Results 8

As mentioned earlier the SML working group is required to have at least one implementation of each 9

SML & SML-IF feature and at least two inter-operable implementations. The process of determining 10

whether all features are covered by the test cases cannot be automated. The working group must 11

determine this based on a review of the test cases. However, the inter-operability can be determined in 12

an automated fashion. 13

 14

For the purpose of this test plan, two implementations are said to be interoperable if they produce 15

identical model validation result for each test case that tests a required feature of SML and SML-IF. Two 16

implementations are allowed to produce a different model validation result for a test case that tests an 17

optional feature. 18

 19

Comparing test results is trivial where the results indicate a valid model. Comparing test results where a 20

model is invalid is not so easy. This is because a model could be invalid because of a number of reasons 21

and the SML & SML-IF specifications do not define an inter-operable way to encode or compare the 22

reasons. This is because of the following: 23

1. The SML specification does not define the order in which model validity assessment steps must 24

be carried out. One implementation may evaluate id constraints before Schematron constraints 25

and some other implementation may do it in the reverse order. 26

2. The SML specification does not define whether model validation must stop at the first error and 27

whether all possible errors are returned to the invoker. This combined with the previous item 28

can result in two implementations producing two different results for the same invalid model. 29

3. The SML/SML-IF specifications do not define specific error codes or error messages that 30

represent an error condition. This means that even though two implementations find the same 31

error in a model, they may produce different error codes/messages. There is no inter-operable 32

way to compare them. 33

 34

As a result of these difficulties, this test document does not require automated granular comparison of 35

test results between two different implementations. The result comparison is limited to comparing 36

model validity as a Boolean value. 37

 38

Each participating implementation must pass all tests that test features supported by that 39

implementationeach test that tests a required feature. A test is said to pass if the actual model validity 40

10/8/2008 6:32 PM9/25/2008 11:19 AM Page 5 of 6

result, expressed as a Boolean value, is identical to the expected result. If an implementation produces 1

descriptive error messages when model validity is assessed, such messages are compared manually with 2

the results from other implementations for the same model. The comparison of such error messages 3

cannot be automated for reasons mentioned earlier. If two implementations produce different 4

descriptive error messages for a given model then those messages may be used for diagnosing potential 5

bugs in the implementations. However, despite differing error messages for a test, as long as an 6

implementation produces the expected model validity result then it passes that test. 7

 8

The name of each test file includes the test name followed by the expected result. This obviates the 9

need to maintain a separate test metadata file. For example, 10

 11

id-constraint-KeyMissing-invalid.xml 12

ref-dangling-valid.xml 13

 14

6. Test Cases 15

As defined earlier, model validation results are compared as a Boolean value. Test cases are written such 16

that they focus on a single issue at a time and consequently they result in a single model validation 17

error. This avoids ambiguity in cases where a model may be invalid due to multiple reasons. 18

 19

The following sections lists all test cases used for interoperability testing. They are divided in 2 parts, 20

1. Tests for required features: 21

 These features are "required" in the sense that conforming processors must support them. Each 22

participating implementation must pass all tests that test features supported by that 23

implementation.If any partial implementations participate in the testing effort, those partial 24

implementations may not pass all of tests in this group. 25

2. Tests for optional features: 26

Not all implementations support optional features,. As a consequence of this, if the spec 27

prescribes or allows different behavior when a feature is supported vs. not supported, then two 28

implementations may exhibit different behaviors if the one implementation supports the 29

feature and the other doesn't. The results of tests in this group are not compared against the 30

results of the same tests for other implementations. The results are only used to assess whether 31

an implementation correctly implements a given optional feature. therefore the behavior of an 32

implementation cannot be reliably compared with that of another when an optional feature is 33

involved. An implementation may silently ignore the presence of an optional feature or it may 34

produce a fatal error or it may produce a warning if required by SML or SML-IF specification. 35

 36

 37

Tests for Required Features 38

tbd 39

10/8/2008 6:32 PM9/25/2008 11:19 AM Page 6 of 6

 1

Tests for Optional Features 2

Tbd 3

 4

Open Issues 5

1. We need to specify behavior when an optional feature is not supported. 6

2. Define directory structure to hold files related to interop testing. 7

3. Need to decide test result format. 8

4. Decide whether two implementations are allowed to produce a different model validation result 9

for a test case that tests an optional feature. 10

5.1. Need test cases for validation of SML-IF format. 11

