D.S UVA ME in Systems Engineering class of 2005

Efficiencies in Intelligence Reasoning and XML interoperability: Extending XSLT to be a Production System

Summary: What follows is an idea to leverage XSLT and XML to standardize rule representation and the production systems. The claim here is that XSLT should be enhanced to be a production system used by all, and that XML domain and knowledge modeling and structuring is a problem already being solved by everyone. Below is a rationale for enhancing XSLT to be an open, standard, modular production system and steps necessary to accomplish this. This approach decouples knowledge representation and rule standardization. Such an easy to use standard would create efficiencies in intelligent software development by commoditizing the rule engine and reducing development costs. This in turn would allow resources to be focused on new research and new algorithms for pattern matching. There seem to be too many rule engines, which do the same thing and provide marginally different functionality.

Why Extend XSLT to a Production System?

Extending XSLT to a Complete Rule Based Language would solve the problem of rules interoperability, as XSLT is the universal language of XML conversion/transformation.

If rules are to be captured in XML and based on XML driven data then the most natural and easy way to express them is via XSLT. This allows business and domain knowledge to be represented via specific XML files, and schemas. With the business knowledge and relationships captured in structure then the rules to process the data can be simpler.

Making XSLT a production system would also replace the market for expensive heavy-duty rule based systems and result in greater efficiencies for software firms by reducing the cost of building expert systems.

Using XSLT allows everyone to use their own XML representation but similar syntax. It decouples the problem of representation of knowledge and rule execution. It is assumed to that to bridge XML vocabulary gaps humans will write XSLT conversion XSLT files to convert between XML languages. This assume 2 uses for stylesheets:

1) Mapping XML vocabularies to conversion into local idiom for reasoning. (Based on formal published XML standards similar to industry XML schemas or rule representation mark up languages)

2) Internal representation of rules and execution using XLST for rule engine processing on domain specific XML. This allows agent rules to be specific.

Metaphysical Aspects

We all have rules in our heads we keep to interpret facts and reality. We can express these in external languages to explain our selves to others and to learn, but the mechanism that produces these rules is the same within us. Similarly we should keep our internal rules in the same language, XSLT, and allow external communication via one channel, and have the flexibility to build our own representations of the world. Although there is one world, we see it from our perspective, and not from some objective universal view. Rarely are our internal representations compromised, as it would be too much work for us to restate all of our knowledge and thinking at the Meta level, and even if we could express such voluminous data and knowledge it would be unusable. As such there is no need to represent everything, nor utility. Only necessary conversions are needed, and fortunately feasible.

What needs to be added to XSLT?

The good ideas from various open source rules engines should be considered and re-used in adding robust production system capabilities to XSLT.

In terms of minimal additions needed to add production system capability to XSLT the following enhancements are needed:

· Ability to create/modify intermediate trees, besides the output tree

· Ability to match various internal trees

· Once addition and matching of dynamic trees is allowed a robust pattern matching algorithm would also be needed. (Such as RETE, Treat, etc.)

· Ability to handle large memory usage

· Modification to conflict resolution strategy to allow multiple rule firings even if there is a tie. (Currently XSLT 1.0 only allows the winning template, per current conflict resolution to execute, and other rules are simply not executed even though they match)(This may not be an issue as XSLT 2.0 allows xsl:next-match, but it would be nice to turn this on as a default setting in the XSLT engine)

These enhancements should be sufficient in making XSLT a production system.

In the long run it would be good to have debug capability, as well as the ability to specify varying pattern match algorithms in a modular way.

A Standard to Commoditize Rule Engine and Rule Execution

If all the energy and work on creating open source production systems could be harnessed to enhance XSLT the entire software industry could benefit from production systems and XML without creating expensive middle layers of conversion.

At this stage production systems should be commodities and knowledge should be the source of competitive advantage. To make this a reality it is important to have a flexible, open production system, which allows domain specificity, and standardization. Also the design should be such that everyone can contribute and build on top of each other’s work.

1 of 2

