SchemaBindingProposal.doc

Schema Binding Proposal

Sandy Gao

Valentina Popescu

11.
Terminology

22.
Problem definition

33.
Requirements

33.1
Support schema composition

33.2
Support schema versioning

33.3
Deterministic

33.4
Full schema support

33.5
Definition document exchange

34.
Constraints

34.1
Support access to schema documents outside of SML-IF

44.2
Ignorable schema locations

44.3
Include definition and instance documents as-is

44.4
Lazy schema assembly

45.
Interoperability Approach

56.
Schema binding proposal

56.1
Namespace matching

5Selective namespace matching

56.2
Explicit schema binding

66.2.1 Global schema binding

66.2.2 Definition-level schema binding

66.2.3 Instance-level schema binding

66.2.4 Reusable document -level binding

66.3
Brute Force schema binding

77. Analysis

77.1 Namespace matching

77.2 Explicit schema binding

77.3 Brute Force schema binding

78. Conclusion

8Examples

10Acknowledgement

1.
Terminology
Schema document:
an <xs:schema> element; can be an XML fragment
Schema:
a set of schema components; a schema is normally (but not required to be) constructed from one or more schema documents
Schema component:
an element declaration or a type definition or a particle or …
Include:
A schema document can include another schema document using <xs:include>. Both schema documents contribute to the same schema; and both correspond to schema components from the same target namespace (or no namespace). If the included schema document does not have a target namespace, namespace of the including schema document is used.

Redefine:
Similar to include, but use <xs:redefine>, and the redefining schema document can replace certain included components with new components.
Import:
Allows the importing schema document to refer to components from the imported namespace (or no namespace), which must be different from the importing schema document’s target namespace. If the combination of the “namespace” attribute and the “schemaLocation” attribute on <xs:import> resolves to a schema document, then the resulting schema also includes components from the imported schema document.
Schema composition:
(In this document) construct a single schema from multiple schema documents, using the above include, redefine and/or import mechanisms.

Note: “a schema” is not equal to “a schema document”!
2. Problem definition

In validating an SML-IF instance, associations between XML Schema definition documents and instance documents need to be drawn, both to completely validate XML Schema documents themselves (to make sure they produce valid schemas) and to establish schema-validity of the instance documents.

Schema documents can be connected with other schema documents using composition features provided by XML Schema. This includes <xs:include>, <xs:redefine>, and <xs:import>. A schema document’s validity may depend on other schema documents it includes/redefines/imports, or even other schema documents that include/redefine/import it.

When validating an instance document, a precise list of schema documents need to be associated with it for a “schema” and the instance document is schema-assessed using this schema.

The XML Schema 1.0 specification provides more flexibility in constructing the schema used for assessment than is appropriate for the semantics defined by SML and SML-IF validation:

· It allows processor latitude in terms of locating schema documents (resolving namespace and schema location attributes) and composing schema documents together to form a single schema.

· Schema location attributes can be ignored in some cases (“xsi:schemaLocation” in instance documents and “schemaLocation” on <xs:import>); and allowed to “fail to resolve” in others (“schemaLocation” attribute on <xs:include> and <import>). Known schema and SML implementations behave differently with respect to how/whether they process schema location attributes.
· Multiple imports of the same namespace allow all but the first one to be ignored.
So it is clear that we have no hope of guaranteeing general case interoperability using anything based only on XML Schema given the constraints above, and SML-IF needs to specify how to determine such associations.
3. Requirements

3.1 Support schema composition

There are many real-life schemas that are constructed from multiple schema documents. Such schemas may span multiple namespaces (hence the need for import); components from each namespace may be further divided into multiple schema documents (hence the need for include).

Schema has a feature often referred to as “chameleon include”. This means that a schema document with a target namespace includes or redefines another schema document without a target namespace, and the result is as if the included/redefined document had a target namespace that’s the same as the including/redefining document. SML-IF needs to support this usage scenario.
3.2 Support schema versioning

Schema authors can’t anticipate how their schemas will be used, hence the need to evolve schemas. There are different versioning scenarios. There are cases where minor modifications of older versions suffice, and redefine can be used. Some schemas need to be rewritten to accommodate new requirements, and new namespace may or may not be introduced (compatibility is often a good reason for not changing namespaces). There are also cases where there are generic and specific versions (as opposed to previous and next versions), which often co-exist and share the same namespace.
To support this, SML-IF needs to be able to package in the same SML-IF instance different versions of the same schema in the same namespace.
3.3 Deterministic

For a given SML-IF instance, there MUST be no ambiguity in determining how schema documents (that are included in this instance) are connected using <xs:include>, <xs:redefine>, and <xs:import>, and therefore MUST be no ambiguity in determining which schema documents are used to form a schema against which a given instance document is validated.

3.4 Full schema support

Being a generic validation language, SML supports all schema features. Being a mechanism to transmit SML models, SML-IF also needs to support full schema features, especially <xs:include>, <xs:redefine>, and <xs:import>. For example, in an SML model, if an instance document I is validated against a schema formed from a schema document A, which redefines schema document B, then it MUST be possible to transmit I, A, and B in an SML-IF instance and maintain their relationship.

3.5 Definition document exchange

SML-IF documents can contain definition documents attached for exchange purpose only. These documents have no relationship with the attached instances and they are not intended to be used for validation purposes within the SMLIF document. SML-IF needs to support this use case and ensure that documents of this purpose do not participate in instance validation.
4. Constraints

4.1 Support access to schema documents outside of SML-IF

We do not want to force all schemas necessary to validate the model instance documents packaged by a single SML-IF instance to be included by value in every SML-IF instance. It is not clear this would even be sensible in a repository interchange scenario, let alone the more general case of usage scenarios some have mentioned for SML-IF like web services message exchanges.

4.2 Ignorable schema locations
We cannot require honoring of xsi:schemaLocation and xsi:noNamespaceSchemaLocation in instance documents or schemaLocation on <xs:import>, because

· Some existing implementations ignore them
· Honoring schema location in instance documents may have security consequences

Schema specification does require that processors attempt to resolve schema locations specified on <xs:include> and <xs:redefine>. It is not an error for such attempt to fail for <xs:include>. It is an error when <xs:redefine> contains non-annotation content.

It’s more flexible for <xs:import>. Schema allows any strategy for processors to locate components to import, based on either or both of the namespace and the schema location.

4.3 Include definition and instance documents as-is
SML-IF instance producers may not have control over the content of the schemas necessary for validation of model instance documents, where “control” means what is coded in the files. I.e. there will be cases where xs:import and xs:include are coded, with and without schemaLocation, and multiple files containing schema components for the same namespace will be observed.

4.4 Lazy schema assembly
Schema specification allows schemas to be assembled lazily. A partial schema can be used to validate an instance document, and more components can be added to the schema during the validation, as long as the new components don’t change the validation result of information items that are already validated.

This is sometimes not easy to enforce, but a consequence of “supporting full schema” implies that SML-IF validation cannot violate this constraint.
5. Interoperability Approach
We divide the universe of SML-IF documents into two disjoint subsets:

· A set that have all schema documents included, by value (smlif:data) and/or by reference (smlif:locator), in the SML-IF instance; the “complete set”
· All other SML-IF documents; the “incomplete set”
More precisely, if during validation of schema or instance document in the IF instance, no attempt is made to retrieve schema documents outside of the set of schema documents included in the IF instance, or to retrieve schema components outside of the set of components constructed from schema documents included in the IF instance, then the IF instance is said to be within the “complete set”.

The only exception to the above rule is for the “built-in” components. These components are always available in SML-IF processors. They can be referred to freely, without the need to explicitly load them. “Built-in” components include:

· 4 xsi: attributes (defined by XML Schema)

· all schema built-in types (xs:anyType and simple types defined in XML Schema Part 2)

· sml:ref attribute declaration
· sml:uri element declaration
· does sml:refType belong here (depends on how we resolve bug 4673)?

Remember, this is not trying to say that SML-IF document instances in the incomplete set are now invalid. It does say that SML-IF cannot guarantee interoperability for the incomplete set.

6. Schema binding proposal
There are several ways to specify how to locate schema documents that are used to construct a schema. Each approach needs to answer the following questions:
· How to handle <xs:include>

· How to handle <xs:redefine>

· How to handle <xs:import>

· How to locate the correct version of each schema document used to validate a given instance

In XML Schema, schema composition is achieved using one or more of <xs:include>, <xs:redefine>, and <xs:import>. Schema doesn’t provide details about how to assemble a schema from unrelated schema documents. To achieve interoperability, the following subsections always describe various approaches as having a synthetic “root” schema document whose transitive closure over include/redefine/import covers all schema documents that are supposed to be used. This is similar to how XSLT 2.0 determines how schemas should be assembled. Implementations are not required to implement schema assembly using synthetic schema documents.
6.1 Namespace matching

In the SML-IF instance, there is a namespace to schema document mapping. Such a mapping can be established by, for example, traversing all schema documents and gathering their target namespace attributes.

If for a given namespace, there is more than one schema document, then a choice must be made about which to use. This text assumes that all documents for the namespace are logically merged, as if the consumer synthesized another schema document with this namespace as its target namespace and includes all these documents. This synthetic schema document is used in the above namespace to schema document mapping.

For each model instance document, construct a list of namespace names that are used by this instance (e.g. namespace of elements, attributes, or xsi:type values). Synthesize a schema document that imports all these namespaces, with schema locations pointing to schema documents from the namespace to schema document mapping. The schema corresponding to this synthetic schema document is used to validate the instance.

<xs:include> and <xs:redefine> are handled by matching the schemaLocation value with aliases of schema documents.

<xs:import> is handled by ignoring its schemaLocation value and always using the document from the namespace to schema document mapping.

Selective namespace matching
The above describes the “all” match alternative of the namespace matching approach. There are other possibilities. For example “first” match means that for each namespace, the first document with that namespace as its target namespace is used in the mapping. <xs:include> and/or <xs:redefine> are used if other documents from the same namespace need to be taken into account.

6.2 Explicit schema binding

With this approach, the SMLIF producer provides an explicit mapping of namespace to schema document alias(s). The following bindings should be supported:
6.2.1 Global schema binding
The mapping for each namespace to a set of schema documents can be defined at the SML-IF instance level by specifying explicit mappings for namespaces, to override the default namespace “match all” approach described in section 6.1.
This explicit binding of a namespace with a set of schema documents can be used to fulfill requirement 3.5. For the situation when a definition document is attached to the SMLIF with the intention of just exchanging the data, an explicit binding of its targetNamespace with the correct schema document(s) can solve the match-all namespace matching approach issue identified in section 7, since the global binding will override the match-all namespace matching approach.
6.2.2 Definition-level schema binding
Each schema document can provide its own namespace to schema document alias mapping, which overrides any global level binding for these namespaces. That is, for a given namespace, if it’s specified in the definition-level binding then use it; otherwise if it’s specified in the global binding then use this one; otherwise use the default namespace to schema document mapping as defined in section 6.1
Global schema binding works only when a namespace is always defined by the same definition document(s), for all schema instances. For the case when two instances refer to the same namespace but the namespace is defined by two different definition documents, an instance-level binding will be applied (instance A refers to namespace ns, defined in definition document A1; instance B refers to the same namespace ns defined in definition document B1.)
6.2.3 Instance-level schema binding
Each instance document can provide its own namespace to schema document alias mapping, which will override any global or definition-level bindings for these namespaces.. That is, for a given namespace, if it’s specified in the instance-level explicit binding, then use it; otherwise if it’s specified in a definition-level binding at the schema document level (for some schema documents that’s already used by this instance), then use it; otherwise if it’s specified as a global schema binding, then use it; otherwise use the default namespace to schema document alias mapping.

If the listed schema documents include or redefine other schema documents, then they are resolved using aliases; all imports are ignored, because the explicit list should have included all of them.

6.2.4 Reusable document -level binding
If there are many documents in the same SML-IF that share the same/similar list of schema documents, then repeating that for each document will become a performance burden. We can improve efficiency of document-level binding by making it possible to name the bindings so that they can be used by more than one document.
6.3 Brute Force schema binding

Use “instance-level schema binding” as the only source to locate schema documents for a given namespace. That is, every instance document in the IF document MUST specify namespaces used by that document and schema documents used for that namespace.
“Reusable instance-level binding” can also be used with this approach.

7. Analysis
7.1 Namespace matching

“Namespace matching” is easier to specify, understand, and implement. But it doesn’t have proper support for:

1. Chameleon include/redefine. The included/redefined document would be viewed as (also) contributing to the “null” namespace. For example, if A includes B and C includes D, where A has tns1, C has tns2, and B and D don’t have a target namespace. If is OK even if B and D have same-named components, because they will be put into different namespaces when included. But “namespace matching” would try to put components from both B and D into the “null” namespace and produce “duplicate component” error.

2. Schema versioning. If 2 versions of the same schema (same namespace) appear in the same SML-IF document, they would most likely produce “duplicate component” error. Let’s take this scenario: instance A refers to namespace ns, defined in definition document A1; instance B refers to the same namespace ns defined in definition document B1. Under the namespace matching scheme, instances A and B will both be validated using schema components from A1 and B1, which is not what either instance had specified.
3. Exchange of schema documents without the intention of using it for validating instances. All definition documents are considered candidates for validation, as long as their targetNamespace matches the namespace used by a definition document. Definition documents attached to the SMLIF only with the purpose of exchange can be accidentally used for validation if their targetNamespace matches a namespace used by an instance document.
 7.2 Explicit schema binding

 “Explicit schema binding” approach as described in section 6.2 supports all requirements and constraints listed under sections 3 and 4.

It gives the extreme flexibility, because each instance and definition document can specify which schema documents to use. Namespace to schema binding can also be defined at the SML-IF document level.
In some cases explicit schema binding can have a relatively higher cost. The producer of the SML-IF document needs to have good knowledge of all schema documents associated with each instance document.

7.3 Brute Force schema binding

Brute Force is also easy to specify and understand. It doesn’t have problems imposed by the namespace matching approach. It doesn’t have the complexity of the explicit binding approach. But it put burden on IF producers to generate the complete namespace and schema document list, which may prove to be difficult.

8. Conclusion
In validating an SML-IF instance, associations between XML Schema definition documents and instance documents need to be drawn, both to completely validate XML Schema documents themselves (to make sure they produce valid schemas) and to establish schema-validity of the instance documents
This document had identified three possible solutions for allowing these document associations:

· ‘Namespace matching’ covered in section 6.1

· ‘Explicit schema binding’ covered by section 6.2

· ‘Brute Force schema binding’ covered by section 6.3

 Section 7 had analyzed all three options and identified that ‘Namespace matching’ although easier to understand and implement does not support all the requirements listed under sections 3 and 4.

Based on these analysis we recommend that SML-IF adopts the “Explicit schema binding” solution, as described in section 6.2 ,because it meets all the requirements listed under sections 3 and 4, while in the most common cases is as simple as “namespace matching”.

Overview of ‘Explicit schema binding’ approach:

· if two definition documents, D1,D2 have the same targetNamespace ns

· if only D1 is used by the attached instance documents, then a global binding will be defined between ns and D1

· if there is a definition document D3 that imports ns from D2, a definition-level schema binding will be defined by D3 between ns <-> D2; this mapping will override the global level binding ns to D1.

· if instance I1 uses D1 while instance I2 uses D2, then an instance level binding will be applied instead. Instance I1 will define and use the ns <-> D1 mapping. Instance I2 will define and use ns <-> D2 mapping

· if one definition document D3 with target namespace ns3 is included in the SMLIF document with the purpose of exchanging the data (this definition document should not be used for validation purposes within the SMLIF document) then

· A binding ns3 <-> (empty set) will be defined if no other definition documents with target namespace = ns3 exists in the SMLIF document. This will override the default namespace match and tell the validator not to use this document.
· A binding ns3 <-> D4 will be defined where D4 is another definition document with target namespace ns3 and D4 is used by one or more instance documents. (the ns3 <-> D4 can be a global-level, or document-level binding; the logic for defining the type of binding for D4 is similar with what we have described above for D1 and D2
· For any other non-conflicting cases, use the default namespace match approach for defining the instance-definition document(s) association

Examples
This example is used to exemplify the schema binding issues

 <model xmlns="http://www.w3.org/2007/08/smlif"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 ...

 <definitions>
 <schemaBindings>

 <!—- global schema level binding for namespaces -->

 <schemaBinding namespace="namespace1"

 aliases="schema1.xsd"/>

 <schemaBinding namespace="namespace2"

 aliases="schema2-1.xsd schema2-2.xsd"/>

 </schemaBindings>

 <document>
 <!-- schema document schema1.xsd with "namespace1". -->

 </document>

 <document>

 <docInfo>

 <!-- schema document schema1-v2.xsd with "namespace1". -->

 <schemaBindings>

 <!-- schema document-level binding for namespaces -->

 <schemaBinding namespace="namespace2"

 aliases="schema2-v2.xsd"/>

 </schemaBindings>

 </docInfo>

 ...

 </document>

 <document>

 <!-- schema document schema2-1.xsd with "namespace2". -->

 </document>

 <document>

 <!-- schema document schema2-2.xsd version 1 of "namespace2". -->

 </document>

 <document>

 <!-- schema document schema2-v2.xsd version 2 of "namespace2". -->

 </document>

 </definitions>

 <instances>
 <document>
 <docInfo>
 ...

 <schemaBindings>

 <!-- use default; only need to list needed namespaces -->

 <namespaces namespaces="namespace1"/>

 </schemaBindings>

 </docInfo>

 ...

 </document>

 <document>
 <docInfo>
 ...

 <schemaBindings>

 <!-- override default; use version 2 of namespace1 -->

 <schemaBinding namespace="namespace1"

 aliases="schema1-v2.xsd"/>

 <!-- list needed namespaces -->

 <namespaces namespaces="namespace1"/>

 </schemaBindings>

 </docInfo>

 ...

 </document>

 </instances>

 </model>
In the above example, a schema binding is provided. For namespace1, schema1.xsd is used; for namespace2, schema2-1.xsd and schema2-2.xsd are used. For other namespaces, use the default, which is to traverse through all schema documents and merge their target namespaces.

There are 2 schema documents with namespace1: schema1.xsd (the default) and schema1-v2.xsd. And there are 3 documents for namespace2: schema2-1.xsd, schema2-2.xsd, and schema2-v2.xsd. For schema1.xsd, it doesn’t have any explicit override, so the global schema level binding is used. That is, if it imports namespace2, then schema2-1.xsd and schema2-2.xsd are used.
For schema1-v2.xsd, there is a <schemaBinding> specified for namespace2. So if schema1-v2.xsd imports namespaces2, schema2-v2.xsd will be used.
The first instance document doesn’t override any mapping. It indicates that it needs a schema for namespace1. schema1.xsd is used. (Assuming schema1.xsd imports namespace2,) the schema used to validate the first instance contains components from schema1.xsd, schema2-1.xsd, and schema2-2.xsd.

The second instance document overrides the default by providing a mapping for namespace1. Because schema1-v2.xsd also has an override, the schema used to validate the second instance contains components from schema1-v2.xsd and schems2-v2.xsd.

Acknowledgement
John Arwe, Bassam Tabarra, Harm Sluiman, and Pratul Dublish all provided useful input into the formulation of this document. This does not imply their endorsement of the proposal.

Page 2 of 10

