Proposal for Allowing sml:keyref to Reference xs:key/xs:unique [Issue 4684]

Kirk Wilson, CA

With assistance provided by Sandy Gao and Kumar Pandit
A situation when the capability of referring to xs:key/xs:unique elements with an sml:keyref might arise during the construction of a new SML model. The modeler might find it convenient to use an existing schema that contains an xs:key/xs:unique definition and where the instances of the indexed elements need to be referrenced from a new document being added to the model via an SML reference. The desirable thing to do in this situation is to allow the modeler simply to define the sml:keyref in the new schema and point that definition to the xs:key/xs:unique definitions in the existing schema.

Note, however, it is always possible to reconstruct the xs:key/xs;unique definitions as sml:key/sml:unique definitions and put the sml: definitions in the new schema (and thereby ignore/bypass the existing xs:key/xs:unique definition in the existing schema). Such reconstruction may be viewed as an avoidable extra step. But this ability to mirror the xs: definitions as sml: definitions has the consequence that it is highly unlikely that there ever would be a use case in which referring to xs:key/xs:unique elements with an sml:keyref is required (in the sense of not being providable by other means).
This discussion will explore the issue of what it would take to allow sml:keyref to reference xs:key/xs:unique definitions. We will then assess the implications of the solution in order to judge whether the benefits of enhancing SML to allow such references outweighs the additional complications that are introduced into the specifications and implementations by the required extensions. The goal of this paper is throw these issues open for discussion. (NOTE: This paper does NOT address the issue raised by Kumar in Issue 4774, comment 2, scenario [2] regarding conflicting key/keyref definitions in incompatible schemas with the same namespace.)
A Proposed Solution
The central point in this issue is that xs:keyref element defines a scope and it can reference just those xs:key or xs:unique elements that are defined within its scope. The scope of the xs:keyref element is defined by the node and descending nodes of the XML tree structure in which xs:keyref is defined. When constraining an SML reference where the key is an xs:key defined in another document, this semantic is obviously violated.
If we are going to reference an xs:key by means of sml:keyrefs, then we need to redefine the semantics of scope for sml:keyref. A possible redefinition might be (something like):

The scope of sml:keyref must include any key or unique defined within its tree structure (by default any sml:key and, in addition, any xs:key) as well as any xs:key or xs:unique (and by default any sml:key or sml:unique) defined for an element referenceable from an SML reference element within that tree structure.
To illustrate the solution, let us use the example in SML section 3.4.3 and assume that the sml:key, StudentIDisKey, is an xs:key (of the same name) defined in the document that declares the Student element. This will be a separate document (and we’ll assume a separate namespace) from the document that defines Courses. Consider the following documents (abbreviated for convenience), which we shall play the role of our “existing model”:
<element name="students">
..<complexType>

 <sequence>

<element name="student" maxOccurs="unbounded" ...>

 <sequence>

<element name=”ID”>

 </sequence>
 </sequence>
..</complexType>

 <key name="StudentIDisKey">

<selector xpath="student"/>

<field xpath="ID"/>
 </key>
</element>

A Students.xml document might be:

<studends>
 <student>
 <ID>123</ID>
 </student>
 <student>
 <ID>456<ID>
 </student>
</students>

Now consider a “new model” for courses that wants to reference the Students document (the following schema is abbreviated for convenience):
<element name="courses">
..<complexType>

 <sequence>

<element name="students">

complexType, etc.

 <xs:any ... />

Close complexType, etc.

</element>

<element name=”course” maxOccurs=”unbounded”...>

complexType, etc.

<element=”student” maxOccurs=”unbounded”...>

<sequence>

 <element name=”ID”/>

<sequence>

</element>

Close complexType, etc.

</element>
 </sequence>
..</complexType>

 <sml:keyref name="CourseStudents" refer="???">

<sml:selector xpath="course/student"/>

<sml:field xpath="ID"/>
 </sml:keyref>
</element>

Note that we do not as yet have a way of referring the StudentIDisKey element, which is an xs:key definition in another element tree even given the extended scope definition that would extend the scope of the CourseStatudents sml:keyref to include an xs:key/xs:unique definition in the element by an SML reference in the Courses element. (The intended SML reference element is the Courses/Students element.)

A Courses.xml d ocument, using the SML URI scheme to refer to the Students element in the students.xml document, is as follows:

<courses>
 <students>
 <sml:uri>students.xml#(/students)</sml:uri>
 </students>
 <course>
 <student>
 <ID>123</ID>
 </student>
 </course>
 <course>
 <student>
 <ID>123</ID>
 </student>
 <student>
 <ID>456<ID>
 </student>
 </course>
</courses>

If we agree to this semantic extension, then the question becomes how to express it within the definition of the sml:keyref.
One approach may be to extend the type of the sml:keyref refer attribute in order to allow it to include a smlfn:deref function. For example, we might use the following refer attribute specification: refer=”smlfn:deref(tns:students)/xxx:StudentIDisKey” (where “tns:” is namespace prefix indicating the current namespace in which sml:keyref is defined and “xxx:” prefix representing the namespace in which the element (of the same name!) is declared that has the xs:key definition StudentIDisKey).

This approach would require defining a new type for the sml:keyref refer attribute in the schema. We can no longer adopt the simple xs:QName type. The type would accommodate either a QName (to refer to sml:key elements defined in the same structure) or a deref function+QName.

The second approach* is to retain the current type of the refer attribute as type of ”QName” and to introduce a new attribute, let’s call it “scope”, that identifies the extended scope of the sml:keyref when referencing xs:key elements in referenced documents. The deref() function is implicit in the scope attribute. Under this proposal the definition of the sml:keyref element in Courses would be:
 <sml:keyref name="CourseStudents" refer="xxx:StudentIDisKey

scope=”tns:students">

<sml:selector xpath="course/student"/>

<sml:field xpath="ID"/>
 </sml:keyref>

The scope attribute will be optional. If it is omitted, then the scope of the sml:keyref is the same as the scope of the xs:keyref, i.e., the current element and its XML tree structure.
Discussion of Proposed Solution
Several additional issues may have to be addressed if the preceding proposal is adopted:

1. What is the type of the scope attribute? Is it sufficient to type it as QName or should can it be a dereferenceable path?

2. What is the behavior if the @scope is null or unresolved? Would the behavior be the same as if the attribute were to have omitted and the xs:key/xs:unique definitions are considered out of scope (i.e., the scope of sml:keyref falls back to the xs:keyref definition of scope)?
Sandy added the following benefits to using this proposed approach:
· If “scope” is a keyword like “##global”, then it’s as if there is a super-root element that collects all keys/uniques from all instance documents and the scope is that super-root.

· The “global” thing is useful if there are many “students” instance document (e.g. a new one every year) and you want to refer to students in them without knowing which one to use.

However, Kumar has raised some technical concerns that would indicate that the burden is too heavy to pay for this capability:

· Issue 5130: The symbol space for SML names should be separate from the symbol spaces for XSD names. The current proposal would overlap these two symbol spaces. (NOTE: This objection would also argue against the “degenerate” case of where an xs:key/xs:unique definition falls with the traditionally defined scope (i.e., scope according to the xs:keyref definition) of sml:keyref.)
· We would be modifying the scoping rules beyond the rules of XML Schema for keyref. This extension is a dubious value because there is no definable use case in which it would be necessary to refer to xs:key/xs:unique definitions via sml:keyref.

Summary and Contrary Proposal
The original Bugzilla issue merely called for clarification of the current SML text, which left it an open question whether xs:key/xs:unique could be referenced by sml:keyrefs. This paper has identified what is required to meaningfully extend the scope of sml:keyrefs to include xs:keys/xs:unique across SML references. Two things are required:

· An extension of the definition of scope for sml:keyref beyond that of xs:keyref.

· An additional attribute of sml:keyref to express this extended scope.

The principal objection is that adopted the proposed solution would overlap symbol spaces and not add significantly to the capabilities of SML.

The contrary proposal, therefore, would be to recognize the two different indexing schemes and explicitly acknowledge in the text that that the scope of sml:keyref is defined in the same way as that of xs:keyref and that these two scopes constitute separate “domains”; i.e. xs:key/xs:unique definitions MUST NOT be recognized as falling within the scope of an sml:keyref definition even in the “degenerate” case.
* Suggested to me by Sandy.

