
Service Modeling Language, Version 1.1
...

Table of Contents

 4.4 Constraints on References
 4.4.1 sml:acyclic
 4.4.1.1 Mapping from Schema
 4.4.1.2 Schema Validity Rules
 4.4.1.3 Instance Validity Rules
 4.4.2 Constraints on SML Reference Targets
 4.4.2.1 Mapping from Schema
 4.4.2.2 Schema Validity Rules
 4.4.2.3 Instance Validity Rules
 4.4.3 Reference Constraints Summary (non-normative)
 4.5 Identity Constraints
 4.5.1 Syntax and Semantics
 4.5.1.1 Mapping from Schema
 4.5.1.2 Schema Validity Rules
 4.5.1.3 Instance Validity Rules
 4.5.2 University Example
 4.5.3 sml:key and sml:unique
 4.5.4 sml:keyref

...

4.4 Constraints on References

SML supports the following attributes for expressing constraints on reference
elements.

Table 4-1. Attributes

Name Description

sml:acyclic Used to specify whether cycles are prohibited for a
reference.

sml:targetRequired Used to specify that a reference's target element is
required to be present in the model.

sml:targetElement Used to constrain the name of the reference's target.
sml:targetType Used to constrain the type of the reference's target.

SML defines a new property for every Complex Type Definition component:

1. {acyclic} An xs:boolean value. Required.

Formatted: Numbered +
Level: 1 + Numbering Style: 1,
2, 3, … + Start at: 1 +
Alignment: Left + Aligned at:
0.74 cm + Tab after: 1.37 cm
+ Indent at: 1.37 cm

Deleted: Rules

Deleted: Validation

Deleted: sml:targetElement

Deleted: sml:targetRequired

Deleted: sml:targetType

Deleted: 4.4.2.4
Derivation by Restriction
 4.4.2.5 Target
Constraints and SML
Reference Categories

Deleted: 1

Deleted: 2

Deleted: 3

Deleted: supported

Deleted: sml:targetRequir
ed

Deleted: schema

Comment: A bookmark (or
anchor) is added here for later
reference. Similarly for target*.

... [1]

The value of {acyclic} for xs:anyType is false .

And 3 new properties for every Element Declaration component:

1. {target required} An xs:boolean value. Required.

2. {target element} An Element Declaration component. Optional.

3. {target type} A Type Definition component. Optional.

4.4.1 sml:acyclic

sml:acyclic is used to specify that a cycle is not allowed for an SML
reference type. Model validators that conform to this specification MUST
support the sml:acyclic attribute on any <xs:complexType> element in a
schema document. This attribute has type xs:boolean and its actual value can
be either true or false .

4.4.1.1 Mapping from Schema

{acyclic} of a complex type definition is as specified by the appropriate case
among the following:

1. If sml:acyclic is present, then {acyclic} has the actual value of this
attribute.

2. Otherwise if its {base type definition} is a complex type definition, then
{acyclic} has the same value of {acyclic} as its {base type definition}.

3. Otherwise ({base type definition} is a simple type definition), {acyclic}
is false .

4.4.1.2 Schema Validity Rules

If a complex type definition D's {base type definition} is also a complex type
definition and has {acyclic} true , then D MUST have {acyclic} true .

4.4.1.3 Instance Validity Rules

If CT is a complex type definition with {acyclic} true , then instances of CT
MUST NOT create cycles in the model. More precisely, the directed graph
constructed in the following way MUST be acyclic:

1. The nodes in the graph are all the elements resolved to by SML
references of type CT or types derived from CT

2. If a node N is or contains an SML reference R of type CT or a type
derived from CT, and R resolves to T (which must also be a node in
the graph), then an arc is drawn from N to T.

4.4.2 Constraints on SML Reference Targets

Formatted: HTML Code, Font:
(Default) Times New Roman

Formatted: Font: Bold

Formatted: HTML Code, Font:
(Default) Times New Roman

Formatted: Font: Bold

Formatted: HTML Code, Font:
(Default) Times New Roman

Formatted: HTML Code, Font:
(Default) Times New Roman

Deleted: and every Particle

Deleted: <#>{target element}
An Element Declaration
component. Optional. ¶

Deleted: is a boolean

Comment: This links to the
{acyclic} property defined earlier.
The same change is (or should be,
if I missed some) made for all
mention of {acyclic} and {target
*}.

Deleted: sml:acyclic;

Deleted: , it

Deleted: A cyclic type can be
used to derive cyclic or acyclic
reference types, but all derived
types of an acylic reference
type are acyclic. Model
validators that conform to this
specification MUST enforce the
following:¶

Deleted: Validation

Deleted: any

Deleted: whose arcs are SML
references of a given
complexType (and any derived
types) and whose nodes are all
the elements pointed to by this
set of SML references,

Deleted: must

Deleted: .

SML defines three attributes: sml:targetRequired , sml:targetElement , and
sml:targetType, for constraining the target of a reference. These three
attributes are collectively called sml:target* attributes. Model validators that
conform to this specification MUST support these attributes on all xs:element

elements with a name attribute.

4.4.2.1 Mapping from Schema

1. {target required} is as specified by the appropriate case among the
following:

• If sml:targetRequired is present, then {target required} is the
actual value of this attribute.

• Otherwise if the element declaration has a {substitution group
affiliation}, then {target required} is the same as that of the
{substitution group affiliation}.

• Otherwise if the element declaration ED is contained (directly,
indirectly, or implicitly) in a content model of a complex type D,
who is a restriction of another complex type B and B contains an
element declaration EB with the same name as ED, then {target
required} of ED is the same as that of EB.

• Otherwise {target required} is false.

2. {target element} is as specified by the appropriate case among the
following:

• If sml:targetElement is present, then its actual value MUST
resolve to a global element declaration G, and {target element}
is G.

• Otherwise if {substitution group affiliation} is not absent, then
{target element} is the same as that of the {substitution group
affiliation}.

• Otherwise if the element declaration ED is contained (directly,
indirectly, or implicitly) in a content model of a complex type D,
who is a restriction of another complex type B and B contains an
element declaration EB with the same name as ED, then {target
element} of ED is the same as that of EB.

• Otherwise {target element} is absent.

3. {target type} is as specified by the appropriate case among the
following:

• If sml:targetType is present, then its actual value MUST resolve
to a global type definition T, and {target type} is T.

Deleted: sml:targetRequir
ed,

Deleted: and they

Deleted: be supported on
global and local element
declarations

Comment: See bug 5063. Only
trying to preserve existing bug
broken statements. Will remove
this bullet if 5063 is resolved with
“no inheritance”.

Comment: ditto

• Otherwise if {substitution group affiliation} is not absent, then
{target type} is the same as that of the {substitution group
affiliation}.

• Otherwise if the element declaration ED is contained (directly,
indirectly, or implicitly) in a content model of a complex type D,
who is a restriction of another complex type B and B contains an
element declaration EB with the same name as ED, then {target
type} of ED is the same as that of EB.

• Otherwise {target type} is absent.

4.4.2.2 Schema Validity Rules

Model validators that conform to this specification MUST enforce the following:

1. If a global element declaration S has a {substitution group affiliation} G,
then all the following are true:

• If G has {target required} true then S also has {target required}
true .

• If G has {target element} TEG, then S has {target element} TES
and TES is the same as TEG or is in the substitution group of
TEG.

• If G has {target type} TTG, then S has {target type} TTS and
TTS is validly derived from TTG.

2. If 2 element declarations E1 and E2 have the same {namespace name}
and {name} and they are both contained (directly, indirectly, or
implicitly) in a content model of a complex type, then E1 and E2 have
the same {target required}, {target element}, and {target type}.

3. For a complex type D derived by restriction from its {base type
definition} B, if an element declaration ED is included in D and an
element declaration EB is included in B, and ED and EB satisfy the
"NameAndTypeOK" constraint (see "Schema Component Constraint:
Particle Valid (Restriction) ", section 3.9.6, "Constraints on Particle
Schema Components", [XML Schema Structures] for XML Schema’s
definition of valid restrictions), then all the following are true:

• If EB has {target required} true then ED also has {target
required} true .

• If EB has {target element} TEB, then ED has {target element}
TED and TED is the same as TEB or is in the substitution group
of TEB.

• If EB has {target type} TTB, then ED has {target type} TTD and
TTD is validly derived from TTB.

Comment: ditto

Note (non-normative): The above condition #2 on the use of sml:target*
attributes has been defined to reduce the implementation burden on model
validators for verifying condition #3, that the use of sml:target* attributes is
consistent across derivation by restriction. These conditions enable model
validators to find the restricted particle for a restricting particle using a simple
name match when sml:target* attributes are specified for these particles. In
the absence of the above conditions, it is extremely difficult for SML validators
to verify condition #3. In order to verify it, it is necessary to connect the
particles in the derived type with those from the restricted base type.
However, this level of support is not provided by most XML Schema
frameworks; thus most SML validators would otherwise need to duplicate
large parts of XML Schema's compilation logic to verify consistent usage of
sml:target* attributes across derivation by restriction.

4.4.2.3 Instance Validity Rules

If an element declaration E has {target required} true , then each element
instance of E that is also an SML reference MUST target some element in the
model, i.e. no instance of E can be a null or unresolved SML reference.

If an element declaration E has {target element} TE, then each element
instance of E that is also a resolved SML reference MUST target an element
that is an instance of TE or an instance of some global element declaration in
the substitution group of TE.

If an element declaration E has {target type} TT, then each element instance
of E that is also a resolved SML reference MUST target an element whose
[type definition] is TT or a type derived from TT.

4.4.3 Reference Constraints Summary (non-normative)

The effect of the above instance validation rules is summarized in the
following table.

Table 4-2. Target Constraints and SML Reference Categories.

 Acyclic targetRequired targetElement targetType

Non-reference Satisfied Satisfied Satisfied Satisfied
Null Satisfied Violated Satisfied Satisfied
Unresolved Satisfied Violated Satisfied Satisfied
Resolved Check Satisfied Check Check

4.5 Identity Constraints

XML Schema supports the definition of key, unique, and key reference
constraints through xs:key , xs:unique , and xs:keyref elements. However,
the scope of these constraints is restricted to a single document. SML defines
analogs for these constraints, whose scope extends to multiple documents by
allowing them to traverse SML references.

Deleted: s

Deleted: have

Deleted: consistent use of
sml:target* attributes
across a base type and its
restricted derived type

Deleted: consistent use of an
sml:target* attribute on a
restricted particle in the base
type and its restricting particle
in a restricted derived type

Comment: The above validation
rules are actually silent about what
happens when a “targetTyep”
constraint is checked against a
“null” reference. One could say
“silent = not violated = satisfied”;
one could also say “silent = not
specified = implementation
dependent”. This issue is not
unique to this case. Whenever we
say “A MUST be true”, it leaves
the question “how about not(A)”
open. If we believe this needs to be
tightened up, a generic statement
should be given in the spec,
instead of trying to specify it
everywhere.

Model validators that conform to this specification MUST support the following
elements for defining identity constraints across references, as child elements
of xs:element/xs:annotation/xs:appinfo where the xs:element has a name
attribute:

Name Description

sml:key Similar to xs:key except that the selector and field XPath
expression can use the smlfn:deref function

sml:unique Similar to xs:unique except that the selector and field XPath
expression can use the smlfn:deref function

sml:keyref Similar to xs:keyref except that the selector and field XPath
expression can use the smlfn:deref function

SML defines a new property for every Element Declaration component:

1. {SML identity-constraints definitions} A set of SML identity constraint
definitions components, which have the same set of properties as XML
Schema identity constraint definitions.

4.5.1 Syntax and Semantics

Names of all SML identity constraint definitions exist in a single symbol space,
which is disjoint from any symbol space of XML Schema components.

4.5.1.1 Mapping from Schema

For each sml:key , sml:unique , or sml:keyref element without the ref
attribute specified, {SML identity-constraints definitions} contains a component
corresponding to this element, as specified in section 3.11 of the XML
Schema specification [XML Schema Structures], where sml:selector and
sml:field elements are used in place of xs:selector and xs:field .

For each sml:key , sml:unique , or sml:keyref element with the ref attribute
specified, {SML identity-constraints definitions} contains the component
resolved to by the actual value of the ref attribute, with the following
conditions:

1. The name attribute MUST NOT be specified.

2. the sml:selector and sml:field child elements MUST NOT be
specified.

3. If the element is sml:key , then the value of ref attribute MUST resolve
to an SML key constraint.

4. If the element is sml:unique , then the value of the ref attribute MUST
resolve to an SML unique constraint.

5. If element is sml:keyref , then the value of the ref attribute MUST
resolve to an SML keyref constraint, and the refer attribute MUST not
be specified.

In addition to SML identity constraints obtained from the above explicit
definitions or references, if an element declaration S has a {substitution group
affiliation} G, then its {SML identity-constraints definitions} also contains
members of {SML identity-constraints definitions} of G.

If an element declaration ED is contained (directly, indirectly, or implicitly) in a
content model of a complex type D, who is a restriction of another complex
type B and B contains an element declaration EB with the same name as ED,
then {SML identity-constraints definitions} of ED also contains members of
{SML identity-constraints definitions} of EB.

4.5.1.2 Schema Validity Rules

1. {selector} in SML identity constraints has the same syntax as that
defined in the XML identity constraint selector XPath syntax with one
exception. The SML identity constraint {selector} XPath allows
smlfn:deref() functions, nested to any depth, at the beginning of the
expression. The XML identity constraint selector Path production is
amended to support this requirement as defined below.

Path ::= ('.//')? Step ('/'Step)* | DerefExpr
DerefExpr ::= (NCName ':')? 'deref(' (Step ('/'Ste p)* |
DerefExpr) ')' ('/'Step)*

2. The sml:field XPath expression MUST conform to the amended BNF
defined above for the selector XPath expression with the following
modification, to allow smlfn:deref() functions, nested to any depth, at
the beginning of the expression.

Path ::= ('.//')? (Step'/')* (Step | @NameTest) |
 DerefExpr ('/' @NameTest)?

3. The {SML identity-constraints definitions} of an element declaration
MUST NOT contain two identity constraints with the same name.

Note: This could happen if the ref attribute resolves to an identity
constraint already contained in the same element declaration’s {SML
identity-constraints definitions}.

4. If a global element declaration S has a {substitution group affiliation} G,
then {SML identity-constraints definitions} of S MUST be a superset of
that of G.

5. If two element declarations E1 and E2 have the same {namespace
name} and {name} and they are both contained (directly, indirectly, or
implicitly) in a content model of a complex type, then E1 and E2 MUST
have the same set of {SML identity-constraints definitions}.

Note: This rule is defined to reduce the implementation burden for
model validators. It facilitates the matching of restricting and restricted

Comment: See bug 5063. Only
trying to preserve existing bug
broken statements. Will remove
this paragraph if 5063 is resolved
with “no inheritance”.

Comment: This is to reproduce
the current rule 3.a: “If the ref
attribute is specified for an SML
identity constraint element that is
specified for an element
declaration E, then the value of ref
attribute MUST NOT be the name
of any other SML identity
constraint element specified for
E.”

Comment: Bug 5091 should be
responsible for making it clear that
all notes are non-normative.

particles using their names, and avoids the replication of large parts of
XML Schema's compilation logic for this purpose.

6. For a complex type D derived by restriction from its {base type
definition} B, if ED is included in D and EB is included in B and ED and
EB satisfies the "NameAndTypeOK" constraint (see "Schema
Component Constraint: Particle Valid (Restriction) ", section 3.9.6,
"Constraints on Particle Schema Components", [XML Schema
Structures] for XML Schema’s definition of valid restrictions), then
{SML identity-constraints definitions} of ED MUST be a superset of that
of EB.

4.5.1.3 Instance Validity Rules

Validation rules for SML identity constraints are the same as specified in
section 3.11 of the XML Schema specification [XML Schema Structures], with
the addition of support for the smlfn:deref() function.

4.5.2 University Example

...

Deleted: 1

Page 1: [1] Deleted Sandy Gao 11/22/2007 1:31 PM

sml:targetRequired Used to specify that a reference's target element is required to be present in the
model.

