Review of Core by Changhai Ke, May 6, 2009

1 Overview
This specification develops RIF-Core (the Core of the Rule Interchange Format). From a theoretical perspective, RIF-Core corresponds to the language of definite Horn rules without function symbols ('Datalog')
 and a standard first-order semantics. RIF-Core thus is a subset of RIF-BLD [RIF-BLD]. At the same time, RIF-Core is a language of production rules permitting only assert actions. RIF-Core thus also is a subset of RIF-PRD [RIF-PRD]. Moreover, RIF-Core is based on the built-ins of RIF-DTB 1.0 [RIF-DTB]. The common subset of RIF-BLD and RIF-PRD is specified based on RIF-DTB 1.0.

Syntactically, RIF-Core has a number of Datalog extensions to support features such as objects and frames as in F-logic [KLW95], internationalized resource identifiers (or IRIs, defined by [RFC-3987]) as identifiers for concepts, and XML Schema datatypes [XML-SCHEMA2]. In addition, RIF RDF and OWL Compatibility [RIF-RDF+OWL] defines the syntax and semantics of integrated RIF-Core/RDF and RIF-Core/OWL languages. These features make RIF-Core a Web-aware language. However, it should be kept in mind that RIF is designed to enable interoperability among rule languages in general, and its uses are not limited to the Web.

RIF-Core is defined as a subset of RIF-BLD (hence of [RIF-FLD], making it a starting point of the RIF extensibility framework). It is a syntactic subset of RIF-BLD, so that a well-formed RIF-Core formula (including document and condition formulas) is also a well-formed RIF-BLD formula.

RIF-Core is also a syntactic subset of [RIF-PRD]. It is intended that a RIF-PRD consumer can treat a RIF-Core document as if it was a RIF-PRD rule set while it also conforms to the normative RIF-Core first order semantics. However, due to the presence of builtin functions and predicates there are constructions in the syntactic intersection of RIF-PRD and RIF-BLD which would not reach a stable fixed-point under RIF-PRD semantics
. We thus define a notion of safeness to qualify RIF-Core documents that can be safely executed using a forward chaining production rule engine and only require from conformant implementations to handle such safe rules. These notions of safeness and conformance are defined formally in section 5 Conformance and Safeness.

RIF-Core is not the maximal common subset of RIF-BLD and RIF-PRD. It omits some features from the intersection which do not significantly add to the expressiveness of the language and are judged to be not widely supported by rule languages.

To give a preview, here is a simple complete RIF-Core example deriving a ternary relation from its inverse.

Example 1 (An introductory RIF-Core example).

A rule can be written in English to derive buy relationships from the sell relationships that are stored as facts (e.g., as exemplified by the English statements below):

· A buyer buys an item from a seller if the seller sells the item to the buyer.
· John sells LeRif to Mary.
The fact Mary buys LeRif from John can be logically derived by a modus ponens argument. Assuming Web IRIs for the predicates buy and sell, as well as for the individuals John, Mary, and LeRif, the above English phrase can be represented in RIF-Core Presentation Syntax as follows.

Document(

 Prefix(cpt http://example.com/concepts#)

 Prefix(ppl http://example.com/people#)

 Prefix(bks http://example.com/books#)

 Group

 (

 Forall ?Buyer ?Item ?Seller (

 cpt:buy(?Buyer ?Item ?Seller) :- cpt:sell(?Seller ?Item ?Buyer)

)

 cpt:sell(ppl:John bks:LeRif ppl:Mary)

)

)

For the interchange of documents containing such rules and facts, an equivalent RIF-Core XML syntax is provided in this specification. To formalize their meaning, a RIF-Core Semantics section is specified.

This document assumes familiarity with [RIF-BLD] or [RIF-PRD], as RIF-Core is closely related to them.

[edit] 2 RIF-Core Presentation Syntax
Like RIF-BLD and RIF-PRD, RIF-Core has both a presentation syntax and an XML syntax. The presentation syntax is normative, but is not intended to be a concrete syntax for RIF-Core. It is defined in "mathematical English," a special form of English for communicating mathematical definitions, examples, etc. The presentation syntax deliberately leaves out details such as the delimiters of the various syntactic components, escape symbols, parenthesizing, precedence of operators, and the like. Since RIF is an interchange format, it uses XML and only XML as its concrete syntax. RIF-Core conformance is described in terms of semantics-preserving mappings.

Since RIF-Core is a syntactic subset of RIF-BLD, this section defines the presentation syntax of RIF-Core as a restriction on the presentation syntax of RIF-BLD.

[edit] 2.1 Alphabet of RIF-Core
The alphabet of the presentation language of RIF-Core is the alphabet of the RIF-BLD presentation language with the exclusion of the symbol ## (subclass) and the set of symbols ArgNames (what is this for?).

[edit] 2.2 Terms of RIF-Core
The Terms of RIF-Core are the terms of RIF-BLD with the exclusion of subclass terms and of terms with named arguments.

[edit] 2.3 Formulas of RIF-Core
The Formulas of RIF-Core are the formulas of RIF-BLD with the following restrictions.

· Subterms that occur inside atomic formulas can be variables, constants, or external positional terms. This implies that RIF-Core
only allow external function applications.

· Equality terms cannot occur in rule conclusions -- they are allowed only in rule premises.

[edit] 2.4 Annotations and Documents
RIF-Core allows every term and formula to be optionally annotated in the same way as in RIF-BLD. The frame constructs that are allowed as part of an annotation must be syntactically correct for RIF-Core. In particular, no function symbols are allowed in such a formula.

[edit] 2.5 Well-formed Formulas
A syntactically correct RIF-Core formula that passes the well-formedness test for RIF-BLD is also a well-formed RIF-Core formula.

The well-formedness tests are defined as follows:

1. each symbol in Const can be either an individual, a (non-external) predicate symbol, an external function, or an external predicate

2. if a symbol occurs in the position of a predicate or (external) function of some arity, then it cannot occur elsewhere in the formula with some other arity. In other words, a predicate or a function must always have the same arity.
3. for every occurrence of External(t), t must be an instance of the coherent set of external schemas (Section Schemas for Externally Defined Terms of [RIF-DTB]) associated with the language of RIF-Core
.

For rif:local symbols, the above clauses 1. and 2. apply only within the scope of a single document. That is, two different occurrences of the same rif:local symbol in different documents may have different arities, may occur both as predicates and individuals, etc. For other symbols, the above restrictions apply not only to the document that contains the particular occurrence of the symbol, but also to all documents that are imported by that document.

[edit] 2.6 EBNF Grammar for the Presentation Syntax of RIF-Core
Until now, we have used mathematical English to specify the syntax of RIF-Core as a restriction on RIF-BLD. Tool developers, however, may prefer EBNF notation, which provides a more succinct view of the syntax. However, EBNF is unable to express all of the well-formedness conditions. For instance, the requirement that each symbol appear in only one context cannot be expressed. As a result, the EBNF grammar defines a strict superset of RIF-Core. For that reason this section is not normative.

The EBNF for the RIF-Core presentation syntax is given as follows. For convenience of reading we show the entire EBNF divided in three parts (rules, conditions, and annotations); these are derived from the ENBF for RIF-BLD by applying the restrictions described above.

Rule Language:

 Document ::= IRIMETA? 'Document' '(' Base? Prefix* Import* Group? ')'

 Base ::= 'Base' '(' ANGLEBRACKIRI ')'

 Prefix ::= 'Prefix' '(' Name ANGLEBRACKIRI ')'

 Import ::= IRIMETA? 'Import' '(' LOCATOR PROFILE? ')'

 Group ::= IRIMETA? 'Group' '(' (RULE | Group)* ')'

 RULE ::= (IRIMETA? 'Forall' Var+ '(' CLAUSE ')') | CLAUSE

 CLAUSE ::= Implies | ATOMIC

 Implies ::= IRIMETA? (ATOMIC | 'And' '(' ATOMIC* ')') ':-' FORMULA

 LOCATOR ::= ANGLEBRACKIRI

 PROFILE ::= ANGLEBRACKIRI

Condition Language:

 FORMULA ::= IRIMETA? 'And' '(' FORMULA* ')' |

 IRIMETA? 'Or' '(' FORMULA* ')' |

 IRIMETA? 'Exists' Var+ '(' FORMULA ')' |

 ATOMIC |

 IRIMETA? Equal |

 IRIMETA? Member |

 IRIMETA? 'External' '(' Atom ')'

 ATOMIC ::= IRIMETA? (Atom | Frame)

 Atom ::= UNITERM

 UNITERM ::= Const '(' (TERM* ')'

 GROUNDUNITERM ::= Const '(' (GROUNDTERM* ')'

 Equal ::= TERM '=' TERM

 Member ::= TERM '#' TERM

 Frame ::= TERM '[' (TERM '->' TERM)* ']'

 TERM ::= IRIMETA? (Const | Var | List | 'External' '(' Expr ')')

 GROUNDTERM ::= IRIMETA? (Const | List | 'External' '(' 'Expr' '(' GROUNDUNITERM ')' ')')

 Expr ::= UNITERM

 List ::= 'List' '(' GROUNDTERM* ')'

 Const ::= '"' UNICODESTRING '"^^' SYMSPACE | CONSTSHORT

 Name ::= UNICODESTRING

 Var ::= '?' UNICODESTRING

 SYMSPACE ::= ANGLEBRACKIRI | CURIE

Annotations:

 IRIMETA ::= '(*' IRICONST? (Frame | 'And' '(' Frame* ')')? '*)'

ANGLEBRACKIRI and CURIE are defined in Section Shortcuts for Constants in RIF's Presentation Syntax of [RIF-DTB].

The following subsections explain and exemplify Condition Language, Rule Language, and Annotations parts.

[edit] 2.6.1 EBNF for the RIF-Core Condition Language
The RIF-Core Condition Language represents formulas that can be used in the premises of RIF-Core rules (also called rule bodies). The EBNF grammar for a superset of the RIF-Core condition language is shown in the above conditions part.

This is a specialization of the EBNF for the RIF-BLD condition language specified in the RIF-BLD conditions part reflecting the syntax restrictions on RIF-Core described normatively in sections 2.1 through 2.5 above.

Example 2 from the RIF-BLD document also illustrates a RIF-Core condition.

[edit] 2.6.2 EBNF for the RIF-Core Rule Language
The presentation syntax for RIF-Core rules is based on the syntax in Section EBNF for the RIF-Core Condition Language with the productions shown in the above rules part.

Again, this is a specialization of the EBNF for the RIF-BLD rule language specified in the RIF-BLD rules part reflecting the syntax restrictions on RIF-Core described normatively in sections 2.1 through 2.5 above.

Example 3 from the RIF-BLD document also illustrates a set of RIF-Core rules. In contrast, Example 6 from the RIF-BLD document shows a formula that is not in RIF-Core because it includes terms with named arguments, which are not allowed in this dialect.

[edit] 2.6.3 EBNF for RIF-Core Annotations
The presentation syntax for RIF-Core annotations uses the production shown in the above annotations part.

This defines the specialization of the EBNF for the RIF-BLD annotation language specified through the RIF-BLD annotations part where annotation frames use the more restricted TERMs defined in the above conditions part of RIF-Core.

Example 4 from the RIF-BLD document also illustrates a RIF-Core document that contains an annotated group formula.

[edit] 3 RIF-Core Semantics
RIF-Core is a syntactic subset of RIF-BLD, and the semantics of RIF-Core is identical to the one of RIF-BLD for that subset.

[edit] 4 XML Serialization Syntax for RIF-Core
The XML syntax of RIF-Core is a subset of the XML syntax of RIF-BLD. All XML tags of RIF-BLD (except Subclass, sub and super) are supported, but the XML schema of RIF-Core restricts their context with respect to what is allowed by the XML schema of RIF-BLD. The semantics of the XML syntax for RIF-Core is defined through the same RIF-BLD XML-to-presentation syntax mapping.

Example 5, "A RIF condition and its XML serialization," in the RIF-BLD document also illustrates XML serialization for a RIF-Core condition formula. XML serialization of a complete RIF-Core document appears in the RIF-BLD document as Example 7.

[edit] 5 Safeness criteria
RIF-Core is a syntactic subset of both RIF-BLD and RIF-PRD. The semantics of a RIF-Core formula is the same as the semantics given to it by RIF-BLD.

All RIF-Core documents are also valid RIF-PRD documents. However, some formulas may be unsafe and cannot be executed under the RIF-PRD operational semantics. Thus, in order to allow production rule systems and logic programming systems to interchange rules via RIF-Core, we restrict RIF-Core to safe rules so that the logical semantics of RIF-BLD and the operational fixed-point semantics of RIF-PRD coincide.

[edit] 5.1 Safeness
Intuitively, safeness of rules guarantees that when performing reasoning in a forward-chaining manner, it is possible to find bindings for all the variables in the rule so that the condition can be evaluated.

To define safeness in the face of external predicates and functions, we define the notion of binding patterns, which are lists of the form (p1, ..., pn), such that pi=b or pi=u, for 1 ≤ i ≤ n. Intuitively, b stands for a "bound" and u stands for an "unbound" argument.

Each external function or predicate has an associated list of valid binding patterns. We define here the binding patterns valid for the functions and predicates defined in [DTB].

Every function or predicate f defined in [DTB] has a valid binding pattern for each of its schemas with only the symbol b such that its length is the number of arguments in the schema. In addition,

· the external predicates pred:iri-string, pred:string-equal, pred:date-equal, pred:dateTime-equal, pred:duration-equal, pred:date-equal, pred:time-equal, pred:XMLLiteral-equal, pred:matches-language-range, pred:text-equal have the valid binding patterns (b, u) and (u, b) and

· the external predicate pred:list-contains has the valid binding pattern (b, u).

The functions and predicates defined in [DTB] have no other valid binding patterns.

Editor's Note: To be updated, taking into account the latest additions to DTB, e.g., the list predicates once they have been finished.

For dealing with disjunction, existential quantifiers, and equality in rule antecedents we need a number of preliminary definitions before we can define safeness.

Let ψ be a condition formula. With ψ' we denote the formula obtained from ψ by replacing all subformulas of the form Exists ?V1 ... ?Vn(φ) with φ', which is obtained from φ by replacing all occurrences of ?V1, ..., ?Vn with ?V1', ..., ?Vn', which are variable symbols not appearing outside of φ.

The tree corresponding to ψ', denoted Tψ' is a labelled tree (N,E,L), where each node n ∈ N is labelled (using the labelling function L) with a set of formulas and is constructed using the following rules. We define Tψ' as the smallest labelled tree such that n0 is the root, ψ' ∈ L(n0), and for every node n ∈ N we have that

· if some conjunction And(φ1 ... φk) ∈ L(n), then φi ∈ L(n) for every φi, 1 ≤ i ≤ k and

· if φ1, ..., φl is the set of disjunctions in L(n) and φ1=Or(ψ1 ... ψm), L(n) has m child nodes n'1,...,n'm such that L(n'j)=L(n)\φ1∪{ψj}, for 1 ≤ j ≤ m.

With Bψ we denote the collection of sets of atomic formulas in the leaf nodes of Tψ', i.e., A ∈ Bψ iff A is L(n), restricted to atomic formulas, for some leaf node n of the Tψ'.

Given a set of atomic formulas A, the equivalence class E?V of a variable ?V in A is the smallest set such that ?V ∈ E?V and for every ?V' ∈ E?V and every variable ?V'', if ?V'=?V'' ∈ A or ?V''=?V' ∈ A, ?V'' ∈ E?V.

Definition (Safeness). Let ψ be a condition formula. A variable ?V is safe in ψ if, for every A ∈ Bψ, a variable ?V' in the equivalence class of ?V in A appears in an atomic formula in A that is not an equality term involving two variables.

Given an A ∈ Bψ. Every constant symbol c is bounded in A. A variable ?V is bounded in A if whenever ?V appears in A, a variable ?V' in the equivalence class of ?V in A is an argument of a non-external atomic formula in A that is not an equality term involving two variables or ?V' is the ith argument of an external atomic formula External(f(t1,...,tn)) such that f has a valid binding pattern (p1, ..., pn) such that pi=u and, for every j ∈ {1,...,n}\i, pj=b iff tj is bounded in A. Finally, an external term External(f(t1,...,tn)) is bounded in A if f has a valid binding pattern (p1, ..., pn) such that pj=b iff tj is bounded in A, for 1 ≤ j ≤ n.

A variable ?V is bounded in ψ if ?V is bounded in every A ∈ Bψ.

A document formula Γ is safe if every group formula in Γ is safe. A group formula Group(φ1 ... φn) is safe if φ1, ..., and φn are safe. Every variable-free atomic formula is safe. List terms are safe by definition, because they are alway grounded in Core, i.e. contain no variables. A universal fact Forall ?V1 ... ?Vn (φ) is safe iff φ is a variable-free atomic formula. A universal rule Forall ?V1 ... ?Vn (φ :- ψ) is safe iff φ :- ψ is safe. A rule implication φ :- ψ is safe iff all variables appearing in φ are safe in ψ and all variables are bounded in ψ. ☐

Consider the following formula:

Forall ?x ?y ?z ?u (ex:p(?x) :- Or(

 And(ex:q(?z) External(pred:iri-string(?x ?z))))

 And(?x=?y ?y=?u ex:q(?u)))

One can verify that this formula is safe, in the following way: the only variable appearing in the conclusion of the rule is ?x; ?x is safe in the first component of the disjunction, because it appears in the atomic formula pred:iri-string(?x,?z). We then conclude that ?x is also safe in the second component, because ?u is in the equivalent class of ?x and appears in ex:q(?u). Then, clearly the variables ?z and ?u are bounded. Not clear, do we need to prove that ?z is also bound?
[edit] 5.2 Strong Safeness (Informative)
While safeness guarantees the possibility to do forward chaining with the rules, it does not guarantee that it is possible to construct a finite grounding. For this purpose we define strong safeness.

The conformance clauses for RIF Core only require conformance with safe rule sets as defined above. However, some rule engines, such as datalog engines, are only able to process rule sets which can be finitely grounded. For maximum interoperability with such systems it is recommended that RIF Core producers restrict themselves to strongly safe rule sets where possible.

Let R be a set of safe rule implications φ :- ψ and let P be the set of pairs (p,n), where p is a predicate symbol and n is a nonnegative integer (an arity). For the purposes of the definitions in this section we view frames a[b -> c] and membership formulas a#b, respectively, as ternary and binary predicate symbols, and so (->,3), (#,2) ∈ P. Note that equality = does not appear in P.

We define the graph of variable dependencies of a set of atomic formulas A as a labeled directed graph GR=(V, E, L), where the labeling function L maps edges to sets of external function and predicate symbols, V is the set of variables appearing in A, and E is the smallest set and L' is the smallest function such that for every variable ?V

· for every atomic formula ?V=t or t=?V in A and every variable ?V'≠?V appearing in t such that f1, ..., fn, 0 ≤ n, are the function symbols of the terms in t (including t itself) in which ?V' appears, (?V,?V') ∈ E and {f1, ..., fn} ∈ L'((?V,?V')), and

· for every external atomic formula External(f(t1,...,tn)) in A, every i ∈ {1,...,n} such that ti=?V, every valid binding pattern (p1, ..., pn) of f such that pi=u, and every variable ?V' appearing in some tj such that pi=b and f1, ..., fm, 0 ≤ m, are the function symbols of the terms in tj in which ?V' appears, (?V,?V') ∈ E and {f1, ..., fm} ∈ L'((?V,?V')).

Finally, L is defined as: for every (e,e') ∈ E, L((e,e')) is the union of the minimal sets in L'((e,e')).

The dependency graph of a set of implications R is a labelled directed graph GR=(V, E), where edges are triples (v,v',l) such that v, v' ∈ V and l is a set of external function and predicate symbols. V is defined as: for every (p,n) ∈ P and every integer i such that 1 ≤ i ≤ n, (p,n)/i ∈ V. E is the smallest set such that for every (p,n)/i ∈ V and every φ :- ψ in R such that there is an atomic subformula p(t1,...,ti,...,tn) of φ, then for every variable ?V appearing in ti:

· for every non-external and non-equality atomic formula with predicate symbol p' and m arguments in any A ∈ Bψ and every j ∈ {1,...,m} such that a variable ?V'is the jth argument and there is a path from ?V to ?V' in the graph of variable dependencies of A and F is the union of the labels of the shortest path, ((p,n)/i,(p',m)/j, F ∪ {f1,...,fl}) ∈ E, where f1, ..., fl, 0 ≤ l, are the function symbols of the terms in ti in which ?V appears.

Definition (Strong safeness). A set of rule implications R is strongly safe if its dependency graph does not contain cycles involving edges labelled with sets involving a function defined in [RIF-DTB] that is not a casting function. A RIF document R is strongly safe if the set of rule implications that are subformulas of R is strongly safe.

Editor's Note: We might want to have a restricted set of function symbols to check, because possibly not every external function generates new values.

[edit] 6 RIF-Core as a Specialization of RIF-PRD
RIF-Core is a subset of RIF-PRD, and this section defines the presentation syntax of RIF-Core as a restriction on the presentation syntax of RIF-PRD.

[edit] 6.1 Alphabet of RIF-Core
The alphabet of the presentation language of RIF-Core is the alphabet of the RIF-PRD presentation language with the exclusion of the symbols ##, Not, Do, Assert, Retract, Modify, Execute, and New.

[edit] 6.2 Terms of RIF-Core
The Terms of RIF-Core are the terms and atomic formulas
of RIF-PRD with the exclusion of subclass terms.

[edit] 6.3 Formulas of RIF-Core
The Formulas of RIF-Core are the formulas of RIF-PRD with the exclusion of negation formulas.

[edit] 6.4 Annotations and Documents
RIF-Core allows every term and formula to be optionally annotated in the same way as in RIF-PRD. The frame formulas that are allowed as part of an annotation must be syntactically correct for RIF-Core. In particular, no frame formulas are allowed in RIF-Core
.

[edit] 6.5 Well-formed Formulas
A syntactically correct RIF-Core formula that passes the well-formedness test for RIF-PRD is also a well-formed RIF-Core formula. See well-formed formulas.

[edit] 6.6 Rules and Groups
· A RIF-Core rule is a well-formed RIF-PRD rule with one of the following forms of abstract
syntax:

· φ (where φ is a frame or an atom), or

· φ :- condition, or

· Forall ?v1...?vn φ :- condition

Editor's Note: A RIF-PRD rule is not required to be strongly safe. If RIF-Core turns out to require strong safeness, then we must add that a RIF-Core rule is a strongly-safe well-formed RIF-PRD rule with one of the above forms of abstract syntax.

A RIF-Core group is a RIF-PRD group without strategy and without priority.

[edit] 7 Conformance Clauses
RIF-Core conformance is described in terms of semantics-preserving transformations.

Let Τ be a set of datatypes and symbol spaces that includes the datatypes specified in [RIF-DTB] and the symbol spaces rif:iri and rif:local. Suppose also that Ε is a set of external predicates and functions that includes the built-ins listed in [RIF-DTB]. We say that a formula φ is a CoreΤ,Ε formula iff

· φ is a well-formed Core formula,

· all the datatypes and symbol spaces used in φ are in Τ, and

· all the externally defined functions and predicates used in φ are in Ε.

A RIF processor is a conformant CoreΤ,Ε consumer iff it implements a semantics-preserving mapping from the set of all safe CoreΤ,Ε formulas to the language L of the processor.

A RIF processor is a conformant CoreΤ,Ε producer iff it implements a semantics-preserving mapping from a subset of the language L of the processor to a set of safe CoreΤ,Ε formulas.

A conformant document is an XML document that conforms to all the syntactic constraints of RIF-Core, including ones that cannot be checked by an XML Schema validator. Note that the concrete presentation syntax given in Section 2.6 is purely informative (to help implementers see the set of language structures supported by RIF-Core); the only normative concrete syntax for RIF-Core is the XML syntax.

In addition:

· Conformant Core producers and consumers are required to support only the entailments
of closed RIF condition formulas.

· A conformant Core consumer is a conformant CoreΤ,Ε consumer in which Τ consists only of the symbol spaces and datatypes, and Ε consists only of the externally defined functions and predicates that are required by RIF-Core. The required symbol spaces are rif:iri and rif:local, and the datatypes and externally defined terms (built-ins) are the ones specified in [RIF-DTB]. A conformant RIF-Core consumer must reject all inputs that do not match the syntax of Core. If it implements extensions, it may do so under user control -- having a "strict Core" mode and a "run-with-extensions" mode.

· A conformant Core producer is a conformant CoreΤ,Ε producer which produces documents that include only the symbol spaces, datatypes, and externals that are required by Core.

Feature At Risk #3: Strictness
Requirement
Note: This feature is "at risk" and may be removed from this specification based on feedback. Please send feedback to public-rif-comments@w3.org.

The two preceding clauses are features AT RISK. In particular, the "strictness" requirement is under discussion.

[edit] 8 Acknowledgements
This document is the product of the Rules Interchange Format (RIF) Working Group (see below) whose members deserve recognition for their time and commitment. The editors extend special thanks to Jos de Bruijn for his safeness definition and to: Jos de Bruijn, Leora Morgenstern and Christian de Sainte-Marie, for their thorough reviews and insightful discussions; the working group chairs, Chris Welty and Christian de Sainte-Marie, for their invaluable technical help and inspirational leadership; and W3C staff contact Sandro Hawke, a constant source of ideas, help, and feedback.

The regular attendees at meetings of the Rule Interchange Format (RIF) Working Group at the time of the publication were: Adrian Paschke (Freie Universitaet Berlin), Axel Polleres (DERI), Chris Welty (IBM), Christian de Sainte Marie (ILOG), Dave Reynolds (HP), Gary Hallmark (ORACLE), Harold Boley (NRC), Hassan Aït-Kaci (ILOG), Changhai Ke (ILOG), Igor Mozetic (JSI), John Hall (OMG), Jos de Bruijn (FUB), Leora Morgenstern (IBM), Michael Kifer (Stony Brook), Mike Dean (BBN), Sandro Hawke (W3C/MIT), and Stella Mitchell (IBM).

[edit] 9 References
[edit] 9.1 Normative References
[RDF-CONCEPTS]

Resource Description Framework (RDF): Concepts and Abstract Syntax, Klyne G., Carroll J. (Editors), W3C Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/. Latest version available at http://www.w3.org/TR/rdf-concepts/.

[RFC-3066]

RFC 3066 - Tags for the Identification of Languages, H. Alvestrand, IETF, January 2001. This document is http://www.isi.edu/in-notes/rfc3066.txt.

[RFC-3987]

RFC 3987 - Internationalized Resource Identifiers (IRIs), M. Duerst and M. Suignard, IETF, January 2005. This document is http://www.ietf.org/rfc/rfc3987.txt.

[RIF-BLD]

RIF Basic Logic Dialect, Boley H. and Kifer M. (Editors), W3C Rule Interchange Format Working Group Draft. Latest Version available at http://www.w3.org/2005/rules/wiki/BLD.

[RIF-DTB]

RIF Datatypes and Built-Ins 1.0, Polleres A., Boley H. and Kifer M. (Editors), W3C Rule Interchange Format Working Group Draft. Latest Version available at http://www.w3.org/2005/rules/wiki/DTB.

[RIF-FLD]

RIF Framework for Logic Dialects, Boley H. and Kifer M. (Editors), W3C Rule Interchange Format Working Group Draft. Latest Version available at http://www.w3.org/2005/rules/wiki/FLD.

[RIF-RDF+OWL]

RIF RDF and OWL Compatibility, de Bruijn, J. (Editor), W3C Rule Interchange Format Working Group Draft. Latest Version available at http://www.w3.org/2005/rules/wiki/SWC.

[RIF-PRD]

RIF Production Rule Dialect, de Sainte Marie C., Paschke A., Hallmark G. (Editors), W3C Rule Interchange Format Working Group Draft. Latest Version available at http://www.w3.org/2005/rules/wiki/PRD.

[XML1.0]

Extensible Markup Language (XML) 1.0 (Fourth Edition), W3C Recommendation, World Wide Web Consortium, 16 August 2006, edited in place 29 September 2006. This version is http://www.w3.org/TR/2006/REC-xml-20060816/.

[XML-Base]

XML Base, W3C Recommendation, World Wide Web Consortium, 27 June 2001. This version is http://www.w3.org/TR/2001/REC-xmlbase-20010627/. The latest version is available at http://www.w3.org/TR/xmlbase/.

[XML-SCHEMA2]

XML Schema Part 2: Datatypes, W3C Recommendation, World Wide Web Consortium, 2 May 2001. This version is http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/. The latest version is available at http://www.w3.org/TR/xmlschema-2/.

[edit] 9.2 Informational References
[ANF01]

Normal Form Conventions for XML Representations of Structured Data, Henry S. Thompson. October 2001. Available at http://www.ltg.ed.ac.uk/~ht/normalForms.html.

[CL73]

Symbolic Logic and Mechanical Theorem Proving, C.L. Chang and R.C.T. Lee. Academic Press, 1973.

[CURIE]

CURIE Syntax 1.0: A syntax for expressing Compact URIs, Mark Birbeck, Shane McCarron. W3C Working Draft 2 April 2008. Available at http://www.w3.org/TR/curie/.

[Enderton01]

A Mathematical Introduction to Logic, Second Edition, H. B. Enderton. Academic Press, 2001.

[KLW95]

Logical foundations of object-oriented and frame-based languages, M. Kifer, G. Lausen, J. Wu. Journal of ACM, July 1995, pp. 741--843.

[Mendelson97]

Introduction to Mathematical Logic, Fourth Edition, E. Mendelson. Chapman & Hall, 1997.

[OWL-Reference]

OWL Web Ontology Language Reference, M. Dean, G. Schreiber, Editors, W3C Recommendation, 10 February 2004. Latest version available at http://www.w3.org/TR/owl-ref/.

[RDFSYN04]

RDF/XML Syntax Specification (Revised), Dave Beckett, Editor, W3C Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/. Latest version available at http://www.w3.org/TR/rdf-syntax-grammar/.

[RIF-UCR]

RIF Use Cases and Requirements, Paschke A., Hirtle D., Ginsberg A., Patranjan P-L., McCabe F. (Editors), W3C Rule Interchange Format Working Group Draft. Latest Version available at http://www.w3.org/2005/rules/wiki/UCR.

[TRT03]

Object-Oriented RuleML: User-Level Roles, URI-Grounded Clauses, and Order-Sorted Terms, H. Boley. Springer LNCS 2876, Oct. 2003, pp. 1-16. Preprint at http://iit-iti.nrc-cnrc.gc.ca/publications/nrc-46502_e.html.

[vEK76]

The semantics of predicate logic as a programming language, M. van Emden and R. Kowalski. Journal of the ACM 23 (1976), pp. 733-742.

[edit] 10 Appendix: XML Schema for RIF-Core
The namespace of RIF is http://www.w3.org/2007/rif#.

XML schemas for the RIF-Core sublanguages are defined below and are also available here with additional examples.

[edit] 10.1 Condition Language
 <?xml version="1.0" encoding="UTF-8"?>

 <xs:schema

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="http://www.w3.org/2007/rif#"

 targetNamespace="http://www.w3.org/2007/rif#"

 elementFormDefault="qualified"

 version="Id: CoreCond.xsd, v. 0.8, 2009-04-29, hboley">

 <xs:annotation>

 <xs:documentation>

 This is the XML schema for the Condition Language as defined by

 the RIF Core Dialect.

 The schema is based on the following EBNF for the RIF-Core Condition Language

 (prepared for generalization to the RIF-BLD and RIF-PRD Condition Languages):

 FORMULA ::= IRIMETA? 'And' '(' FORMULA* ')' |

 IRIMETA? 'Or' '(' FORMULA* ')' |

 IRIMETA? 'Exists' Var+ '(' FORMULA ')' |

 ATOMIC |

 IRIMETA? Equal |

 IRIMETA? Member |

 IRIMETA? 'External' '(' Atom ')'

 ATOMIC ::= IRIMETA? (Atom | Frame)

 Atom ::= UNITERM

 UNITERM ::= Const '(' (TERM* ')'

 Equal ::= TERM '=' TERM

 Member ::= TERM '#' TERM

 Frame ::= TERM '[' (TERM '->' TERM)* ']'

 TERM ::= IRIMETA? (Const | Var | 'External' '(' Expr ')')

 Expr ::= UNITERM

 Const ::= '"' UNICODESTRING '"^^' SYMSPACE | CONSTSHORT

 Name ::= UNICODESTRING

 Var ::= '?' UNICODESTRING

 SYMSPACE ::= ANGLEBRACKIRI | CURIE

 IRIMETA ::= '(*' IRICONST? (Frame | 'And' '(' Frame* ')')? '*)'

 </xs:documentation>

 </xs:annotation>

 <xs:group name="FORMULA">

 <!--

 FORMULA ::= IRIMETA? 'And' '(' FORMULA* ')' |

 IRIMETA? 'Or' '(' FORMULA* ')' |

 IRIMETA? 'Exists' Var+ '(' FORMULA ')' |

 ATOMIC |

 IRIMETA? Equal |

 IRIMETA? Member |

 IRIMETA? 'External' '(' Atom ')'

 -->

 <xs:choice>

 <xs:element ref="And"/>

 <xs:element ref="Or"/>

 <xs:element ref="Exists"/>

 <xs:group ref="ATOMIC"/>

 <xs:element ref="Equal"/>

 <xs:element ref="Member"/>

 <xs:element name="External" type="External-FORMULA.type"/>

 </xs:choice>

 </xs:group>

 <xs:complexType name="External-FORMULA.type">

 <!-- sensitive to FORMULA (Atom) context-->

 <xs:sequence>

 <xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

 <xs:element name="content" type="content-FORMULA.type"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="content-FORMULA.type">

 <!-- sensitive to FORMULA (Atom) context-->

 <xs:sequence>

 <xs:element ref="Atom"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="And">

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

 <xs:element ref="formula" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Or">

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

 <xs:element ref="formula" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Exists">

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

 <xs:element ref="declare" minOccurs="1" maxOccurs="unbounded"/>

 <xs:element ref="formula"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="formula">

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="FORMULA"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="declare">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Var"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:group name="ATOMIC">

 <!--

 ATOMIC ::= IRIMETA? (Atom | Frame)

 -->

 <xs:choice>

 <xs:element ref="Atom"/>

 <xs:element ref="Frame"/>

 </xs:choice>

 </xs:group>

 <xs:element name="Atom">

 <!--

 Atom ::= UNITERM

 -->

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="UNITERM"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:group name="UNITERM">

 <!--

 UNITERM ::= Const '(' (TERM* ')'

 -->

 <xs:sequence>

 <xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

 <xs:element ref="op"/>

 <xs:element name="args" type="args-UNITERM.type"/>

 </xs:sequence>

 </xs:group>

 <xs:element name="op">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Const"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="args-UNITERM.type">

 <!-- sensitive to UNITERM (TERM) context-->

 <xs:sequence>

 <xs:group ref="TERM" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="ordered" type="xs:string" fixed="yes"/>

 </xs:complexType>

 <xs:element name="Equal">

 <!--

 Equal ::= TERM '=' TERM

 -->

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

 <xs:element ref="left"/>

 <xs:element ref="right"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="left">

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="TERM"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="right">

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="TERM"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Member">

 <!--

 Member ::= TERM '#' TERM

 -->

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

 <xs:element ref="instance"/>

 <xs:element ref="class"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="instance">

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="TERM"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="class">

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="TERM"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Frame">

 <!--

 Frame ::= TERM '[' (TERM '->' TERM)* ']'

 -->

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

 <xs:element ref="object"/>

 <xs:element name="slot" type="slot-Frame.type" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="object">

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="TERM"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="slot-Frame.type">

 <!-- sensitive to Frame (TERM) context-->

 <xs:sequence>

 <xs:group ref="TERM"/>

 <xs:group ref="TERM"/>

 </xs:sequence>

 <xs:attribute name="ordered" type="xs:string" fixed="yes"/>

 </xs:complexType>

 <xs:group name="TERM">

 <!--

 TERM ::= IRIMETA? (Const | Var | 'External' '(' Expr ')')

 -->

 <xs:choice>

 <xs:element ref="Const"/>

 <xs:element ref="Var"/>

 <xs:element name="External" type="External-TERM.type"/>

 </xs:choice>

 </xs:group>

 <xs:complexType name="External-TERM.type">

 <!-- sensitive to TERM (Expr) context-->

 <xs:sequence>

 <xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

 <xs:element name="content" type="content-TERM.type"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="content-TERM.type">

 <!-- sensitive to TERM (Expr) context-->

 <xs:sequence>

 <xs:element ref="Expr"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="Expr">

 <!--

 Expr ::= UNITERM

 -->

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="UNITERM"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Const">

 <!--

 Const ::= '"' UNICODESTRING '"^^' SYMSPACE | CONSTSHORT

 -->

 <xs:complexType mixed="true">

 <xs:sequence>

 <xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

 <xs:attribute name="type" type="xs:anyURI" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="Name" type="xs:string">

 <!--

 Name ::= UNICODESTRING

 -->

 </xs:element>

 <xs:element name="Var">

 <!--

 Var ::= '?' UNICODESTRING

 -->

 <xs:complexType mixed="true">

 <xs:sequence>

 <xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:group name="IRIMETA">

 <!--

 IRIMETA ::= '(*' IRICONST? (Frame | 'And' '(' Frame* ')')? '*)'

 -->

 <xs:sequence>

 <xs:element ref="id" minOccurs="0" maxOccurs="1"/>

 <xs:element ref="meta" minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

 </xs:group>

 <xs:element name="id">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Const" type="IRICONST.type"/> <!-- type="&rif;iri" -->

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="meta">

 <xs:complexType>

 <xs:choice>

 <xs:element ref="Frame"/>

 <xs:element name="And" type="And-meta.type"/>

 </xs:choice>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="And-meta.type">

 <!-- sensitive to meta (Frame) context-->

 <xs:sequence>

 <xs:element name="formula" type="formula-meta.type" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="formula-meta.type">

 <!-- sensitive to meta (Frame) context-->

 <xs:sequence>

 <xs:element ref="Frame"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="IRICONST.type" mixed="true">

 <!-- sensitive to location/id context-->

 <xs:sequence/>

 <xs:attribute name="type" type="xs:anyURI" use="required" fixed="http://www.w3.org/2007/rif#iri"/>

 </xs:complexType>

 </xs:schema>

[edit] 10.2 Rule Language
 <?xml version="1.0" encoding="UTF-8"?>

 <xs:schema

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="http://www.w3.org/2007/rif#"

 targetNamespace="http://www.w3.org/2007/rif#"

 elementFormDefault="qualified"

 version="Id: CoreRule.xsd, v. 0.8, 2009-04-16, hboley">

 <xs:annotation>

 <xs:documentation>

 This is the XML schema for the Rule Language as defined by

 the RIF Core Dialect.

 The schema is based on the following EBNF for the RIF-Core Rule Language

 (prepared for generalization to the RIF-BLD and RIF-PRD Rule Languages):

 Document ::= IRIMETA? 'Document' '(' Base? Prefix* Import* Group? ')'

 Base ::= 'Base' '(' IRI ')'

 Prefix ::= 'Prefix' '(' Name IRI ')'

 Import ::= IRIMETA? 'Import' '(' IRICONST PROFILE? ')'

 Group ::= IRIMETA? 'Group' '(' (RULE | Group)* ')'

 RULE ::= (IRIMETA? 'Forall' Var+ '(' CLAUSE ')') | CLAUSE

 CLAUSE ::= Implies | ATOMIC

 Implies ::= IRIMETA? (ATOMIC | 'And' '(' ATOMIC* ')') ':-' FORMULA

 PROFILE ::= TERM

 Note that this is an extension of the syntax for the RIF-Core Condition Language (CoreCond.xsd).

 </xs:documentation>

 </xs:annotation>

 <!-- The Rule Language includes the Condition Language from the same directory -->

 <xs:include schemaLocation="CoreCond.xsd"/>

 <xs:element name="Document">

 <!--

 Document ::= IRIMETA? 'Document' '(' Base? Prefix* Import* Group? ')'

 -->

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

 <xs:element ref="directive" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="payload" minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="directive">

 <!--

 Base and Prefix represented directly in XML

 -->

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Import"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="payload">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Group"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Import">

 <!--

 Import ::= IRIMETA? 'Import' '(' IRICONST PROFILE? ')'

 -->

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

 <xs:element ref="location"/>

 <xs:element ref="profile" minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="location">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Const" type="IRICONST.type"/> <!-- type="&rif;iri" -->

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="profile">

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="TERM"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Group">

 <!--

 Group ::= IRIMETA? 'Group' '(' (RULE | Group)* ')'

 -->

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

 <xs:element ref="sentence" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="sentence">

 <xs:complexType>

 <xs:choice>

 <xs:group ref="RULE"/>

 <xs:element ref="Group"/>

 </xs:choice>

 </xs:complexType>

 </xs:element>

 <xs:group name="RULE">

 <!--

 RULE ::= (IRIMETA? 'Forall' Var+ '(' CLAUSE ')') | CLAUSE

 -->

 <xs:choice>

 <xs:element ref="Forall"/>

 <xs:group ref="CLAUSE"/>

 </xs:choice>

 </xs:group>

 <xs:element name="Forall">

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

 <xs:element ref="declare" minOccurs="1" maxOccurs="unbounded"/>

 <!-- different from formula in And, Or and Exists -->

 <xs:element name="formula">

 <xs:complexType>

 <xs:group ref="CLAUSE"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:group name="CLAUSE">

 <!--

 CLAUSE ::= Implies | ATOMIC

 -->

 <xs:choice>

 <xs:element ref="Implies"/>

 <xs:group ref="ATOMIC"/>

 </xs:choice>

 </xs:group>

 <xs:element name="Implies">

 <!--

 Implies ::= IRIMETA? (ATOMIC | 'And' '(' ATOMIC* ')') ':-' FORMULA

 -->

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

 <xs:element ref="if"/>

 <xs:element ref="then"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="if">

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="FORMULA"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="then">

 <xs:complexType>

 <xs:choice>

 <xs:group ref="ATOMIC"/>

 <xs:element name="And" type="And-then.type"/>

 </xs:choice>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="And-then.type">

 <!-- sensitive to then (ATOMIC) context-->

 <xs:sequence>

 <xs:element name="formula" type="formula-then.type" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="formula-then.type">

 <!-- sensitive to then (ATOMIC) context-->

 <xs:sequence>

 <xs:group ref="ATOMIC"/>

 </xs:sequence>

 </xs:complexType>

 </xs:schema>

�make a sentence here

�Not clear. Can we put this in simpler words ?

�do not use double negation, too hard to understand

�Not clear.

�Why do we speak about "atomic formulas" here?

�Not clear. What is allowed in annotation in Core? Write this in a clear way.

�Not clear!

�not clear

�What's strictness? The document has not been talking about this so far.

