Scoping of SML Identify Constraints [Issue 4995]

Kirk Wilson, CA

With assistance provided by Sandy Gao and Kumar Pandit
In the preceding issue [Issue 4684], we discussed a use case in which it would desirable to allow <sml:keyref>s to reference <xml:key>/<xml:unique> elements via XML references (i.e., across XML documents.). On the basis of this use case, there did not seem to be a compelling case to allow this cross referencing of identity constraints. The principal objections to allowing cross-referencing were:
1.
The desired functionality could be achieved by replicating the <xml:key> definition as an <sml:key>.

2.
Cross-referencing identify constraints would entail overlapping SML and XML Schema symbol spaces.

However, Issue 4995 introduces further issues with regard to how we should define the scoping of SML identity constraints relative to themselves. The scoping issue impacts how the SML identity constraint mechanisms themselves are defined.
In XML Schema, scope is defined relative to the location of the <xs:keyref> element: the scope of xs:keyref consists of the element in which the <xs:keyref> element is defined and that element’s descendant tree structure. The <xs:key/unique> elements defined within this structure “bubble up”; xs;keyref can be reference only those <xs:key/unique> elements that have bubbled up within its scope.
The issued raised by 4995 is whether SML identity constraints should follow the same type of scoping rules. The original SML draft specification was apparently written under the assumption that analogous scoping rules would be in play for the SML identity constraints. However, the proposed solution to the previous bugzilla suggested a different method of scope for SML identity constraints that needs to be reevaluated in the light of Issue 4995.
Current Scoping of SML Identity Constraints

Similar to the example used in Issue 4684, we assume we have a Students document something like the following:

<element name="students">
..<complexType>

 <sequence>

<element name="student" maxOccurs="unbounded" ...>

 <sequence>

<element name=”ID”>

 </sequence>
 </sequence>
..</complexType>

 <!-- The document may or may not contain an (existing) xml:key
 definition for the ID element of student. -->

</element>

We now want to have an SML reference to this document from a document consisting of courses, and this reference should be constrained by treating the student/ID element as a key. The schema of our Courses document (corrected to include the SML identify constraint definitions in the <xs:appinfo> element) would be:
<element name="courses">

 <annotation>

 <appinfo>

 <sml:keyref name="CourseStudents" refer="StudentIDisKeyLocal">

 <sml:selector xpath="course/student"/>

 <sml:field xpath="ID"/>

 </sml:keyref>

 <sml:key name="StudentIDisKeyLocal" >

 <sml:selector xpath="deref(students)/student"/>

 <sml:field xpath="ID"/>

 </sml:key>

 </appinfo>

 </annotation>

 <sequence>

 <element name="students"/>

<!-- This element is intended to be an SML reference

to the element of the list of students for which

the ID element is being defined as a key by the

sml:key definition above. -->

 <element name="student" maxOccurs="unbounded">

 <sequence>

 <element name="ID"/>

 </sequence>

 </element>

 </sequence>

</element>

The <sml:key> definition obviously falls with the scope of the <sml:keyref> definition according to the scoping rules of identity constraints in XML Schema (in fact, it has no “bubbling up” to do). But notice the amount of referencing information that must be including in the <sml:key> definition in order to achieve a cross-document definition of a key. The author of the Courses document must have explicit knowledge of the structure of the Students document and specify that structure in the <sml:key> definition.
We shall refer to this approach as the “XML Schema scoping approach.”

Proposed Scoping Mechanism in Issue 4684
The mechanism introduced in Issue 4684 involved explicitly specifying the scope of the <sml:keyref> by means of a scope attribute that takes as its value an SML reference. The following example illustrates this approach. Notice that in this example, the <sml:key> definition refers to the definition of a StudentIDisKeyRemote key definition on the Students document* (here designated by the tns: namespace prefix). The Students document would now contain an <sml:key> definition as follows:

<element name=”Students>

 <complexType>

 <annotation>

 <appinfo>

 <sml:key name=”StudentIDisKeyRemote”>

 <selector xpath="student"/>
 <field xpath="ID"/>
 </sml:key>
 </appinfo>

 <annotation>
 <sequence>
 <element name="student" maxOccurs="unbounded" ...>

 <sequence>

 <element name=”ID” />

 </sequence>

 </element>
 </sequence>
 </complexType>

 <!-- This element may or may not containing an (existing)

 xs:key definition. -->

</element>

We need to reference tns:student elements by their IDs from the courses/course/
student/ID element in our Courses document as specified below. Therefore, the StudentIDisKeyRemote key-definition in the Students document must be brought within the scope of the keyref-definition. This is done by means of the scope attribute in the <sml.keyref> definition, which dereferences the SML reference, students (in the parent courses element), to the document containing the tns:Student elements.
<element name="courses">

 <annotation>

 <appinfo>

 <sml:keyref name="CourseStudents"

refer="tns:StudentIDisKeyRemote"

scope="deref(students)">

 <sml:selector xpath="course/student"/>

 <sml:field xpath="ID"/>

 </sml:keyref>

 </appinfo>

 </annotation>

 <sequence>

 <element name="students"/>

<!-- This element is intended to the SML reference

element to the element containing the list of

students, Note that this document contains the

StudentIDisKeyRemote SML key. -->

 <element name="student" maxOccurs="unbounded">

 <sequence>

 <element name="ID"/>

 </sequence>

 </element>

 </sequence>

</element>

We shall refer to this approach as the “explicit scoping approach.”

In the original proposal to Issue 4684, the scope attribute was considered optional. If it is omitted, then the scope of <sml:keyref> is the same as the scope of the <xs:keyref>. We should consider whether the use of this attribute should not be mandatory, i.e., required=”true” under the current proposal. SML model consumers would not have to support both approaches. Note that the original proposal left several other issues regarding the scope attribute unresolved.
Discussion of Issue 4995
There appears to be several advantages in using the explicit scope attribute for defining the scope of <sml:keyref>s (and, thus, for violating the analogous XML Schema definition for <xs:keyref>s).
1.
The explicit scoping approach requires only information related to where to look for the referenced keys; whereas the XML Schema scoping approach requires the reference to contain information regarding how the keys are selected (explicit dereferenceable <select> element) and how the fields are identified <explicit <field> element). The explicit scoping approach as a stronger compliance with the goal of “information hiding” than does the XML Schema scoping approach: details regarding how the key definition is constructed is kept to the element whose key is being defined. Frankly, I find it somewhat strange that a document “over there” might be defining a structure in a document “over here.”
2.
It is reasonable to expect that a key may be used by references in several elements/documents. On the explicit scoping approach the <sml:key> would only need to be defined once, but the key can still be accessed from any number of <sml:keyref>s. On the XML Schema scoping approach, on the other hand, the appropriate <sml:key> definition would have to repeated for each <sml:keyref>, since those elements would define distinct scopes. The explicit scoping approach would save on maintenance costs by allowing the use of key-definitions.
Sandy added the following benefits to using the explicit scoping approach when we discussed Issue 4686:
· If “scope” is a keyword like “##global”, then it’s as if there is a super-root element that collects all keys/uniques from all instance documents and the scope is that super-root.

· The “global” thing is useful if there are many “students” instance document (e.g. a new one every year) and you want to refer to students in them without knowing which one to use.

Decision Method

In my personal notes on this topic I have a note saying that we should “append criteria for deciding” this issue. So here goes:
Implementation efficiency

Runtime efficiency

Convenience to SML model authors

Need to modify existing documents vs. more complex key definitions

Convenience of Schema construction

(I call attention to the fact that the current SML schema is incomplete due to not having the pattern facets defined for the <sml:selector> and <sml:field> elements. The explicit scoping approach allows these to be defined for the local document rather than involving deref() functions.)

* The inclusion of an <sml:key> definition in the Students document marks the critical difference between the discussion in this proposal and the proposal that addressed Issue 4684. Because we agreed that <sml:keyref>s would not reference <xml:key/unique> definitions, we need to inject the appropriate <sml:key> definition in the targeted document.

