W3C home > Mailing lists > Public > public-semweb-lifesci@w3.org > June 2006

{Disarmed} Gyri of the human neocortex: an MRI-based analysis of volume and variance -- Kennedy et al. 8 (4): 372 -- Cerebral Cortex

From: Tim Clark <twclark@nmr.mgh.harvard.edu>
Date: Mon, 5 Jun 2006 22:56:28 -0400
To: public-semweb-lifesci@w3.org
Message-Id: <8D4AA790-EDCB-4E10-89A5-26C0F74C5818@nmr.mgh.harvard.edu>
One example of why you want to use the same neuroanatomical ontology  
as the practicing neuroanatomists do. (See citing papers.)
Skip Navigation

Oxford Journals
Contact Us
My Basket
My Account
Cerebral Cortex

About This Journal
Contact This Journal
Current Issue
Oxford Journals
Life Sciences
Cerebral Cortex
Volume 8, Number 4
Pp. 372-384
This Article

	 FREE Full Text (PDF)
	 Alert me when this article is cited
	 Alert me if a correction is posted


	 Email this article to a friend
	 Similar articles in this journal
	 Similar articles in ISI Web of Science 			
	 Similar articles in PubMed
	 Alert me to new issues of the journal 			
	 Add to My Personal Archive
	 Download to citation manager
	 Cited by other online articles
	 Search for citing articles in:
ISI Web of Science (77)
	 Request Permissions

Google Scholar

	 Articles by Kennedy, D. N.
	 Articles by Caviness, V. S.


	 PubMed Citation
	 Articles by Kennedy, D. N.
	 Articles by Caviness, V. S., Jr
Cerebral Cortex, Vol 8, 372-384, Copyright © 1998 by Oxford  
University Press


Gyri of the human neocortex: an MRI-based analysis of volume and  

DN Kennedy, N Lange, N Makris, J Bates, J Meyer and VS Caviness Jr
Department of Neurology, Massachusetts General Hospital, Harvard  
Medical School, Boston 02114, USA. dave@cma.mgh.harvard.edu

This magnetic resonance imaging (MRI)-based morphometric analysis of  
cortical topography in the human brain is based upon the segmentation  
and parcellation of volumetric T1-weighted MRI data for a set of 20  
young adult brains including 10 males and 10 females. For the most  
part, each parcellation unit (PU) of the neocortex corresponds to a  
single or a portion of a single gyrus. The volumes of each PU were  
computed for each brain. Subsets of PUs were also grouped so as to  
represent the neocortex for the frontal, temporal, parietal and  
occipital lobes. The coefficient of variation of the mean volume of  
total neocortex and that of the neocortex assigned to individual  
lobes cluster around 10%, whereas that of neocortex assigned to the  
individual gyri (PU) is more than twice that value. Approximately 80%  
of the total variance in gyral volume arises from determinants  
interactive for individual and specific gyri, while only  
approximately 10% of the total variance appears to be a reflection of  
uniform scaling to total neocortical volume. Sexual dimorphism  
contributes a pervasive though relatively small component of this  
variance. These results have implications for the study of structure- 
function correlation, and the proper statistical methods of handling  
volumetric data in morphometric studies. In addition, the nature of  
the covariance structure of the data will lead to future hypotheses  
regarding the relationships between the various potential genetic and  
epigenetic gyral influencing factors.

This article has been cited by other articles:

A. Mechelli, K. J. Friston, R. S. Frackowiak, and C. J. Price
Structural Covariance in the Human Cortex
J. Neurosci., September 7, 2005; 25(36): 8303 - 8310.
[Abstract] [Full Text] [PDF]

J. A. Frazier, S. Chiu, J. L. Breeze, N. Makris, N. Lange, D. N.  
Kennedy, M. R. Herbert, E. K. Bent, V. K. Koneru, M. E. Dieterich, S.  
M. Hodge, S. L. Rauch, P. E. Grant, B. M. Cohen, L. J. Seidman, V. S.  
Caviness, and J. Biederman
Structural Brain Magnetic Resonance Imaging of Limbic and Thalamic  
Volumes in Pediatric Bipolar Disorder
Am J Psychiatry, July 1, 2005; 162(7): 1256 - 1265.
[Abstract] [Full Text] [PDF]

M. R. Herbert, D. A. Ziegler, C. K. Deutsch, L. M. O'Brien, D. N.  
Kennedy, P. A. Filipek, A. I. Bakardjiev, J. Hodgson, M. Takeoka, N.  
Makris, and V. S. Caviness Jr
Brain asymmetries in autism and developmental language disorder: a  
nested whole-brain analysis
Brain, January 1, 2005; 128(1): 213 - 226.
[Abstract] [Full Text] [PDF]

M. Takeoka, J. J. Riviello Jr., F. H. Duffy, F. Kim, D. N. Kennedy,  
N. Makris, V. S. Caviness Jr., and G. L. Holmes
Bilateral volume reduction of the superior temporal areas in Landau- 
Kleffner syndrome
Neurology, October 12, 2004; 63(7): 1289 - 1292.
[Abstract] [Full Text] [PDF]

B. S. Peterson, A. W. Anderson, R. Ehrenkranz, L. H. Staib, M.  
Tageldin, E. Colson, J. C. Gore, C. C. Duncan, R. Makuch, and L. R. Ment
Regional Brain Volumes and Their Later Neurodevelopmental Correlates  
in Term and Preterm Infants
Pediatrics, May 1, 2003; 111(5): 939 - 948.
[Abstract] [Full Text] [PDF]

C. U. Lee, M. E. Shenton, D. F. Salisbury, K. Kasai, T. Onitsuka, C.  
C. Dickey, D. Yurgelun-Todd, R. Kikinis, F. A. Jolesz, and R. W.  
Fusiform Gyrus Volume Reduction in First-Episode Schizophrenia: A  
Magnetic Resonance Imaging Study
Arch Gen Psychiatry, September 1, 2002; 59(9): 775 - 781.
[Abstract] [Full Text] [PDF]

V. S. Caviness, N. Makris, E. Montinaro, N. T. Sahin, J. F. Bates, L.  
Schwamm, D. Caplan, and D. N. Kennedy
Anatomy of Stroke, Part I: An MRI-Based Topographic and Volumetric  
System of Analysis
Stroke, November 1, 2002; 33(11): 2549 - 2556.
[Abstract] [Full Text] [PDF]

B. S. Peterson, L. Staib, L. Scahill, H. Zhang, C. Anderson, J. F.  
Leckman, D. J. Cohen, J. C. Gore, J. Albert, and R. Webster
Regional Brain and Ventricular Volumes in Tourette Syndrome
Arch Gen Psychiatry, May 1, 2001; 58(5): 427 - 440.
[Abstract] [Full Text] [PDF]

H. D. Rosas, J. Goodman, Y. I. Chen, B. G. Jenkins, D. N. Kennedy, N.  
Makris, M. Patti, L. J. Seidman, M. F. Beal, and W. J. Koroshetz
Striatal volume loss in HD as measured by MRI and the influence of  
CAG repeat
Neurology, September 25, 2001; 57(6): 1025 - 1028.
[Abstract] [Full Text] [PDF]

C. I. Moore, C. E. Stern, C. Dunbar, S. K. Kostyk, A. Gehi, and S.  
Referred phantom sensations and cortical reorganization after spinal  
cord injury in humans
PNAS, December 19, 2000; 97(26): 14703 - 14708.
[Abstract] [Full Text] [PDF]

P. M. Thompson, M. S. Mega, R. P. Woods, C. I. Zoumalan, C. J.  
Lindshield, R. E. Blanton, J. Moussai, C. J. Holmes, J. L. Cummings,  
and A. W. Toga
Cortical Change in Alzheimer's Disease Detected with a Disease- 
specific Population-based Brain Atlas
Cereb Cortex, January 1, 2001; 11(1): 1 - 16.
[Abstract] [Full Text]

M. Yücel, G. W. Stuart, P. Maruff, D. Velakoulis, S. F. Crowe, G.  
Savage, and C. Pantelis
Hemispheric and Gender-related Differences in the Gross Morphology of  
the Anterior Cingulate/Paracingulate Cortex in Normal Volunteers: An  
MRI Morphometric Study
Cereb Cortex, January 1, 2001; 11(1): 17 - 25.
[Abstract] [Full Text]

C. I. Moore, C. E. Stern, S. Corkin, B. Fischl, A. C. Gray, B. R.  
Rosen, and A. M. Dale
Segregation of Somatosensory Activation in the Human Rolandic Cortex  
Using fMRI
J Neurophysiol, July 1, 2000; 84(1): 558 - 569.
[Abstract] [Full Text]

M. E. Frederikse, A. Lu, E. Aylward, P. Barta, and G. Pearlson
Sex Differences in the Inferior Parietal Lobule
Cereb Cortex, December 1, 1999; 9(8): 896 - 901.
[Abstract] [Full Text]

Online ISSN 1460-2199 - Print ISSN 1047-3211
Copyright © 2006 Oxford University Press
Oxford Journals Oxford University Press
Site Map
Privacy Policy
Frequently Asked Questions
Other Oxford University Press sites:
Received on Tuesday, 6 June 2006 02:56:48 UTC

This archive was generated by hypermail 2.3.1 : Wednesday, 7 January 2015 14:52:26 UTC