 Web Applications, Data, Services and Integration

A Framework
Bill Clare (billclare3@aol.com)

Abstract

The thesis here is simple. Integration of applications with data and services on a broad scope needs a comprehensive foundation. This can be based on a re-examination of how the application model relates to its services and how these services can be made adaptable to integrating support for any external data or service. This leads to a framework for models and a development of that framework that follows from basic principles of software engineering.
A comprehensive approach to integration of Web Data and Services is outlined here in terms of its implementation, along with reference to modeling, specification language, tool support and the development process.
1 Introduction

Comprehensive integration of Web Data and Services can be based on an application framework consisting of application models, application and system services and adapters for external interfaces. This can provide a flexible and adaptable approach to integration, rather than addressing individual instances independently.

Application Framework
The heart of the framework is the application model itself which uses domain services to accomplish its goals. The application model is depicted as surrounded by application services such as HTML, Data Services, Messaging and Control functions. The application can interface with these services primarily through declarative specifications and event processing. The application model and application services are supported by system services that provide environment support independently of application interfaces.
Application and system services have adapters that can support a variety of local physical implementations and that can interface with external data and services. In particular, data and services interface directly with adapters and the services they support. and only indirectly with the applications.

Dynamics
The model as depicted is static. Control functions can drive events, requests, responses and action specifications among framework and model components, and with external data and services.
Integration

Integration of Web Data and Services is with the application systems they support. This allows data resources and services to exist independently and to avoid complexities of interfacing with each other.

Integration itself involves three components: the framework adapter, the particular data or service to be integrated, and the particular application. Adapters can be specialized to support industry standards or a particular environment technologies, for example, a relational data base interface for data or SOAP for communications. A data or service implements an instance of the technology, for instance a data base or a SOAP application. The application then provides mappings to and from the content of the eternal data and the messages to be transmitted.
Not only does this provide a foundation for developing and adapting support capabilities, but it greatly simplifies the set of tools, technologies and services that the application developer needs to use and understand. In addition, the framework approach supports considerations of integration throughout the development process.
2 Approach

While the basic concepts here are simple, implementation of this framework is ambitious. Implementation can be based on fundamental principles of software engineering, supported by:.

· Model driven approaches

· Generalization and adaptation for compatibility with diverse resources

· Declarative specification language

· Commonality of language and tool support

· Separation of concerns
Model Driven Development

Models are the way we think about problems and their solution. Models define the components of a system and how they interact. Models provide a natural progression in developing standardized and reusable components. This progression ranges from function libraries, to structured code, to encapsulation of behavior in objects, and then to models of components and their interactions.

Computer applications need to map models in the problem domain to implementation models in the processing domain. The integration process begins with requirements and models that define relationships and interactions among components to be implemented as well as those to be integrated.
Models are usefully diagrammed – some, informally on the back of an envelope, others, more formally, with systems such as UML. The usual approach to Model Driven Development is to use diagrammed models as a basis for generating code for implementation and sometimes for test. Such approaches unfortunately are typically cumbersome and tend to negate the basic simplicity of the modeling approach.

The approach here is, first, to avoid procedural code. More importantly, however, is that components and relations are fundamentally defined in terms specifications, not by diagrams. Diagrams are useful as visualization aids and editing tools, but need not themselves provide a complete basis for implementation.
Generalization and Adaptation

Integration of complex entities creates entities of greater complexity. Simplification can occur by integration based on generalization of function, independently of implementation. Integration of related technologies and capabilities can then proceed independently by mapping only to the common functionality.
Generalization is starts with the essential characteristics of components. Modeling efforts can achieve flexibility and simplicity by abstracting the basic characteristics of the concepts they represent and by then defining relationships at this level. Adaptation then tailors components independently to meet the particular needs of different uses, users, and environments, and to support compatibility and integration with existing services. Approaches to support adaptation include specialization, layering and parameterization.

Specialization is a hierarchic decomposition, that develops specifications for the commonalities of components with distinctions for specific component types. In particular, industry and other domain models can be standardized to provide a common services base with different characteristics.
Layering is a vertical decomposition, that supports high level interfaces for the basic functionality through successively lower level interfaces. Layering can be recursive, such as when higher level services are implemented in terms of lower level services. Also layering can provide different functionality, such as by providing policies for operations to specify which services to use and how they are to be used.

Adaptation parameters can be systematically incorporated in model specifications. This then allows for tailoring through configuration files and operational parameters. For integration of data and services, the details of how can be adapted to the specific implementation of generic adapters.
Declarative Specifications

HTML has long demonstrated that significant application development is possible based on declarative rather than procedural specifications. Other XML based standards extend the HTML capability of declarative specifications to support the application services identified here.
Declarations define objects, actions and events that drive the actions and state what is to be accomplished, rather than how. This separation is fundamental to integration. Integrating the mechanics of how something is accomplished is considerably more complicated than integrating what is to be accomplished.

Language and Representation Commonality

Declarative specifications can be specified by an abstract syntax. An abstract syntax defines content independently of the form or the representation of a particular concrete syntax or other specification. The content of the abstract syntax is what is mapped to interfaces used by interpreters to drive applications.

Integration of diverse capabilities defined with different structures and protocols can then be based on extraction and mapping to the abstract syntax, which provides the content of the specification. This content is then available to common application and system interfaces. This then defines function independently of implementation in concrete syntax, forms, representations and protocols.
For declarative specifications, the abstract syntax uses nested tuples of name-value pairs to associate objects with their properties, representations, behavior, relations, constraints and metadata, and to associate action and event specifications with their objects, operations and parameters. For specification of values, abstract syntax supports expressions with tree structures of operators and operands.
Declarative specifications of the abstract syntax can be directly mapped to DOM like interfaces used by interpreters to drive the application. The abstract syntax itself can be mapped from parsers for concrete syntax, from tools for creating and editing specifications, and from declarations in diverse sources and representations. This supports integration of new and existing resources, services, data and applications.
For many applications, declarative specifications can be highly repetitious. Templates can allow patterns of common specifications to be parameterized for both succinctness and comprehension.

Tool Support

A rich tool base can provide common support for extraction, selection, organizing and mapping of specifications to interactive display and editing formats. The integrated model base supports mapping of specifications from components and their interactions to the views relevant to different stakeholders and developers. Mapping can include a rich set of tables, hierarchies and network diagrams.
The tool base and models can support specification structures and formats for all development phases, including scenarios, requirements, plans and schedules, configuration control, test, simulation, adaptation, monitoring and evaluation. This support applies equally to both implemented and integrated components.
The common model structure also fosters parallel development, with use of processes appropriate to different parts and phases of the development. This includes a flexible initial model structure, top down decomposition, early prototyping, agile development of components and continuous integration. External and other capabilities can be simulated through adapters and integrated later during the development process
Integration of Web Data and Services with the applications can use these same tools to specify mappings and transforms, to and from application events, messages and data. Thus, no special tools are required for integration. A major focus here is to simplify, reduce and integrate the number of tools and technologies that the application developer needs to use and understand. For example, a change to a message parameter could prompt for corresponding changes to related event, data, presentation, application specifications for interfaces, implementation and test.
Separation of Concerns
Integration support relies heavily on an architecture that separates design issues into separate components that can be dealt with independently.

Modeling provides opportunity for clear delineation of common constructs, and of individual implementation and specialization of those constructs. Here the framework is largely based on separating specifications for policies and operations from common services used. At a high level services are separately categorized as domain services for a class of applications, application services common to many applications, and system services that support adaptation to the implementation environment. At lower levels, services are specified to provide a single function well, with higher level functions implemented in terms of lower level functions.

From an integration perspective, this can be exploited by particular web data and service capabilities with separate considerations for mapping communications, data, presentation, and environment characteristics to provide the needed capabilities. Control constructs can be specified to implement the interactions needed. At a more abstract level, considerations of language and representation can be used to map information to application data constructs. This exploitation occurs both at the level of integration of a type of data or service, and also at the level of the mapping of a particular data or service with a particular application.

3 Services and Adapters
Services are defined with high level interfaces that are supported by adaptors for implementations that integrate diverse systems, applications, users, services, devices and data. The key point here is that integration is focused on adapters that taken together provide complete and distinct interfaces to the application framework and independently of each other.
Application Services

Application services are characterized as being independent of any particular application, and as being both necessary and sufficient to integrate the application with external resources, other applications, local and remote data and services, devices and end users. Application services, here, are basically an extension of the Smalltalk Model-View-Controller paradigm. Four sets of services provide support services for data access and manipulation, for interactive presentations, for messages and communications, and for control functions.
These services can be largely based on existing technology and capabilities, particularly XML and related standards. In particular, this could involve consolidating and simplifying much of the complexities and inconsistencies that have evolved over the last decade.
 Logical data services provide abstractions which separate support for data discovery, location, vocabulary, access, representation, format, creation, modification and structuring. In particular, they support abstract application interfaces for common data structures including tuples, sequences, arrays, tables, relations, hierarchies and networks. Structuring can also be built on tuples and sequences in an entity-relationship model. A possible approach is for the application to be completely data driven. Here messages, user interactions and application operations are mapped to and from data changes. Data changes then trigger events which, in turn, drive processing, displays and more data changes.

Communication services support message formats and communication protocols. Basic support is for synchronous and asynchronous messages, events, requests and replies, both within the framework and with external resources. Implementation includes queuing, transactions, search, Web Service discovery and negotiation, and simulating external actions for integration and test.
Interactive presentation services provide common support for documents, displays, reports, charts, spread sheets and various media. Support is provided at the semantic level for objects like paragraphs, lists and layout; at the characteristics level, for properties like fonts and arrows; and at the primitive level for objects native to the environment, such as a particular display service, operating system or device.
Control services support message and event routing, and coordination of processing among services and applications. They can also support lower level processes through decision tables, state machines, query and search strategies, data driven transforms, process driven operations, transactions, inference engines, etc.
System Services

Systems services are implemented in pervasive models that provide interfaces throughout the framework for such functions as security, instrumentation, test and validation, configuration support, etc. Typically these services can be systematically parameterized within the model specifications, and then adapted and activated through configuration files.
4 Prospects

A series of unpublished papers outline further detail on many of the concepts presented here.
No fundamentally new technology is suggested here. Rather the proposal is for adaptation and integration of many of the powerful capabilities that have evolved, mostly over the past 15 years.
What is fundamentally required is a belief that that such a framework is useful for easier development of simple systems and for enablement of complex systems, and that the framework is eminently feasible. Given this, industry sponsorship, preliminary specifications, and prototype implementations can serve as a basis for a fundamental restructuring and evolution of how we build and integrate systems, services and standards.

© billclare3@aol.com

System Services

Adapters

Logical Data

Adapters

Domain Services

Application Model

Communication Support

Adapters

Interactive Presentation

Adapters

Control Structures

8/26/12

Page 5 of 5

