Proposal for Allowing sml:keyref to Reference xs:key/xs:unique [Issue 4684]

Kirk Wilson, CA

With assistance provided by Sandy Gao

The central point in this issue is that xs:keyref element has meaning only with reference to a scope, it can reference just those xs:key or xs:unique elements that are defined within its scope. The scope of the xs:keyref element is defined by the node and descending nodes of the XML tree structure in which xs:keyref is defined. When constraining an inter-document reference where the key is an xs:key defined in the document being referenced, this semantic is ipso facto violated, since the element in which the key is defined lies outside the XML tree structure of the element in which the sml:keyref will be defined because the two elements are in different documents.

If we are going to reference an xs:key by means of sml:keyrefs, then we need to redefine the semantics of scope for sml:keyref in a manner different from xs:keyref. Using the example in 3.4.3 and assuming that the sml:key StudentIDisKey is an xs:key (of the same name) defined in the document that declares the Student element, then the scope of sml:keyref must include any key or unique defined within its tree structure (by default any sml:key or trivially, any xs:key) as well as any xs:key or xs:unique defined for an element referenceable from a sml reference element within that tree structure.

For example: consider the following documents (abbreviated for convenience), which we shall our existing models:
<element name="students">
 <sequence>

<element name="student" maxOccurs="unbounded" ...>

 <sequence>

<element name=”ID”>

 </sequence>
 </sequence>
 <key name="StudentIDisKey">

<selector xpath="student"/>

<field xpath="ID"/>
 </key>
</element>

Students.xml:

<studends>
 <student>
 <ID>123</ID>
 </student>
 <student>
 <ID>456<ID>
 </student>
</students>

Now consider a “new model” for courses that wants to reference the Students document:
<element name="courses">
 <sequence>

<element name="students"/>

<element name=”student maxOccurs=”unbounded”>

 <sequence>

 <element name=”ID”/>

 <sequence>

</element>
 </sequence>
 <sml:keyref name="CourseStudents" refer="???">

<sml:selector xpath="course/student"/>

<sml:field xpath="ID"/>
 </sml:keyref>
</element>

Courses.xml:

<courses>
 <students>
 <sml:uri>students.xml#(/students)</sml:uri>
 </students>
 <course>
 <student>
 <ID>123</ID>
 </student>
 </course>
 <course>
 <student>
 <ID>123</ID>
 </student>
 <student>
 <ID>456<ID>
 </student>
 </course>
</courses>

Notice that on the proposed definition of the scope of sml:keyref scope, the original students element falls with the scope of the sml:keyref because the sml reference to it is within the XML tree structure in which it is defined. Thus, sml:keyref “can be aware” of the xs:key StudentIDisKey defined on the original students element.
If we agree to this semantic extension, then the question becomes how to express it within XSD and the definition of the sml:keyref.
One approach may be to extend the sml:keyref to refer attribute allowing it to include a smlfn:deref function. We might use the following refer attribute specification: refer=”smlfn:deref(tns:students)/xxx:StudentIDisKey” (where “tns:” is namespace prefix indicating the current namespace in which sml:keyref is defined and “xxx:” prefix representing the namespace in which the element Students is declared that has the xs:key definition StudentIDisKey.

This approach would require defining a new type for the sml:keyref refer attribute in the schema. We can no longer adopt the simple xs:QName type. The type would accommodate either a QName (to refer to sml:key elements defined in the same structure) or a deref function+QName. However, there is a simpler approach that may be more acceptable.
The second approach* is to retain the current type of the refer attribute as type=”QName” and to introduce a new attribute, let’s call it scope, that identifies the extended scope of the sml:keyref when referencing xs:key elements in referenced documents. The deref() function is implicit in the scope attribute. Under this proposal the definition of the sml:keyref element in Courses would be:
 <sml:keyref name="CourseStudents" refer="xxx:StudentIDisKey

scope=”tns:students">

<sml:selector xpath="course/student"/>

<sml:field xpath="ID"/>
 </sml:keyref>

The scope attribute will be optional. If it is omitted, then the scope of the sml:keyref is the same as the scope of the xs:keyref, i.e., the current element and its XML tree structure.
Sandy adds:
If “scope” is a keyword like “##global”, then it’s as if there is a super-root element [that] collects all keys/uniques from all instance documents and the scope is that super-root.

The “global” thing is useful if there are many “students” instance document (e.g. a new one every year) and you want to refer to students in them without knowing which one to use.

ISSUE: Is it sufficient to define @scope to be type QName or do we need to be able to specify a path?

Sandy’s assessment of this approach:

With the “scope” attribute introduced, there’s no technical reason to stop us from referring to xs:keys from sml:keyrefs.

* Suggested to me by Sandy.

