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ABSTRACT 

We present an approach and architecture for 
implementing scalable and maintainable clinical 
decision support at the Partners HealthCare System. 
The architecture integrates a business rules engine 
that executes declarative if-then rules stored in a  
rule-base referencing objects and methods in a 
business object model. The rules engine executes 
object methods by invoking services implemented on 
the clinical data repository. Specialized inferences 
that support classification of data and instances into 
classes are identified and an approach to implement 
these inferences using an OWL based ontology 
engine is presented. Alternative representations of 
these specialized inferences as if-then rules or OWL 
axioms are explored and their impact on the 
scalability and maintenance of the system is 
presented. Architectural alternatives for integration 
of clinical decision support functionality with the 
invoking application and the underlying clinical data 
repository; and their associated trade-offs are 
discussed and presented.  

INTRODUCTION 

Clinical care guidelines specify best practices in 
clinical care and are intended to improve safety, 
quality and cost effectiveness3 of patient care. As 
payers such as the Federal Government (Medicare, 
Medicaid) and insurance agencies (e.g., Blue Cross 
Blue Shield) move towards a pay for performance 
model,  quality metrics, e.g., JCAHO1 and HEDIS2 
measures have come into focus. We seek to 
incorporate these metrics into our clinical 
information systems. 
 
Approaches for modeling and automation of clinical 
practice guidelines have been proposed over the 
years: the Arden Syntax4, EON5, PRODIGY-36, 
PROforma7, Asbru8, GUIDE9, Prestige10 and 
GLIF311. From an architectural viewpoint, GLIF3 
deserves special discussion. The various steps in the 
GLIF3 guideline model have been delineated as3: 
action and decision steps to represent clinical actions 
and decisions; patient state steps to serve as entry 
points into a guideline; and branch and 
synchronization steps for modeling concurrency. In 

this paper, we present an approach for clinical 
decision support that subscribes to GLIF3 
architectural principles by using an industrial 
strength Business Rules Engine - iLOG13, and an 
OWL16 ontology engine, Cerebra14.  
 
We present an approach for architecting rule content 
that represents patient state encapsulated in classes 
and methods of a business object model. These 
classes and methods are referenced in a rule base 
containing a set of declarative if-then rules. The “if 
part” of a rule typically consists of boolean 
conditions on the patient state. The “then” part 
consists of actions such as updating the patient state, 
making clinical recommendations, and specifying 
medication orders, etc. We also propose further 
delineation of decision support logic into definitions 
and decisions, where definitions correspond to 
characterization of patient states and classes; and 
decisions correspond to clinical recommendations 
and orders. Definitions are used to classify a given 
patient to a particular state on the basis of her 
documented clinical profile. This leads to a modular 
architecture for decision support, and easier 
maintenance of rules in the face of changing 
definitions. Finally, architectural alternatives for 
integration of the clinical decision support 
component with the invoking application and the 
clinical data repository are discussed.  

USE CASE 

Consider the following guideline for lipid 
management suggested by the American Diabetes 
Association (ADA)12: 
Lowering triglycerides and increasing HDL cholesterol 
with a fibrate are associated with a reduction in 
 cardiovascular events in patients with clinical CVD, low 
 HDL and near-normal levels of LDL (A). Lower triglycerides 
to <150 mg/dL (1.7 mmol/L) and raise HDL cholesterol to 
>40 mg/dL (1.15 mmol/L). In women, an HDL goal 10 mg/dL 
higher may be appropriate (C). Patient has CVD, 
triglycerides >150 and/or HDL<40 (for women HDL<50) and 
LDL levels are near normal. 
 
The steps for implementing the above clinical 
guideline are: (1) Create the Business Object Model 
that defines patient related classes and methods; (2) 
Specify Rules to encode Decision Support logic; and 
(3) Delineate definitions characterizing patient states 
and classes and represent them in an Ontology. 



BUSINESS OBJECT MODEL DESIGN 

The business object model for the above guideline 
could be specified as follows: 
Class Patient  
method get_gender(): string; 
method has_diabetes(): boolean; 
method has_CVD(): boolean; 
method get_last_triglycerides(): real; 
method get_last_HDL(): real; 
method get_last_LDL(): real; 
 
The model defines a class and methods to 
characterize patient state information. These methods 
are executed by the rules engine leading to invoking 
of services on the clinical data repository to retrieve 
patient data. Additional conditioning of retrieved 
patient data may also be performed, leading to 
interesting design choices for business object model 
design and implementation. 
 
Consider the methods has_diabetes() and 
has_CVD(), that determine whether a patient has 
diabetes or cardiovascular disease respectively. An 
alternative could a method get_diseases() that 
return a list of diseases which a patient suffers from. 
Whether the disease diabetes or CVD is on that list 
can be checked by the rule engine by executing a rule 
defined for that purpose. This simplifies the business 
object model, but introduces complexity in rule 
execution. The current design leverages optimized 
processing in the clinical data repository and reduces 
complexity of rule creation. 
 
Consider the method get_last_triglycerides() 
that retrieves the last triglycerides reading for a 
patient from the clinical data repository. This 
approach assumes the existence of a service on the 
clinical data repository which would return the last 
triglycerides reading for a patient. In some cases, 
computations to determine the “last” triglycerides 
reading may be implemented as a method in the 
business object model or as a rule in the rule base.  

RULE BASE DESIGN 

The business object model presented in the earlier 
section provides the vocabulary to specify various 
rules for implementing the clinical guideline.  
 
IF the_patient.get_gender() = “male” 
AND the_patient.has_CVD() = “true” 
AND the_patient.get_last_triglycerides()>=150 
AND the_patient.get_last_HDL()<=40 
AND the_patient.get_last_LDL()>=Value1 
AND the_patient.get_last_LDL()<=Value2 
THEN “order fibrate therapy” 
The above rule represents the first part of the diabetes 
guideline. A special variable “the_patient” acts as a 
placeholder for the actual patient being evaluated. 

The definition of “near normal LDL” is modeled by 
assuming that the LDL reading of the patient lies 
between Value1 and Value2.  The next rule is similar 
to the above but has a higher threshold for HDL 
values for women and can be specified as follows: 
IF the_patient.get_gender() = “female” 
AND the_patient.has_CVD() = “true” 
AND the_patient.get_last_triglycerides()>=150 
AND the_patient.get_last_HDL()<=50 
AND the_patient.get_last_LDL()>=Value1 
AND the_patient.get_last_LDL()<=Value2 
THEN “order fibrate therapy” 
 
There are alternative ways of specifying these rules. 
For instance, the two rules above can be combined 
into one rule as follows: 
IF the_patient.has_CVD() = “true” 
AND the_patient.get_last_triglycerides()>=150 
AND the_patient.get_last_LDL()>=Value1 
AND the_patient.get_last_LDL()<=Value2 
AND(  (the_patient.get_gender() = “male” 
       AND the_patient.get_last_HDL()<=40) 
    OR(the_patient.get_gender() = “female” 
       AND the_patient.get_last_HDL()<=50)) 
THEN “order fibrate therapy” 
 
This representation reduces the number of rules in 
the rule base which has a beneficial impact both on 
rule execution and maintenance. However, the rule 
specification has now become more complex for a 
knowledge author to understand and vet the rule for 
clinical validity effectively.  

DEFINITIONS VS DECISIONS 

Clinical decision support rules encode different types 
of inferences:  
• Rule-based specifications of conditions that 

describe patient states and classes, for instance, 
“Diabetic Patient with Higher Risk for CVD” or 
characterize normal or near normal physiological 
patient states, for instance, “Patients with near 
normal values of LDL”. These specifications are 
also called definitions. 

• Rule-based specifications that propose therapies, 
medications and referrals, for instance, prescribing 
fibrate therapy for a diabetic patient with higher 
risk for CVD. These specifications are called 
decisions. 

This provides us with an opportunity to further 
modularize our rule base by separation of the 
definition of a “Diabetic Patient with high risk of 
CVD”, from decisions such as “Prescribe fibrate 
therapy”.The definitions in the rule base can be 
represented as follows: 
IF the_patient.has_CVD() = “true” 
AND the_patient.get_last_triglycerides()>=150 
AND  the_patient.get_LDLcategory() 
                        = “LDLNearNormal” 
AND the_patient.get_gender() = “male” 
AND the_patient.get_last_HDL()<=40 
THEN set the_patient.category 
     = “DiabeticPatientWithHigherRiskOfCVD” 



 
IF the_patient.has_CVD() = “true” 
AND the_patient.get_last_triglycerides()>=150 
AND the_patient.get_LDLcategory() 
                        = “LDLNearNormal” 
AND the_patient.get_gender() = “female” 
AND the_patient.get_last_HDL()<=50 
THEN set the_patient.category 
     = “DiabeticPatientWithHigherRiskOfCVD” 
The simplified rule base can now be represented as: 
 
IF the_patient.get_category() 
   = “DiabeticPatientWithHigherRiskofCVD” 
THEN “order fibrate therapy” 
Definitions of various patient states can be 
represented as axioms in an ontology that could be 
executed by an OWL ontology engine, Cerebra14. At 
execution time, the ILOG rule engine can invoke a 
service that interacts with the Cerebra OWL engine 
to infer whether a particular patient belongs to a 
given class of patients, in this case, a diabetic patient 
with high risk of cardiovascular disease. The 
ontology of patient states and classes can be 
represented as follows: 
Class Patient 
ObjectProperty gender 
ObjectProperty hasDisease 
ObjectProperty lastTriglycerides 
ObjectProperty lastLDL 
ObjectProperty lastHDL 
 
Class DiabeticPatient  
≡ Patient ∩ ∃hasDisease.Diabetes 
 
Class CVD 
Class Diabetes 
Class Disease 
CVD ⊆ Disease 
Diabetes ⊆ Disease 
 
Class LDLNearNormal 
Class HDLLessThan50 
Class HDLLessThan40 
Class TriglyceridesMoreThan150 
 
Class DiabeticPatientWithHigherRiskofCVD 
≡ DiabeticPatient ∩ ∃hasDisease.CVD ∩ 
∀lastTriglycerides.TriglyceridesMoreThan150 
∩ ∀lastLDL.LDLNearNormal ∩ 
[[∀gender.{“male”}∩∀lastHDL.HDLLessThan40]∪ 
[∀gender.{“female”}∩∀lastHDL.HDLLessThan50]] 
 
The specification of various definitions in the 
ontology is illustrated above. For simplicity, we have 
adopted a non-XML based notation although they 
will be implemented following the OWL 
specification16. The class Patient and properties 
gender, hasDisease, lastTriglycerides, lastLDL and 
lastHDL provide a framework for describing the 
patient. The class DiabeticPatient is a subclass of all 
patients that are known to suffer from diabetes. This 
is expressed using an axiom following the Patient 
class definition. The class Disease represents various 
diseases and subclasses of interest, CVD and 
Diabetes. The classes LDLNearNormal, 

HDLLessThan50, HDLLessThan40 and 
TriglyceridedMoreThan150 represent ranges of 
values of normal LDL, HDL and Triglycerides 
respectively. Cerebra has implemented custom 
datatypes based on the OWL specifications16, 
providing the ability to map XML Schema17 
datatypes to OWL Classes and supports range 
checking inferences on them. Finally, 
DiabeticPatientWithHigherRiskofCVD is defined 
using an axiom to characterize diabetic patients with 
higher risk of CVD. The representation of this axiom 
enables the rule author to simplify the rule base 
significantly (as only the rule in bold needs to be 
specified). The classification of a patient as being 
diabetic and with high risk of CVD is now performed 
by the Cerebra Ontology Engine. 

CLINICAL DECISION SUPPORT 
ARCHITECTURE 

An architecture for implementing clinical decision 
support systems is illustrated below and consists of 
the following components: 
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Clinical Data Repository: The clinical data 
repository stores patient-related clinical data. 
External applications, the rule engine and the 
ontology engine retrieve patient data by invoking 
services implemented by the clinical data repository.  
Standalone Rules Engine Service: A standalone 
rules engine service is implemented using the ILOG 
business rules engine. On receiving a request, the 
service initializes a rule engine instance, loads the 
rule base and business object model. The rule engine 
service then executes methods in the business object 
model and performs rule based inferences. The 
results obtained will then be returned to the invoking 
application.  
In-process Rule Engine Component: This provides 
similar functionality to the rules engine service, 
except that the rule engine component is loaded in 
the same process space in which the application is 
executing. 
Ontology Engine: This will be implemented using 
the Cerebra Server. On receiving a request, the 
ontology engine performs classification inferences on 
patient data to determine if a patient belongs to a 
particular category, e.g., high risk patient. 
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We now revisit the design patterns discussed earlier 
and evaluate the trade-offs associated with them. In 
cases, where there is a lot of interaction between the 
invoking application and the decision support 
component, including it as an in-process component 
may reduce the time taken for execution as network 
latency between rule engine invocations will be 
minimized. Caching of the patient state is likely to 
play a significant role in execution efficiency. For 
instance, in the case where specialized services check 
whether a patient has diabetes, is not available on the 
clinical data repository, the complete patient object 
will need to be populated so that the rule engine can 
check for existence of diabetes in the list of patient 
diseases. Efficient mechanisms to check, refresh and 
dispose cached patient state information will be 
required. 
    For large rule bases, the ability of the rule engine 
to leverage Rete Rule Matching computation14 to 
rapidly identify rules that are likely to fire will be 
crucial. Designing rule bases with a minimal set of 
rules will also be useful in speeding up rule engine 
execution. As illustrated earlier, combining two rules 
into one may be helpful as it would result in one rule 
(as opposed to two) being loaded on the agenda. 
Identification of a set of classification inferences that 
can be implemented by an ontology engine and 
invoked as a service from the rules engine offers 
significant potential for speeding up execution 
performance of the rules engine. A significant 
proportion of clinical decision support involves 
classification and this could result in reducing 
overhead on the rules engine and speeding up 
execution performance. 

RULE AUTHORING AND MAINTENANCE 
CONSIDERATIONS 

Some of the design patterns discussed earlier will 
have an impact when it comes to rules authoring and 
maintenance. The compactness of the business object 
model makes the job of maintenance easier. For 
instance, it’s better to have a method for retrieving 
patient diseases rather than a large number of 
methods for checking the existence of a potentially 
large number of diseases a patient could have. On the 
other hand, this could increase the complexity of the 
rule base, should this checking be done via a 
specialized rule. The ability to create a compact rule 
base by combining two or more rules into a single 
rule (as illustrated earlier) also makes the 
maintenance of the rule base easier. However, this 
could make the individual rules more complex and 
difficult to understand, impacting the ease of rule re-
use and editing. 

    The separation of definitions from decisions and 
their implementation in an ontology engine reduces 
the complexity of the rule base maintenance 
significantly. It may be noted that the conditions that 
comprise a definition may appear multiple times in 
multiple rules in a rule base. Our approach enables 
the encapsulation of these conditions in a definition, 
for e.g., DiabeticPatientWithHighRiskofCVD. Thus 
all rules can now reference the class 
DiabeticPatientWithHighRiskofCVD which is 
defined and maintained as a part of an ontology in 
the ontology engine. Whenever the definition of 
DiabeticPatientWithHighRiskofCVD changes, they can 
be isolated within the ontology engine and the rules 
that reference this definition can be easily identified. 

EVALUATION AND LESSONS LEARNED 

We present initial experiences in applying an 
ontology-based approach for clinical decision 
support. The key parameters that were monitored are 
as follows: (a) The complexity and number of OWL 
definitions used in the clinical decision support 
knowledge base; (b) The effort required for rule 
authoring and quality assurance (Q/A); and (c) The 
time taken for execution of clinical decision support 
inferences. Some trends are summarized below. 
These trends are not conclusive but do represent do 
suggest the viability of our approach. 

 
We now present some interesting lessons learned.  
• As more OWL definitions are introduced, the same 

knowledge can now be expressed in a more 
concise manner by referencing these definitions. 
This reduces the time for rule authoring. However, 
the use of OWL definitions has a negative impact 
on rules execution performance in comparison to a 
vanilla rules engine architecture, primarily due to 
round trip communication costs between the 
ontology and rules engines. 

• As we increase the complexity of definitions by 
encapsulating in them earlier, more granular 
definitions, the total number of definitions 
decreases. This mitigates the negative impact on 
execution observed by the introduction of 
definitions, above. At the same time rule authoring 
efficiencies are introduced as the same set of rules 
with multiple conditions on the “if” part of the 
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rules are now represented in a concise manner. 
This is due to the encapsulation of these conditions 
in an OWL definition, enabling the rule author to 
specify a reference to the definition as opposed to 
specifying multiple conditions. 

There is a tradeoff between efficiencies gained in 
rule authoring and the negative impact on rule 
execution performance (as compared to a vanilla 
rules engine architecture). An optimal configuration 
needs to be identified to achieve the improvements in 
total cost of ownership. This cost savings due to rule 
authoring efficiencies can be used to invest in load 
balancing infrastructure to achieve the required level 
of business performance. Crucial to achieving the 
efficiencies discussed above is the effective 
modularization of a rule base such that the inferences 
performed by a rule engine and an ontology do not 
overlap. We were able to achieve this in specific 
cases, but it requires more investigation. 

CONCLUSIONS AND FUTURE WORK 

We have presented an approach and architecture for 
implementing clinical decision support in a 
healthcare delivery system. An example clinical 
guideline was represented by designing a business 
object model that describes patient information and a 
rule base that makes inferences and suggests actions 
based on patient state. Furthermore, we propose 
delineation between definitions and decisions and the 
use of an ontology engine for performing 
classification inferences. This motivated an 
architecture for invocation of an ontology engine 
from a rules engine. A service oriented approach for 
retrieving information from the clinical data 
repository was presented. Alternative 
implementations of a rule engine component as an in-
process component and as a stand alone service were 
also proposed. Different design decisions and trade-
offs were discussed in the context of this architecture 
along with their impact on rule authoring and 
maintenance. Practical Usefulness considerations 
were discussed and lessons learned were also 
presented. 
    The work described in this paper is part of an 
ongoing project at Partners HealthCare to use an 
industrial strength business rules engine, ILOG and 
an ontology engine, Cerebra for implementing 
clinical decision support. Creation of a robust rules 
authoring and maintenance environment for rapid 
and consistent update of decision support knowledge 
is also being architected. We will investigate the 
following issues going forward: (a) To what extent is 
it possible to isolate changes in definitions and the 
business object model from rules? (b) What will be 
the impact of genomic and personalized medicine on 
clinical guidelines? Will our architecture be able to 

manage knowledge related to personalized medicine? 
(c) Can semantic web technologies and reasoners 
based on OWL enable design of enhanced decision 
support and knowledge maintenance? Will this help 
support clinical decision support requirements for 
personalized medicine? 
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