
Optimizing Object Queries Using an
Effective Calculus

LEONIDAS FEGARAS
The University of Texas at Arlington
and
DAVID MAIER
Oregon Graduate Institute of Science & Technology

Object-oriented databases (OODBs) provide powerful data abstractions and modeling facili-
ties, but they generally lack a suitable framework for query processing and optimization. The
development of an effective query optimizer is one of the key factors for OODB systems to
successfully compete with relational systems, as well as to meet the performance require-
ments of many nontraditional applications. We propose an effective framework with a solid
theoretical basis for optimizing OODB query languages. Our calculus, called the monoid
comprehension calculus, captures most features of ODMG OQL, and is a good basis for
expressing various optimization algorithms concisely. This article concentrates on query
unnesting (also known as query decorrelation), an optimization that, even though it improves
performance considerably, is not treated properly (if at all) by most OODB systems. Our
framework generalizes many unnesting techniques proposed recently in the literature, and is
capable of removing any form of query nesting using a very simple and efficient algorithm.
The simplicity of our method is due to the use of the monoid comprehension calculus as an
intermediate form for OODB queries. The monoid comprehension calculus treats operations
over multiple collection types, aggregates, and quantifiers in a similar way, resulting in a
uniform method of unnesting queries, regardless of their type of nesting.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design

General Terms: Design, Experimentation, Performance

Additional Key Words and Phrases: Object-oriented databases, nested relations, query decor-
relation, query optimization

This work is supported in part by the National Science Foundation under grants IIS-9811525
and IRI-9619977, and by the Texas Higher Education Advanced Research Program under
grant 003656-0043-1999.
Authors’ addresses: L. Fegaras, Department of Computer Science and Engineering, The
University of Texas at Arlington, 416 Yates Street, P.O. Box 19015, Arlington, TX 76019-
19015; email: fegaras@cse.uta.edu; D. Maier, Department of Computer Science and Engineer-
ing, Oregon Graduate Institute of Science & Technology, 20000 N.W. Walker Road, Beaverton,
OR 97006; email: maier@cse.ogi.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2001 ACM 0362-5915/00/1200–0457 $5.00

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000, Pages 457–516.

1. INTRODUCTION

One of the reasons for the commercial success of relational database
systems is that they perform well on many business applications, mostly
due to sophisticated query processing and optimization techniques. How-
ever, many nontraditional database applications require more advanced
data structures and more expressive operations than those provided by the
relational model. Currently, there are two major approaches for addressing
the needs of these applications [Carey and DeWitt 1996]. One is object-
relational databases (ORDBs), which extend the relational model with
object-oriented features, and the other is object-oriented databases
(OODBs), which add database capabilities to object-oriented programming
languages.

OODBs provide powerful data abstractions and modeling facilities, but
they usually lack a suitable framework for query processing and optimiza-
tion. In addition, many early OODB systems lacked a declarative language
for associative access to data. Instead, they used simple pointer chasing to
perform object traversals, which does not offer many opportunities for
optimization. There is an increasing number of commercial OODB systems
today, such as Poet, GemStone, ObjectStore, Objectivity, Jasmine, and
Versant, that support a higher-lever query language interface (often along
the lines of SQL). In addition, there is now an object data standard, called
ODMG 3.0 [Cattell 2000], which supports a declarative higher-level object
query language called OQL.

The development of an effective query optimizer is one of the key factors
for OODB systems to successfully compete with relational systems, as well
as to meet the performance requirements of many nontraditional applica-
tions. There are many aspects of the OODB query optimization problem
that can benefit from the already proven relational query-optimization
technology. However many key features of OODB languages present new
and difficult problems not adequately addressed by this technology, includ-
ing object identity, methods, encapsulation, subtype hierarchy, user-de-
fined type constructors, large multimedia objects, multiple collection types,
arbitrary nesting of collections, and nesting of query expressions.

We propose an effective framework with a solid theoretical basis for
optimizing OODB query languages. We have chosen to concentrate on the
OQL language of the ODMG 3.0 standard, which closely resembles the
query language of the O2 OODBMS [Deux 1990]. We chose OQL because
even though it is a small language, and hence easier to comprehend, it
contains most of the language features that are showing up in other object
query languages and proposed relational extensions such as SQL3 [Beech
1993], now called SQL:1999 [Eisenberg and Melton 1999]. If we are able to
handle OQL in full generality, we believe our work will be widely applica-
ble to other query languages.

OQL queries in our framework are translated into a calculus format that
serves as an intermediate form, and then are translated into a version of
the nested relational algebra. We use both a calculus and an algebra as

458 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

intermediate forms because the calculus closely resembles current OODB
languages and is easy to put into canonical form, while the algebra is
lower-level and can be directly translated into the execution algorithms
supported by database systems.

Our calculus is called the monoid comprehension calculus [Fegaras and
Maier 1995]. As we will demonstrate in this article, our calculus captures
most features of OQL and is a good basis for expressing various optimiza-
tion algorithms concisely. It is based on monoids, a general template for a
data type, which can capture most collection and aggregate operators
currently in use for relational and object-oriented databases. Monoid com-
prehensions—similar to set former notation, but applicable to types other
than sets—give us a uniform way to express queries that simultaneously
deal with more than one collection type and also naturally compose in a
way that mirrors the allowable query nesting in OQL. Further, comprehen-
sion expressions permit easy integration of functional subexpressions. We
demonstrate the expressive power of our calculus by showing how to map
the major features of OQL into the monoid calculus.

We show in this article that monoid calculus is amenable to efficient
evaluation. We give initial evidence by exhibiting a simple normalization
system for putting expressions into a canonical form. The main contribu-
tion of this article is the description of a framework for optimizing monoid
comprehension. We focus on a very important optimization problem, query
unnesting (sometimes called query decorrelation), and propose a practical,
effective, and general solution [Fegaras 1998b]. Our method generalizes
many unnesting techniques proposed recently in the literature. Our frame-
work is capable of removing any form of query nesting in our calculus using
a very simple and efficient algorithm. The simplicity of our method is due
to the monoid comprehension calculus as an intermediate form for OODB
queries. Monoid comprehension calculus treats operations over multiple
collection types, aggregates, and quantifiers in a similar way, resulting in a
uniform method to unnest queries, regardless of their type of nesting. Our
unnesting algorithm is compositional, that is, the translation of an embed-
ded query does not depend on the context in which it is embedded, Instead,
each subquery is translated independently, and all translations are com-
posed to form the final unnested query. This property makes the soundness
and completeness of the algorithm easy to prove. Our unnesting algorithm
is complete, efficient, and easy to implement. It is the first decorrelation
algorithm developed for a nontrivial database language proven to be
complete. In addition, we believe, and we plan to show in future work, that
it can be adapted to handle object-relational and relational queries.

This article is organized as follows. Section 2 describes the monoid
comprehension calculus. Section 3 gives the translation of some OQL query
forms into monoid comprehension. Section 4 describes a simple normaliza-
tion algorithm that unnests most simple forms of nesting that do not
require outer-joins, outer-unnests, or grouping. Section 5 proposes exten-
sions to the basic framework for alleviating restrictions on idempotent
operations and for capturing advanced list operations, vectors, and arrays.

Optimizing Object Queries • 459

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Section 6 describes a version of the nested-relational algebra that supports
aggregation, quantification, and the handling of null values (using outer-
joins and outer-unnests). The semantics of these operations is given in
terms of the monoid calculus. Section 7 presents transformation rules for
unnesting OODB queries. Section 8 reports on the implementation of an
ODMG-based system that is dependent on our theoretical framework, and
Section 9 evaluates the performance of our implementation using sample
queries. Finally, Section 10 compares our work with related efforts, and
Section 11 describes our current and future plans related to this project.

2. THE MONOID COMPREHENSION CALCULUS

Several recent proposals for object-oriented database languages, including
OQL, support multiple collection types, such as sets, bags, lists, and arrays.
These approaches define a language syntax, but frequently fail to provide a
concrete semantics. For example, is the join of a list with a set meaningful?
If so, what is the resulting type of this join? More generally, what are the
precise semantics of queries over multiple collection types? To answer these
questions we need to form a theory that generalizes all collection types and
their operations in a natural way. This theory must capture the differences
between the collection types in such a way that no inconsistencies are
introduced, and, more importantly, must abstract their similarities. By
abstracting common semantic features, we derive a framework that treats
collections uniformly in a simple and extensible language. The primary
focus of such a framework is the bulk manipulation of collection types. Bulk
operations are both the source of expressiveness and the basis for efficient
execution.

Consider lists and sets. What are the semantic properties that make lists
different from sets? Intuitively, one may exchange two elements of a set or
insert a set element twice into a set without changing the set. These
properties do not hold for lists. To formalize these observations, we indicate
how sets and lists are constructed and then impose these properties on the
set and list constructors. One way of constructing sets is to union together
a number of singleton set elements, e.g., $1% ø $2% ø $3% constructs the set
$1, 2, 3%. Similarly, one way of constructing lists is to append singleton list
elements, e.g., @1# 11 @2# 11 @3# constructs the list @1, 2, 3# (where 11 is
the list append function). Both ø and 11 are associative operations, but
only ø is commutative and idempotent (i.e., @x : x ø x 5 x). It is the
commutativity and idempotence properties of ø that make sets different
from lists. As to their similarities, both the set and list constructors have
an identity. The empty set {} is the identity of ø, while the empty list [] is
the identity of 11. Using terminology from abstract algebra, we say that
both ~ø, $%! and (11, []) are monoids, and, more specifically, ~ø, $%! is a
commutative and idempotent monoid.

Primitive types, such as integers and booleans, can be represented as
monoids too, but possibly with a choice of monoid. For example, both

460 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

~1, 0! and ~p, 1! are integer monoids and both ~∨, false! and ~∧, true! are
boolean monoids. As will become apparent when monoid operations are
described, the choice of a monoid depends on a particular interpretation of
a primitive type in a query. We call the monoids for primitive types
primitive monoids.

In contrast to primitive types, collection types, such as sets, bags, and
lists, are parametric types that capture homogeneous collections of objects.
The types set~^name : string, age : int&! and set~set~int!! are examples of
collection types. We call the monoids for collection types collection monoids.
Each collection monoid must have a unit function that takes an element of
some type as input and constructs a singleton value of the collection type.
For example, the list unit function takes an element a and constructs the
singleton list @a#. Any list can be constructed from the three monoid
primitives for lists: the empty list [], the list unit function, and the list
append 11.

Since all types are represented as monoids, a query in our framework is a
map from some monoids to a particular monoid. These maps are called
monoid homomorphisms. For example, a monoid homomorphism from lists
to sets in our framework is captured by an operation of the form

hom@11, ø#~ f !A,

where A is a list and f is a function that takes an element x of A and
returns a set f~x!. Basically, this monoid homomorphism performs the
following computation:

result :5 $%;
foreach x in A do

result :5 result ø f~x!;
return result;

In other words, hom@11, ø#~ f !A replaces [] in A by {}; 11 by ø; and the
singleton list @x# by f~x!. Therefore, if A is the list @a1, . . . , an#, which is
generated by @a1# 11 · · · 11 @an#, then the result is the set f~a1! ø · · ·
ø f~an!.

A monoid homomorphism captures a divide-and-conquer computation,
since any list A 5 @a1, . . . , an# can be divided into two lists A1 and A2

such that A 5 A1 11 A2. In that case, the operation hom@11, ø#~ f !A can
be decomposed into ~hom@11, ø#~ f !A1! ø ~hom@11, ø#~ f !A2!.

Unfortunately, not all monoid homomorphisms are well-formed. For
example, due to nondeterminism, sets cannot be converted unambiguously
into lists. This semantic restriction is purely syntactic in our framework.
That is, it depends on the static properties of the monoids involved in a
homomorphism, such as the commutativity and the idempotence proper-
ties. Thus, well-formed queries will not result in any ill-defined homomor-
phisms.

Optimizing Object Queries • 461

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

The monoid homomorphism is the only form of bulk manipulation of
collection types supported in our framework. But as we will demonstrate,
monoid homomorphisms are very expressive. In fact, a small subset of
these functions, namely the monoid homomorphisms from sets to sets,
captures the nested relational algebra (since these homomorphisms are
equivalent to the extension operator ext~ f ! for sets, shown to be at least as
expressive as the nested relational algebra [Buneman et al. 1995; Breazu-
Tannen et al. 1992b]). But monoid homomorphisms go beyond the algebra
to capture operations over multiple collection types, such as the join of a
list with a bag returning a set, as well as predicates and aggregates. For
example, an existential predicate over a set is a monoid homomorphism
from the set monoid to the boolean monoid ~∨, false!, while an aggregation,
such as summing all elements of a list, is a monoid homomorphism from
the list monoid to the numeric monoid ~1, 0!.

We also define a calculus for this algebra, called the monoid comprehen-
sions calculus, which captures operations involving multiple collection
types in declarative form. Monoid comprehension is defined in terms of
monoid homomorphisms, but any monoid homomorphism can be expressed
by some monoid comprehension. Programs expressed in our calculus are far
easier to understand and manipulate than the equivalent algebraic forms.
In a way, monoid comprehension resembles the tuple relational calculus,
but here query variables may range over multiple collection types, while
the output of the comprehension may be of yet another collection type.

For example, the following monoid comprehension:

ø{ ~a, b! @# a 4 @1, 2, 3#, b 4 $$4, 5%% }

joins the list @1, 2, 3# with the bag $$4, 5%% and returns the following set (it
is a set because the comprehension is tagged by ø):

$~1, 4!, ~1, 5!, ~2, 4!, ~2, 5!, ~3, 4!, ~3, 5!%.

Another example is
1{ a @# a 4 @1, 2, 3#, a $ 2 },

which uses the merge function 1 of the monoid ~1, 0! to add integers. This
expression returns 5, the sum of all list elements greater than or equal to 2.

The rest of this section gives a formal definition of monoids and monoid
operations.

2.1 Monoids

Definition 1 (Monoid). A monoid of type T is a pair ~Q, ZQ!, where Q is
an associative function of type T 3 T 3 T and ZQ is the left and right
identity of Q.

The type T 3 T 3 T in the above definition denotes the type of binary
functions that take two values of type T as input and return a value of type
T. Function Q is called the merge function and value ZQ is called the zero
element of the monoid ~Q, ZQ!. According to the definition, the zero

462 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

element satisfies ZQ Q x 5 x Q ZQ 5 x for every x. A monoid ~Q, ZQ! may
be a commutative monoid (i.e., when Q is commutative) or an idempotent
monoid (i.e., when @x : x Q x 5 x), or both. In our framework, if a monoid
is not idempotent, it must be anti-idempotent: @x Þ ZQ : x Q x Þ x, and if
it is not commutative, it must be anti-commutative: @x Þ y, x Þ ZQ, y Þ
ZQ : x Q y Þ y Q x, for reasons discussed in Section 2.2. For example,
~1, 0! is a commutative and anti-idempotent monoid, while ~ø, $%! is a
commutative and idempotent monoid.

Since the merge function uniquely identifies a monoid, we often use the
merge function name as the monoid name. In addition, we use the notation
TQ to represent the type of the monoid with merge function Q.

Table I presents some examples of monoids. The C/I column indicates
whether the monoid is a commutative or idempotent monoid (if a monoid is
not tagged by I, it is anti-idempotent, and if it is not tagged by C, it is
anti-commutative). An example of an idempotent and anti-commutative
monoid that captures vectors and arrays is presented in Section 5.3.

The monoids in Table I.A are called primitive monoids because they
construct values of a primitive type. The monoids ø,], and 11 in Table I.B
capture the well-known collection types for sets, bags, and linear lists
(where] is the additive union for bags). They are called collection monoids.
Each collection monoid ~Q, ZQ! needs the additional definition of a unit
function, UQ, which, along with merge and zero, allows the construction of
all possible values of the monoid type TQ. For example, the unit function for
the set monoid is lx.$ x%, where expression lx.e denotes the function f with
f~x! 5 e. That is, the set unit function takes a value x as input and
constructs the singleton set $ x% as output. Consequently, a collection
monoid is associated with a triple ~Q, ZQ, UQ! and corresponds to a
parametric type TQ~a!, where a is a type parameter that can be bound to
any type with equality, including another collection type.1

1Using terminology from abstract algebra, ~Q, ZQ, UQ! is a free monoid and UQ is a natural
transformation from the identity to the TQ functor that satisfies the universal mapping
property (also known as uniqueness property, or adjunction) that for any f : a 3 TQ~a! there
is a unique function hom@Q, R#~ f ! (given in Definition 2) such that hom@Q, R#~ f ! + UQ 5 f.
Function hom@Q, R#~ f ! is called the homomorphic extension of f. The interested reader is
referred to the book by Pierce [1991] for a more formal treatment of monoids and monoid
homomorphisms.

type TQ Q ZQ C/I

int 1 0 C
int 3 1 C
int max 0 CI
bool ∨ false CI
bool ∧ true CI

A. Primitive Monoids

type TQ Q ZQ UQ~a! C/I

set ~a! ø {} $a% CI
bag ~a!] {{}} $$a%% C
list ~a! 11 [] @a#

B. Collection Monoids

Table I. Examples of Monoids

Optimizing Object Queries • 463

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

We use the shorthand Q$e1, . . . , en% to represent the construction
UQ~e1! Q · · · Q UQ~en! over the collection monoid Q. In particular, we use the
shorthand $e1, . . . , en% for sets, $$e1, . . . , en%% for bags and @e1, . . . , en#
for lists.

We define the mapping c from monoids to the powerset of $C, I% as: C
[c~Q! if and only if Q is commutative and I [c~Q! if and only if Q is
idempotent. The partial order 2a between monoids is defined as

R 2a Q [c~R! # c~Q!.

For example, 11 2a] 2a ø, since ø is commutative and idempotent,] is
commutative but not idempotent, and 11 is neither commutative nor
idempotent.

2.2 Monoid Homomorphisms

We now define our algebraic operator, which is parameterized by input and
output monoids. The main purpose of this operator is to give formal
semantics to monoid comprehension, discussed in Section 2.3. Our monoid
calculus is defined in terms of monoid comprehension exclusively.

Definition 2 (Monoid Homomorphism). A homomorphism hom@Q, R#
~ f !A from the collection monoid ~Q, ZQ, UQ! to any monoid ~R, ZR!, where
Q 2a R is defined by the following inductive equations:

hom@Q, R#~ f !~ZQ! 5 ZQ

hom@Q, R#~ f !~UQ~a!! 5 f~a!

hom@Q, R#~ f !~x Q y! 5 ~hom@Q, R#~ f !~x!! R ~hom@Q, R#~ f !~y!!.

That is, A is a collection of type TQ~T9! for some type T9 and f is a
function from T9 to TR. Basically, the expression hom@Q, R#~ f !A replaces
ZQ in A by ZR, Q by R, and UQ by f. For example, for H 5 hom@11, ø#~ f !,
Definition 2 is equivalent to

H~@#! 5 $%

H~@a#! 5 f~a!

H~x 11 y! 5 H~x! ø H~y!.

If A is the list @a1, . . . , an#, then H~A! computes the set f~a1! ø · · · ø

f~an!. For instance, if f~x! 5 $ x 1 1%, then H~A! 5 $a1 1 1, . . . , an 1 1%.
The condition Q 2a R in Definition 2 is important. If the collection

monoid Q is a commutative or idempotent monoid, then R must be too. For
example, the bag cardinality function can be expressed as hom@],
1#~lx.1!A, which is well-formed, while the similar function for sets
hom@ø, 1#~lx.1!A is not (since 1 is commutative but not idempotent).

464 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Without this restriction we would have [Breazu-Tannen and Subrah-
manyam 1991]:

1 5 hom@ø, 1#~lx.1!~$a%!

5 hom@ø, 1#~lx.1!~$a% ø $a%!

5 ~hom@ø, 1#~lx.1!~$a%!! 1 ~hom@ø, 1#~lx.1!~$a%!!

5 1 1 1 5 2.

This restriction also prohibits the conversion of sets into lists (since ø 2ay 11).
Furthermore, Definition 2 justifies the restriction that noncommutative
monoids should be anti-commutative and nonidempotent monoids should
be anti-idempotent. If we allow a nonidempotent monoid Q to satisfy
x Q x 5 x for at least one x 5 x0 (but not for all x, since Q is not
idempotent), then we have hom@Q, R#~ f !~x0! 5 hom@Q, R#~ f !~x0 Q x0! 5
~hom@Q, R#~ f !~x0!! R ~hom@Q, R#~ f !~x0!!, which is not always true for an
arbitrary nonidempotent monoid R. The observations above are generalized
in the following theorem.

THEOREM 1. A well-formed monoid homomorphism hom@Q, R#~ f ! pre-
serves the properties of the monoid R.

PROOF. Let H 5 hom@Q, R#~ f !, then Q 2a R, since H is well-formed.

We prove that, for any valid instance x of the monoid Q, the value H~x! is a
valid instance of R. We consider idempotence only; commutativity can be
handled in a similar way. If Q is idempotent, then H~x Q x! 5 H~x!. Thus,
H~x! R H~x! 5 H~x!, which means that R is not anti-idempotent. This is
true since Q 2a R, which implies that R is idempotent. If Q is anti-
idempotent, then R can be either idempotent or anti-idempotent. If R is
anti-idempotent, then for H~x! Þ ZR : H~x! R H~x! Þ H~x! f H~x Q x!
Þ H~x!, which implies that x Q x Þ x. If R is idempotent, then H~x! R

H~x! 5 H~x! f H~x Q x! 5 H~x!, which does not necessarily conflict
with x Q x Þ x. e

The following are examples of well-formed monoid homomorphisms:

map~ f !x 5 hom@ø, ø#~la.$ f~a!%!x
x 3 y 5 hom@ø, ø#~la.hom@ø, ø#~lb.$~a, b!%!y!x
e [x 5 hom@ø, ∨#~la.~a 5 e!!x
filter~p!x 5 hom@ø, ø#~la.if p~a! then $a% else $%!x
length~x! 5 hom@11, 1#~la.1!x,

where map~ f !x maps the function f over all elements of the set x, x 3 y
computes the Cartesian product of the sets x and y, and filter~ p!x selects
all elements a of the set x that satisfy the predicate p~a!.

Optimizing Object Queries • 465

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

2.3 Monoid Comprehension

Queries in our calculus are expressed in terms of monoid comprehension.
Informally, a monoid comprehension over the monoid Q takes the form
Q{ e @# q }. The merge function Q is called the accumulator of the compre-
hension and the expression e is called the head of the comprehension. Each
term qi in the term sequence q 5 q1, . . . , qn, n $ 0 is called a qualifier,
and is either

● a generator of the form v 4 e9, where v is a range variable and e9 is an
expression (the generator domain) that constructs a collection, or

● a filter pred, where pred is a predicate.

Formally, monoid comprehension is defined in terms of monoid homomor-
phisms.

Definition 3 (Monoid Comprehension). Monoid comprehension over a
primitive or collection monoid Q is defined by the following inductive
equations:

Q{ e @# } 5 H UQ~e! for a collection monoid Q

e for a primitive monoid Q
(D1)

Q{ e @# x 4 u, q } 5 hom@R, Q#~lx. Q{ e @# q }!u (D2)

Q{ e @# pred, q } 5 if pred then Q{ e @# q } else ZQ (D3)

where R is the collection monoid associated with the expression u, and is
possibly different from Q.

While the monoid Q of the output is specified explicitly, the collection
monoid R associated with the expression u in x 4 u can be inferred (by the
typing rules given in Section 2.5). The main purpose of the definition above
is to give semantics to monoid comprehensions, not to suggest in any way
how they are implemented. Monoid comprehensions can be translated
effectively into efficient evaluation algorithms, as we show in Section 7.

Note that 11{ x @# x 4 $1, 2% } is not a well-formed comprehension, since
it is translated into a homomorphism from ø to 11 (it maps sets into lists),
while 1{ x @# x 4 $$1, 2%% } is well-formed and computes 1 1 2 5 3. That is,
if one of the generators in a monoid comprehension is over a commutative
or idempotent monoid, then the comprehension accumulator must be a
commutative or idempotent monoid, respectively. This condition can be
checked statically, since the commutativity and idempotence properties of a
monoid are specified explicitly when this monoid is defined (see Section 2.5).

Relational joins can be represented directly as comprehensions. The join
of two sets x and y is

ø{ f~a, b! [] a 4 x, b 4 y, p~a, b! },

466 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

where p is the join predicate and function f constructs an output set
element given two elements from x and y. For example, if p(a,b) 5
(a.C5b.C) ∧ (a.D . 10) and f(a,b) 5 ^ C5a.C, D5b.D & (i.e., a record
construction), then this comprehension becomes

ø{^C 5 a.C, D 5 b.D& [] a 4 x, b 4 y, a.C 5 b.C, a.D . 10 }.

If we use the rules in Definition 3, this comprehension is translated into
algebraic form as

hom@ø, ø#~la. hom#@ø, ø#~lb. if ~a.C5b.C! ∧ ~a.D . 10!

then$^ C5a.C, D5b.D &%

else {}! y! x.

This evaluation resembles a nested loop, but we show in Section 7 that
comprehensions similar to the one above can be effectively translated into
joins.

Furthermore, comprehensions can be used to join different collection
types. For example,

ø{ ~x, y! @# x 4 @1, 2#, y 4 $$3, 4, 3%% } 5 $~1, 3!, ~1, 4!, ~2, 3!, ~2, 4!%.

Another example is nest~k!x equal to

ø{ ^KEY 5 k~e!, INFO 5 ø{ a @# a 4 x, k~e! 5 k~a! }& @# e 4 x },

which is similar to the nesting operator for nested relations, but it is a bit
more general and gives output in a different form. Similarly, the inverse
function, unnest, is

unnest~x! 5 ø{ e @# s 4 x, e 4 s.INFO }.

The last comprehension is an example of a dependent join in which the
value of the collection s.INFO in the second generator depends on the value
of s, which is an element of the first relation x. Dependent joins are a
convenient way of traversing nested collections. Other examples of compre-
hensions are the following:

filter~p!x 5 ø{ e @# e 4 x, p~e! } count~x, a! 5 1{ 1 @# e 4 x, e 5 a }
flatten~x! 5 ø{ e @# s 4 x, e 4 s } maximum~x! 5 max{ e @# e 4 x }
x ù y 5 ø{ e @# e 4 x, e [y } ?a [x : e 5 ∨{ e @# a 4 x }
length~x! 5 1{ 1 @# e 4 x } @a [x : e 5 ∧{ e @# a 4 x }
sum~x! 5 1{ e @# e 4 x } a [x 5 ∨{ a 5 e @# e 4 x }.

The expression sum~x! adds the elements of any non-idempotent monoid x,
e.g., sum~@1, 2, 3#! 5 6. The expression count~x, a! counts the number of

Optimizing Object Queries • 467

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

occurrences of a in the bag x, e.g., count~$$1, 2, 1%%, 1! 5 2. Recall that the
~max, 0! monoid is both commutative and idempotent, and thus x in
maximum~x! can be of any collection type.

THEOREM 2. Monoid comprehensions and monoid homomorphisms have
the same expressive power.

PROOF. Definition 3 expresses comprehensions in terms of monoid ho-
momorphisms. Thus, we need to prove that any monoid homomorphism can
be expressed in terms of monoid comprehension. In particular, we prove the
equations hom@Q, R#~ f !~A! 5 R{ y @# x 4 A, y 4 f~x! } for a collection
monoid R and hom@Q, R#~ f !~A! 5 R{ f~x! @# x 4 A } for a primitive monoid
R. The universal property for homomorphisms indicates that, for a collec-
tion monoid R, @x : hom@R, R#~UR!x 5 x. According to Definition 3, for a
collection monoid R, R{ y @# x 4 A, y 4 f~x! } 5 hom@Q, R#~lx.hom@R,
R#~ly.UR~ y!!~ f~x!!!~A! 5 hom@Q, R#~ f !~A!, which proves the first equa-
tion. For a primitive monoid R, R{ y@# x 4 A, y 4 f~x! } 5 hom@Q, R#
~lx.hom@R, R#~ly.y!~ f~x!!!~A!, which in turn is equal to hom@Q, R#~ f !~A!,
which proves the second equation. e

2.4 Monoid Types

In our treatment of queries we consider the following types to be valid:

Definition 4 (Monoid Type). A monoid type takes one of the following
forms:

class_name ~a reference to a user-defined class!

T ~a primitive type, such as int or bool!
T~t! ~a collection type, such as list~int!!

^A1 : t1, . . . , An : tn& ~a record type!

where t, t1, . . . , tn are monoid types. Thus, monoid types can be nested
freely.

Our type system is rich enough to capture most ODMG ODL data types.
For our queries, we use the university schema shown in Figure 1 as a
running example. Note that the class Instructor is a subclass of the class
Person. ODL relationships can be 1:1, 1:N, or N:M. When used in OQL
queries, a binary relationship between the classes A and B offers two ways
of relating A and B objects: given an instance of A to retrieve the related
instance(s) of B and given an instance of B to retrieve the related
instance(s) of A. A class extent, such as Instructors for the class Instructor, is
a set of all persistent instances of this class. Extents are the only entry
points to the database. We assume persistence by reachability, which
indicates that not only the members of an extent but also all the objects
that can be reached from these members, are persistent. In our treatment
of types, relationships are handled as attributes and extents as sets of class

468 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

references such as Courses: set ^Course&. A class itself is treated as an
aggregation (a record) of its attributes.

2.5 The Monoid Comprehension Calculus

Our monoid comprehension calculus consists of a number of syntactic forms
that operate over monoid types. These syntactic forms can be composed to
construct yet more complicated terms. Not every combination of syntactic
forms is well-formed though. Ill-formed expressions can be detected and
terms can be assigned unique types with the help of a typing system, which
is usually specified by a set of typing rules. We first present the monoid
calculus and then the typing rules of the calculus.

Definition 5 (Monoid Comprehension Calculus). The monoid calculus
consists of the syntactic forms in Figure 2, where e, e1, . . . , en are terms
in the monoid calculus, v is a variable, t is a monoid type, and q1, . . . , qn are
qualifiers of the form v 4 e or e.

For example, the following expression:
ø{ e.name [] el4]{ d.instructors [] d4 Departments, d.name5“CSE” },

e4 el, ∨{ c.name5“cse5331” [] c4 e.teaches } },

which is based on our example OODB schema, is a valid expression in the
calculus. It returns all CSE instructors who teach cse5331. For each

Fig. 1. The ODL schema of the university database.

Optimizing Object Queries • 469

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

department with name CSE, the inner bag comprehension returns all
instructors in the department. Thus, the result of the bag comprehension is
of type bag(bag(Instructor)). Since variable el ranges over the result of the
bag comprehension, the type of el is bag(Instructor). Variable e ranges over
el, which indicates that the type of e is Instructor. The ∨-comprehension
captures an existential quantification; it returns true if there is at least one
course c in e.teaches that has c.name5 “cse5331”.

We use the shorthand x [u to represent binding the variable x to the
value u. The meaning of this construct is given by the following reduction
rule:

Q{ e @# r, x [u, s } OB Q{ e@u /x# @# r, s@u /x# }, (N1)

where e@u / x# is the expression e with u substituted for all the free
occurrences of x. Another shorthand is the pair ~x, y!, which is equivalent
to the record ^fst 5 x, snd 5 y&. In addition, as syntactic sugar, we allow
irrefutable patterns in place of lambda variables, range variables, and
variables in bindings. In functional programming languages [Peyton Jones
1987], a pattern is irrefutable if it is either a variable or a tuple consisting
of irrefutable patterns. Patterns such as these can be compiled away using
standard pattern decomposition techniques [Peyton Jones 1987]. For example,
ø{ x 1 y @# ~x, ~ y, z!! 4 A, z 5 3 } is equivalent to ø{ a.fst 1 a.snd.fst @#
a 4 A, a.snd.snd 5 3 }.

Figure 3 gives the typing rules of the terms in the monoid calculus. The
name v in Figure 3 indicates a variable name, names starting with A are
attribute names, names starting with e represent terms in our calculus, a

is a type variable, and names starting with t represent types. The notation
s £ e : t indicates that the term e is assigned the type t under the
substitution s. If a type equation is a fraction, the numerator is the
premise, while the denominator is the consequence. For example, Eq. (T4)
indicates that if e is a tuple of type ^A1 : t1, . . . , An : tn&, then the type of
e. Ai is the ith component of the tuple type ti. The substitution list s binds

Fig. 2. The monoid comprehension calculus.

470 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

variable names to types ~s~v!! and returns the binding of v in s,, and
s@t / v# extends s with the binding from v to t. The l-variable v in Eq. (T7)
is annotated with its type t1. This annotation is omitted in our examples
because in most cases it can be inferred from context. This equation
indicates that if the type of e is t2 under the assumption that the type of v
is t1, then the type of lv : t1.e is t1 3 t2 (a function from t1 to t2). Equation
(T15) checks the validity of a comprehension by testing whether R 2a Q.
Note that according to these typing rules the term 1 1 2 3 3 is type-
correct, since T1 5 T3 5 int (from Table I.A), while x 11 y ø z is not
type-correct.

3. TRANSLATING OQL TO THE MONOID CALCULUS

Nearly all OQL expressions have a direct translation into the monoid
calculus, with the exception of indexed OQL collections. (Section 5 presents
a monoid for indexed collections as well as a comprehension syntax to
capture complex vector and array operations.) Here we illustrate how to
translate the main constructs of OQL into the monoid calculus.

A select-from-where OQL statement of the form

select e
from x1 in e1, . . . , xn in en
where pred

is translated into

]{ e @# x1 4 e1, . . . xn 4 en, pred }.

Fig. 3. Typing rules of the monoid calculus.

Optimizing Object Queries • 471

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Note that e, ei, and pred could all contain nested comprehension expres-
sions, which supports the capability in OQL to have nested queries in the
select, where, and from clauses. For example, the following nested OQL query:

select e.name, e.address
from el in (select d.instructors

from d in Departments
where d.name5 “CSE”),

e in el
where exists c in e.teaches: c.name5 “cse5331”

is expressed in the comprehension syntax, as follows:

]{ ^ Name: e.name, Address: e.address &
[] el4]{ d.instructors [] d4 Departments, d.name5“CSE” },

e4 el, ∨{ c.name5“cse5331” [] c4 e.teaches } }.

The select-distinct OQL statement is translated into a set comprehension
in a similar way. For example, the following query against the university
schema finds all departments that have at least one instructor who teaches
more than 8 courses per year:

select distinct e.dept.name
from e in Instructors
where count(e.teaches) . 8.

This query is translated into the following comprehension:

ø{ e.dept.name [] e4 Instructors, 1{ 1 [] c4 e.teaches }. 8 }.

OQL universal and existential quantifications are mapped into comprehen-
sions too, as shown in the following query that finds the instructors who
teach courses that all have cse2320 as a prerequisite:

select e.name
from e in Instructors
where for all c in e.teaches:
exists d in c.has_prerequisites: d.name 5 “cse2320”.

This query is translated into the following comprehension:

]{ e.name [] e4 Instructors, ∧{ ∨{ d.name5“cse2320” [] d 4 c.has_prerequisites }
[] c4 e.teaches } }.

The OQL group-by syntax is essentially syntactic sugar, since the same
results can be accomplished with nested queries. For example, the query

select dept: dname, largest: max(e.salary)
from e in Instructors
group by dname: e.dept.name,

prints for each department the largest salary of all instructors working in
the department is equivalent to

select dept: e.dept.name,
largest: max(select s.salary

from s in Instructors
where e.dept.name 5 s.dept.name)

from e in Instructors,

which, in turn, can be expressed in the calculus as follows:

472 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

]{ ^ dept: e.dept.name,
largest: max{ s.salary [] s4 Instructors, e.dept.name5s.dept.name } &

[] e4 Instructors }.

We see in Section 7 that nested query forms such as these can be translated
into efficient execution plans that make use of group-by algorithms. In
general, a group-by OQL query takes the following form:

select e (A1, . . . , An, partition)
from x1 in u1, x2 in u2~x1!, . . . , xm in um~x1, . . . , xm21!
where p~x1, . . . , xm!
group by A1 : e1~x1, . . . , xm!, . . . , An : en~x1, . . . , xm!
having h (A1, . . . , An, partition),

where the variable partition is bound to the set of all groups, where each
group is a record of all xi values that have the same A1, . . . , An values (it
is used for complex aggregations). This OQL form is equivalent to

]{ e (A1, . . . , An, partition)
[] x1 4 u1, x2 4 u2~x1!, . . . , xm 4 um~x1, . . . xm21!,

A1 [e1~x1, . . . , xm!, . . . , An [en~x1, . . . , xm!,
partition []{ ^x1 : y1, . . . , xm : ym&,

[] y1 4 u1, y2 4 u2~ y1!, . . . , ym 4 um~ y1, . . . , ym21!,
e1~ y1, . . . , ym! 5 A1, . . . , en~ y1, . . . , ym! 5 An },

p~x1, . . . xm!, h~A1, . . . An, partition! }.

For example, the query
select salary: max(e.salary), dept: dname
from e in Instructors
group by dname: e.dept.name,

teaches: count(select *
from c in e.teaches
where c.offered_by.name 5 “CSE”)

is equivalent to

]{ ^salary: max{ p.e.salary [] p 4 partition }, dept: dname &
[] e4 Instructors,

dname [e.dept.name,
teaches [1{ 1 [] c4 e.teaches, c.offered_by.name5“CSE” }
partition []{ ^ e: s & [] s4 Instructors,

s.dept.name5d.name
1{ 1 [] c4 s.teaches, c.offered_by.name5“CSE” }

5 teaches } }.

The following table gives the translation of other OQL expressions into
monoid calculus:

e1 intersect e2 3 ø{ x @# x 4 e1, x [e2 }
for all x in e : pred 3 ∧{ pred @# x 4 e }
exists x in e : pred 3 ∨{ pred @# x 4 e }
e1 in e2 3 ∨{ x 5 e1 @# x 4 e2 }
count~e! 3 1{ 1 @# x 4 e }
sum~e! 3 1{ x @# x 4 e }
flatten~e! 3 ø{ x @# s 4 e, x 4 s }.

Optimizing Object Queries • 473

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

The restriction on monoid comprehensions relating idempotence and
commutativity of the monoids involved turns out not to be a limitation in
translation. OQL select statements always return sets or bags, and the only
explicit conversion function on collections is listtoset, which the calculus
allows. Nevertheless, there are OQL language constructs that cannot be
simulated in the monoid calculus. They include bag difference and set or
bag element (which retrieves an element from a singleton set or bag,
respectively).

4. PROGRAM NORMALIZATION

The monoid calculus can be put into a canonical form by an efficient rewrite
algorithm, called the normalization algorithm. The evaluation of these
canonical forms generally produces fewer intermediate data structures
than the initial unnormalized programs. Moreover, in many cases, the
normalization algorithm improves program performance. It generalizes
many optimization techniques already used in relational algebra, such as
pushing a selection before a join and fusing two selections into one
selection. While normalization does not perform cost-based optimization, it
does provide a good starting point for it.

Figure 4 gives the normalization rules. For example, Rule (N5) applies
when a comprehension has a generator whose domain is a zero value (i.e.,
ZR) that appears between two possibly empty sequences of generators q and
s. In that case, the comprehension is normalized into the value ZQ, since no
values are generated for the variable v. Rule (N8) is the most important: it
flattens a nested comprehension (i.e., a comprehension that contains a
generator whose domain is another comprehension). Rule (N9) unnests an
existential quantification. There are other cases of query unnesting in
Section 7.

Fig. 4. The normalization algorithm.

474 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

One advantage of the normalization algorithm, or any algorithm on
calculus expressions expressed via pattern-based rewrite, is that it can be
shown to correctly preserve meaning by proving each rewrite transforma-
tion correct.

THEOREM 3. The normalization rules in Figure 4 are meaning-preserving.

A proof sketch of this theorem is given in Appendix A. In addition, this
set of rewrite rules is terminating and confluent (i.e., it satisfies the
Church-Rosser property). That is, it does not matter in which sequence
rules are applied to a term, as all sequences result in the same canonical
form at the end. The rewrite rules are terminating because they decrease
the number of nesting levels. They are confluent, since it can be seen from
Rule (N8) that

Q{ e @# q, v1 4 R{ e1 @# r1 }, r, v2 4 R{ e2 @# r2 }, s }

5 Q{ e @# q, r1, v1 [e1, r, v2 4 R{ e2 r2 }, s }

5 Q{ e @# q, r1, v1 [e1, r, r2, v2 [e2, s },

which is also the result of Q{ e @# q, v1 4 R{ e1 @# r1 }, r, r2, v2 [e2, s }.
This identity shows that both chains of rewrites (left inner comprehension
first or right inner comprehension first) lead to the same reduced form.

Rules (N8) and (N9) may require some variable renaming to avoid name
conflicts. If there is a generator v9 4 e1 in q and a generator v9 4 e2 in r,
then variable v9 in r should be renamed. For example, filter(p)(filter(q) x) is

ø{ a [] a4 ø{ a [] a4 x, q(a) }, p(a) }
5 ø{ a [] a4 ø{ b [] b4 x, q(b) }, p(a) }

(by renaming the inner variable a to b) and is normalized into
ø{ a [] b4 x, q(b), a [b, p(a) }
3 ø{ b [] b4 x, q(b), p(b) }

(by Rules (N8) and (N1)), which is a filter whose predicate is the conjunc-
tion of p and q. As another example of normalization, consider the following
nested OQL query:

select distinct r
from r in R
where r.B in (select distinct s.D

from s in S
where r.C5s.C),

which is expressed in the monoid calculus, as follows:
ø{ r [] r4 R, ∨{ x5r.B [] x4 ø{ s.D [] s4 S, r.C5s.C } } }

and is normalized into

ø{ r [] r 4 R, x 4 ø { s.D [] s 4 S, r.C5s.C }, x5r.B }
3 ø{ r [] r4 R, s4 S, r.C5s.C, x [s.D, x5r.B }
3 ø{ r [] r4 R, s4 S, r.C5s.C, s.D5r.B }

Optimizing Object Queries • 475

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

(by Rules (N9), (N8), and (N1)), which is equivalent to the following OQL
query:

select distinct r
from r in R, s in S
where r.C5s.C and s.D 5 r.B.

Note that although we were able to rewrite this unnested form back into
OQL, not every comprehension has a direct translation back to OQL.

Now consider the query, presented in Section 3, which finds all CSE
instructors who teach cse5331:

]{ ^ Name: e.name, Address: e.address &
[] el4]{ d.instructors [] d4 Departments, d.name5“CSE” },

e4 el, ∨{ c.name5“cse5331” [] c4 e.teaches } }.

This query is normalized into
]{ ^ Name: h.name, Address: h.address &

[] d4 Departments, d.name5“CSE”, el [d.instructors,
e4 el, ∨{ c.name5“cse5331” [] c4 e.teaches } }

3]{ ^ Name: h.name, Address: h.address &
[] d4 Departments, d.name5“CSE”,

e4 d.instructors, ∨{ c.name5“cse5331” [] c4 e.teaches } }
3]{ ^ Name: h.name, Address: h.address &

[] d4 Departments, d.name5“CSE”,
e4 d.instructors, c4 e.teaches, c.name5“cse5331” }

(by Rules (N9), (N8), and (N1)).
Canonical forms: A path path is a bound variable, the name of a class

extent, or an expression path9.name, where name is an attribute name of a
record and path9 is a path. If a comprehension has a commutative accumu-
lator, then the generator domains in this comprehension can be normalized
into paths. If, in addition, all predicates of a comprehension are moved at
the end of the comprehension that forms a conjunction pred of predicates,
then monoid comprehensions can be put into the following canonical form:

Q{ e @# v1 4 path1, . . . vn 4 pathn, pred },

where each pathi is a path. The proof of this statement is easy. First, it is
easy to see that the previous form is a canonical form (i.e., it cannot be
normalized further), since there is no normalization rule that reduces
generators over paths. Second, if the domain e of a generator v 4 e in a
monoid comprehension is a form other than a path, then this domain is
reduced to a simpler form by the normalization algorithm. This situation
becomes apparent if we consider all the different forms that e can take. For
each such form there is a normalization rule, thus leaving the only form
that cannot be reduced, namely a path.

Performance: Our normalization algorithm unnests all type N and J
nested queries [Kim 1982] (using Rules (N8) and (N9), respectively). The
important question, though, is whether normalization always improves
performance. Unfortunately not. Consider the term ø{ ~v, v! @# v 4 ø{ E @#
w 4 X } }, where E is an expensive query. This term is normalized into

476 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

ø{ ~E, E! @# w 4 X }, which performs the computation of E twice. In this
case, the normalized form may perform worse than the original term. Cases
such as these occur frequently in lazy functional languages [Peyton Jones
1987]. In those languages, function application is evaluated using beta
reduction (Rule (N2)), which, if it is implemented naively as term substitu-
tion, may repeat computations (if v appears more than once in e1). To avoid
situations like these, the evaluators of these languages use graph-reduction
techniques [Peyton Jones 1987] in which all occurrences of v in e1 share the
same term by pointing to the same memory address, thus forming an
acyclic graph. When this term is reduced to a value, the term is replaced by
this value in the graph, thus avoiding the need to compute this value twice.
If we apply this technique to our normalization algorithm, the normalized
form ø{ ~E, E! @# w 4 X } will not repeat the evaluation of E; instead it
will use two pointers to the same copy of the term E.

If we use graph reduction during normalization, then, under the naive
cost function described below, normalization always improves cost. Of
course, this result may not necessarily be true for realistic cost functions
and physical algorithms. The purpose of this cost analysis is to give a
simple explanation why normalization is an effective optimization tech-
nique. It should be noted though that, like any relational algebraic optimi-
zation, normalization is a heuristic that improves performance in most
cases. The true effectiveness of an optimization algorithm can only be
asserted by extensive testing applied to real-world applications.

We assume that we know the average sizes of all sets reached by paths in
the database schema: For example, in ø{ e @# x 4 X, y 4 x. A }, the size of
x. A is the average of all sets x. A for every x [X. The following cost
function assumes a naive nested-loop evaluation that does not depend on
the order of the joins:

sizevQ{ e @# r }b 5 sizevrb
sizevr, v 4 eb 5 sizeveb 3 sizevrb
sizevr, predb 5 sizevrb 3 selectivityvpredb
sizevr, v [eb 5 sizevrb
sizevb 5 1

costvQ{ e @# r }b 5 costveb 1 costvrb 1 sizevrb
costvr, v 4 eb 5 costveb 1 costvrb
costvr, predb 5 costvpredb 1 costvrb
costvr, v [eb 5 costveb 1 costvrb
costvb 5 0

where sizeveb of a collection e estimates the size of e, while selectivity
vpredb is the selectivity of the predicate pred. The variable-binding cost

Optimizing Object Queries • 477

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

equation (for v [e) assumes the use of graph reduction, i.e., the computa-
tion of e is done only once, even when v is used more than once.

For example, the join X ”“x. A5y.B Y has cost costvø{ ~x, y! @# x 4 X, y
4 Y, x. A 5 y.B }b equal to sizevX b 3 sizevY b 3 selectivityvx. A 5 y.Bb.
The size function satisfies sizevr, sb 5 sizevrb 3 sizevsb and the cost func-
tion satisfies costvr, sb 5 costvrb 1 costvsb. Under this cost function, we
can prove that each normalization rule improves cost. For example, the
left-hand side of Rule (N8) has cost

costvQ{ e @# q, v 4 ø{e9 @# r }, s }b
5 costveb 1 costvq, v 4 ø{ e9 @# r }, sb 1 sizevq, v 4 ø{ e9 @# r }, sb
5 costveb 1 costvqb 1 costvø{ e9 @# r }b 1 costvsb 1 sizevqb 3 sizevø{ e9 @# r }b 3 sizevsb
5 costveb 1 costvqb 1 costve9b 1 costvrb 1 sizevrb 1 costvsb 1 sizevqb 3 sizevrb 3 sizevsb

which has an excess of sizevrb over the cost of the right-hand side of the
rule

costvQ{ e @# q, r, v [e9, s }b
5 costveb 1 costvq, r, v [e9, sb 1 sizevq, r, v [e9, sb
5 costveb 1 costvqb 1 costvrb 1 costve9b 1 costvsb 1 sizevqb 3 sizevrb 3 sizevsb.

Limitations: Even though the normalization algorithm unnests many
forms of nested queries, there are still some forms of queries that cannot be
unnested by it. The following query contains three examples of such
forms:

ø{ ^ E5e, M5 ø{ c [] c4 e.children, ∧{ c.age . d.age [] d4 e.manager.children } } &
[] e4 Employees, e.salary.max{ m.salary [] m4 Managers, e.age.m.age } }.

The subquery ø{ c [] c 4 e.children, ∧{ c.age . d.age [] d 4 e.manager.
children } } cannot be unnested by the normalization algorithm because the
computed set must be embedded in the result of every iteration of the
outer-set comprehension. Similarly, the universal quantification (the
∧-comprehension) and the aggregation (the max-comprehension) cannot be
unnested by the normalization algorithm. These cases (which are types A
and JA nested queries [Kim 1982]) require the use of outer-joins and
grouping, and they will be treated properly in Section 7.

5. MODEL EXTENSIONS

5.1 Handling Inconsistencies Due to Idempotence

In Section 2.2 we showed that if we allow homomorphisms from idempotent
to nonidempotent monoids, such as set cardinality, hom@ø, 1#~lx.1!~A!,
semantic inconsistencies may result. The reason is that, by definition,
monoid homomorphisms are divide-and-conquer computations. For set car-
dinality, this property implies that

478 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

hom@ø, 1#~lx.1!~A ø B! 5 ~hom@ø, 1#~lx.1!~A! 1 hom@ø, 1#~lx.1!~B!!.

But this equation is not valid when A ù B Þ $%, because it counts the
common elements between A and B twice. The correct equation is

hom@ø, 1#~lx.1!~A ø B! 5 ~hom@ø, 1#~lx.1!~A! 1 hom@ø, 1#~lx.1!~B 2 A!!.

This observation can be generalized to any monoid. The third equation of
Definition 2 should be

hom@Q, R#~ f !~x Q y! 5 ~hom@Q, R#~ f !~x! R hom@Q, R#~lv.F~v, x!!~y!!,

where function F is defined as follows:

F~v, x! 5 H if v [x then ZQ else f~v! for idempotent R

f~v! otherwise

Given this definition, if R is an idempotent collection monoid, then accord-
ing to Theorem 2:

hom@Q, R#~lv.F~v, x!!~x! 5 R{ w @# v 4 x, w 4 F~v, x! }
5 R{ w @# v 4 x, w 4 ~if v [x then ZQ else f~v!! }
5 R{ w @# v 4 x, w 4 ZQ } 5 ZR.

Consequently,

hom@Q, R#~ f !~x Q x! 5 ~hom@Q, R#~ f !~x!! R ~hom@Q, R#~F !~x!!

5 ~hom@Q, R#~ f !~x!! R ZR

5 hom@Q, R #~ f !~x!,

which holds even when Q is anti-idempotent. A similar proof holds for an
idempotent primitive monoid R.

In addition to the definition above, Rule (N7) of the normalization
algorithm (Figure 4) must be modified accordingly:

Q{ e @# q, v 4 ~e1 R e2!, s }

3 H ~Q{ e @# q, v 4 e1, s }! Q ~Q{ e @# q, v 4 e2, v [y e1s }! if Q 2ay R

~Q{ e q, v 4 e1, s }! Q ~Q{ e @# q, v 4 e2, s }! otherwise

for commutative Q and R. Note that the first alternative is when Q 2ay R,
that is, when Q is commutative and R is both commutative and idempotent.
For example, 1{ 1 @# x 4 ~$1% ø $1%! } is normalized into ~1{ 1 @# x 4
$1% }! 1 ~1{ 1 @# x 4 $1%, x [y $1% }!, which is equal to 1 1 0 5 1.

Optimizing Object Queries • 479

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

5.2 Advanced List Operations

A primitive monoid useful for lists is the function composition monoid, ~+, lx. x!,
where the function composition, +, is defined by the equation ~ f + g!x 5
f~g~x!! and is associative, but neither commutative nor idempotent. Even
though the type of this monoid, T +~a! 5 a 4 a, is parametric, it is still a
primitive monoid. For a list X 5 @a1, a2, . . . , an#, +{ lx.f~a, x! @# a 4 X }
is equal to ~lx.f~a1, x!! + ~lx.f~a2, x!! + · · · + ~lx.f~an, x!!. Consequently,
+{ lx.f~a, x! @# a 4 X }~v! computes the value f~a1, f~a2, . . . , f~an, v!!!.
For example, the reverse of the list X is +{ lx. x 11 @a# @# a 4 X }~@#!, and
the first element of X is +{ lx.a @# a 4 X }(NULL).

The function composition monoid offers enormous expressive power to
list operations because it can be used to compose functions that propagate a
state during a list iteration. For example, the nth element of a list X,
nth~ X, n!, is

~+{ l~x, k!.~if k 5 n then a else x, k 2 1! @# x 4 X }~NULL, length~X !!!.fst,

which uses a counter k as the state to propagate through the iteration over
X. A more complex example is sorting the elements of a list X using a total
order #:

sort~X ! 5 +{ lz.insert~a, z! @# a 4 X }~@#!

insert~a, Y ! 5 ~+{ l~z, p!.if p ∨ a # b then ~@b# 11 z, p! else ~@b, a# 11 z, true! @# b 4 Y }

~@#, false!!.fst.

List comprehensions of the form +{ lx.f~a, x! @# a 4 X }~v! are equivalent
to list folds [Fegaras 1993], also known as a catamorphism [Meijer et al.
1991]. Like list folds, list comprehensions can capture the list primitive
recursive function, P~ f, v!~ X !, defined by the following recursive equations:

P~ f, v!~@#! 5 v
P~ f, v!~@a# 11 x! 5 f~a, x, P~ f, v!~x!!

as follows:

P~ f, v!~X ! 5 ~+{ l~x, r!.~ f~a, r, x!, @a# 11 r! @# a 4 X }~v, @#!!.fst.

Note that P~ f, v!~ X ! represents a paramorphism [Meijer et al. 1991],
which can be simulated easily by a catamorphism (i.e., a fold) by returning
a pair that carries the rest of the list along with the result. When some
simple syntactic restrictions are applied to the list primitive recursive
functions, these functions precisely characterize the polynomial time space
[Bellantoni and Cook 1992; Leivant 1993].

Unfortunately, the expressive power gained by the function composition
monoid comes with a high cost. Comprehensions of the form Q{ e @# r, v 4
+{ f @# s }~u!, q } are very difficult to normalize and unnest.

480 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

5.3 Vectors and Arrays

Vectors and arrays are important collection types for scientific and other
applications [Maier and Vance 1993; Libkin et al. 1996]. In contrast to
other collection types, there is no obvious monoid that captures vectors
effectively. Vector operations should provide random access through index-
ing as well as bulk manipulation. We first propose an effective form of
vector comprehensions and then describe a monoid that captures these
comprehensions. An example of a vector manipulation is vector reverse,
which computes x@n 2 i 2 1# for i 5 0, 1, . . . , n 2 1 from a vector x of
size n. This function can be specified by

M{ a@n 2 i 2 1# @# a@i# 4 x },

where M is the anticipated monoid for vectors. Note that we want to access
both the value a and the associated index i from the vector x, but we do not
want to impose any order on the way a@i# is accessed. The generator a@i#
4 x accesses the pairs ~a, i! in some unspecified order, much as elements
of a set x are retrieved in a comprehension by the generator a 4 x. But the
constructed element of the vector comprehension above is a@n 2 i 2 1#,
which means that we should be able to store an element at any position in
the resulting vector. That is, even though vector elements are accessed in
bulk fashion (in pairs of value-index values), vectors are constructed in
random fashion by specifying which value is stored at what place. But there
is a problem here: What if we have two different values stored in the same
place in a vector? We need to perform a merge operation on vectors. One
solution is to merge the vector elements individually [Fegaras and Maier
1995]. That is, when two elements are stored at the same place in a vector,
the resulting vector value is computed by merging these two elements.
Another solution, which we adopt here, is to choose the latter of the two
values if this value is not null, otherwise to choose the first. That way, the
last non-null value overwrites the previous values.

We now formalize these observations. We introduce a new collection
monoid ~M, ZM, UM! to represent vectors of any type. A vector of type
vector~a! is represented by the type set~int 3 a!, which specifies a partial
mapping from positive integers (i.e., vector indexes) to values (of type a).
This monoid has the following primitives: (The unit function here is binary,
but in functional languages any n-ary function is equivalent to a unary
function applied to a tuple.)

ZM 5 $%

UM~i, a! 5 $~i, a!%

xMy 5 y ø ~ø{ ~i, a! @# ~i, a! 4 x, ∧{ i Þ j @# ~ j, b! 4 y } }!.

That is, when the vector elements of x are merged with the vector elements
of y, the result is y union, the elements of x that are not indexed in y. This

Optimizing Object Queries • 481

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

monoid is idempotent but not commutative. In database terminology, the
integer index (the first component of the pair int 3 a) is the key of
set~int 3 a!. The vector merge function, M, reflects the common knowledge
that in a vector assignment A@i# :5 v, the new value v overwrites the old
value A@i#. Like any other monoid, the only purpose of the vector monoid is
to provide meaning to vector operations, not to suggest in any way how
vectors should be implemented.

For example, the set $~4, 10!, ~6, 13!, ~2, 11!, ~3, 12!% corresponds to
the vector ,NULL, 11, 12, 10, NULL, 13.. If this set is merged with the set
$~1, 5!, ~5, 7!, ~3, 6!%, which corresponds to the vector ,5, NULL, 6, NULL, 7.,
it constructs the set $~1, 5!, ~5, 7!, ~3, 6!, ~2, 11!, ~4, 10!, ~6, 13!%,
which corresponds to ,5, 11, 6, 10, 7, 13..

The following are examples of vector manipulations. To make the com-
prehensions more readable, we represent a pair of the form ~a, i! as a@i#.

sum_all~x! 5 1{ a @# a@i# 4 x }
subseq~x, n, l! 5 M{ a@i 2 n# @# a@i# 4 x, i $ n, i , l 1 n }
permute~x, p! 5 M{ a@b# a@i# 4 x, b@ j # 4 p, i 5 j }
concat~x, y, n! 5 x M ~M{ a@n 1 i# @# a@i# 4 y }!

inner~x, y! 5 1{ a 3 b @# a@i# 4 x, b@ j# 4 y, i 5 j }.

Here subseq~x, n, l! returns the vector x@i#, i 5 n, . . . , l 1 n 2 1,
permute~x, p! returns the vector x@ p@i##, i 5 1, . . . , n, and inner~x, y!
returns the inner product of the two vectors x and y. A matrix can be
represented as a vector of vectors, but the syntax becomes a little bit
awkward:

map~ f !x 5 M{ ~M{ f~b! @# b@ j # 4 a }!@i# @# a@i# 4 x }.

Function map~ f ! maps function f to all the elements of a matrix. In the
comprehension above, x is a matrix and thus a is a vector. Therefore, the
head of the comprehension should be z@i# where z is a vector. Thus, z must
be another vector comprehension. Fortunately, there is a better approach to
matrices. We can consider the monoid M to be of type set~index 3 a!,
where index is a type with equality. For simple vectors, index5int and for
matrices, index5 int 3 int. The actual type of the index can be inferred at
compile time. The following are examples of matrix operations (we use the
shorthand a@i, j# for ~a, ~i, j!!):

map~ f !x 5 M{ ~ f~a!!@i, j# @# a@i, j# 4 x }
transpose~x! 5 M{ a@ j, i# @# a@i, j# 4 x }
row~x, k! 5 M{ a@ j # @# a@i, j# 4 x, i 5 k }
column~x, k! 5 M{ a@i# @# a@i, j# 4 x, j 5 k }
multiply~x, y! 5 M{ v@i, j# @# a@i, j# 4 x, v [inner~row~x, i!, column~y, j!! }.

482 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Here row~x, k! returns the kth row of matrix x while column~x, k! returns
the kth column. The only purpose of the generator a@i, j# 4 x in matrix
multiplication multiply~x, y! is to generate the indexes i and j. The latter
function is an example where the Haskell approach to vectors [Thompson
1998] (also adopted by Libkin et al. [1996]), in which vector indexes are
first generated from integer domains and then used to access vectors, is
more intuitive than ours.

Another example is matrix tiling, where a matrix X is partitioned into
4 3 4 tiles and each tile is replaced by the sum of the values in the tile:

tiling~X ! 5 M{ ~1{ b @# b@k, l#4X, i 2 4 # k # i 1 4, j 2 4 # l # j 1 4 }!F i

4, j

4G
@# a@i, j# 4 x }.

Normalization can be used to optimize vector and array operations. For
example, transpose~transpose~x!! can be normalized into a comprehension
equivalent to x.

OQL treats arrays like lists with indexing; it does not provide a conve-
nient random bulk manipulation, as our vector comprehensions do. Al-
though OQL can be extended with syntactic constructs to support our
vectors. For example, map~ f !x can be expressed in an OQL-like syntax as

select vector ~ f~a!!@i, j#
from a@i, j# in x.

6. INTERMEDIATE OBJECT ALGEBRA

In Section 2.3 we expressed comprehensions in terms of homomorphisms
(Definition 3). If homomorphisms were implemented as iterations over
collections, then comprehensions would be evaluated in a nested-loops
fashion (since comprehensions with more than one generator are translated
into nested homomorphisms). But in most cases we can do better than that.
Research in relational query optimization has already addressed the re-
lated problem of efficiently evaluating join queries by considering different
join orders, different access paths to data, and different join algorithms
[Selinger et al. 1979]. To effectively adapt this technology to handle
comprehensions, comprehensions must be expressed in terms of algebraic
operators, which will eventually be mapped into physical execution algo-
rithms like those found in database systems (e.g., merge join, hash join,
etc). Section 7 describes a framework for translating terms in our calculus
into efficient algorithms. This translation is done in stages. Queries in our
framework are first translated into monoid comprehensions (as described
in Section 3), which serve as an intermediate form, and are then translated
into a version of the nested relational algebra that supports aggregation,
quantification, outer-joins, and outer-unnests. At the end, the algebraic
terms are translated into execution plans. This algebra is called the

Optimizing Object Queries • 483

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

intermediate object algebra. We use both a calculus and an algebra as
intermediate forms because the calculus closely resembles current OODB
languages and is easy to normalize, while the algebra is lower-level and can
be directly translated into the execution algorithms supported by database
systems.

We classify the intermediate algebraic operators into two categories:
basic and extended. We will prove that the basic algebra is equivalent to
the monoid comprehension calculus, that is, all basic algebraic operators
can be expressed in terms of the monoid calculus and vice versa. The
purpose of the extended algebraic operators will become apparent when we
present our query unnesting method (Section 7).

6.1 The Basic Intermediate Algebra

As a convenient notation for the semantics of the algebraic operators, we
define {e@#r} as follows:

{ e @# r } 5 5ø{ e @# r} r has a commutative and idempotent generator
]{ e @# r } r has a commutative generator
11{ e @# r } otherwise.

(D4)

Figure 5 defines the basic algebraic operators in terms of the monoid
calculus. These operators generalize the operators of the nested relational
algebra, so they have a straightforward explanation:

● join, X ”“p Y, joins the collections X and Y using the join predicate p.
This join is not necessarily between two sets; if, for example, X is a list
and Y is a bag, then, according to Eq. (D4), the output is a bag.

● selection, sp~ X !, selects all elements of X that satisfy the predicate p.

● unnest, mp
path~ X !, returns the collection of all pairs ~x, y! for each x [

X and for each y [x.path that satisfy the predicate p~x, y!.

● reduce, Dp
Q/e~ X !, collects the values e~x! for all x [X that satisfy p~x!

using the accumulator Q. The reduce operator can be thought of as a
generalized version of the relational projection operator.

Fig. 5. The semantics of the basic intermediate algebra.

484 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

The first four rules in Figure 6 are the typing rules for the basic algebraic
operators.

THEOREM 4. The basic intermediate algebra is equivalent to the monoid
calculus.

PROOF. The rules in Figure 5 translate the algebra into the calculus.
The calculus-to-algebra translation algorithm is accomplished by the fol-
lowing rewrite rules:

vQ{ e @# }bw E 5 Dlw.true
Q/lw.e ~E! (C1)

vQ{ e1 @# v 4 e2, r }bw E 5 vQ{ e1 @# r }b~w, v!~ml~w, v!.true
lw.e2 ~E!!

(C2)

vQ{ e @# p, r }bw E 5 v{ e @# r }bw~slw.p~E!! (C3)

A monoid comprehension Q{ e1 @# v 4 e2, r } that may appear at any point
in a calculus form (including the ones inside other comprehensions) is
translated into an algebraic form by vQ{ e1 @# r }bve2. The comprehension
Q{ e1 @# r } is translated by compiling the qualifiers in r from left to right
using the term E as a seed that grows at each step. That is, the term E is
the algebraic tree derived at a particular point of compilation. The sub-
script variables w are all the range variables encountered so far during the
translation. The validity of the above rules can be easily proved using the
semantics in Figure 5. e

Note that Rule (C2) compiles every comprehension generator into an
unnest. This step may not be necessary if e2 is a class extent, in which case
it may be better compiled into a join. In Section 7 we present an effective
algorithm that translates the calculus into the algebra and at the same

Fig. 6. The typing rules of the (basic and extended) algebraic operators.

Optimizing Object Queries • 485

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

time performs heuristic optimizations and query unnesting. As an example
of how comprehensions are translated into intermediate algebraic forms,
consider the following:

ø{ ^ E 5 e.name, C 5 c.name& [] e 4 Employees, c 4 e.children },

which is translated into the algebraic form

Dl~e, c!.true
ø/l~e, c!.^E5e.name, C5c.name&~mle.true

le.e.children~Employees!!.

Algebraic forms can be displayed as operator trees in which the tree leaves
are collections of objects (e.g., class extents) and the output of the tree root
is the output of the algebraic form. For example, the previous algebraic
form has the following operator tree:

The functionality of an algebraic form can be better understood if we use a
stream-based interpretation in which a stream of tuples flows from the
leaves to the root of the tree. Under this interpretation, the algebraic form
above generates a stream of tuples of type set(^ e: Employee &) from the
extent Employees. Variable e ranges over employees (i.e., it is of type
Employee). The unnest operator, me.children, accepts the stream of tuples
of type set(^ e: Employee &) and constructs a stream of tuples of type
set(^ e: Employee, c: Person &), connecting each employee with one of his or
her children. The reduce operator, Dø/,E5e.name, C5c.name., at the top of this
algebraic form, is a generalization of the relational projection operator: It
evaluates the expression ^E5e.name, C5c.name & for every input element
and constructs a set from these tuples using ø.

6.2 Extended Intermediate Algebra

This section presents an extension to the basic algebra well-suited to be the
target of the query unnesting algorithm described in Section 7. This
algorithm uses outer-unnests and outer-joins to relate the data between the
inner and outer queries of a nested query and then reconstructs the result
of the nested query using a group-by operator. The semantics of these
operators cannot be given in terms of the monoid calculus if the outer query
constructs a nonidempotent collection, since information about the exact
number of copies of the data in the outer query may be lost after the outer
join or unnest.

µe.children

e

c

Employees

∆U / < E=e.name, C=c.name >

486 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

We use the following new constructs to define the semantics of the
extended algebra:

● Dot-equality x 8 y is defined if both x and y belong to the same
collection C. If the collection C is idempotent, such as a set, then
dot-equality is simply value-equality. Otherwise, every element x in C is
dot-different from any other element y in C. Note that dot-equality is
stronger than OID-equality. For example, the same object x may appear
multiple times in a list, such as @x, x#, but the first element of this list is
dot-different from the second. Even though dot-equality for C can easily
be implemented by labeling the copies of an element in C with unique
identifiers (such as unique TIDs), it cannot be expressed in terms of C
using our basic algebra.

● P f~ X ! is equal to { f~a! @# a 4 X }, but with all duplicate elements under
dot-equality removed.

These constructs satisfy the following properties for a function h:

$h~Q{ e @# v9 4 X, v9 8 v, r }! @# v 4 X } 5 { h~Q{ e @# v9 [v, r }! @# v 4 X } (P1)

Pl~v, w!.v~{ ~v9, w9! @# v9 4 X, r }! 5 X (P2)

Property (P1) indicates that the generator v9 4 X can be safely removed
from the inner comprehension because the elements v9 are dot-equal to the
elements v of the outer comprehension. Property (P2) indicates that if we
project over the elements of X and remove all duplicates, we get X.

The extended algebra operators are given in Figure 7 and are described
below:

● outer-join, X 5”“p Y, is a left outer-join between X and Y using the join
predicate p. The domain of the second generator (the generator of w) in
Eq. (O5) is always nonempty. If Y is empty or there are no elements that

Fig. 7. The semantics of the extended algebra.

Optimizing Object Queries • 487

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

can be joined with v (this condition is tested by universal quantification),
then the domain is the singleton value [NULL], i.e., w becomes null.
Otherwise each qualified element w of Y is joined with v.

● outer-unnest, 5mp
path~ X !, is similar to mp

path~ X !, but if x.path is empty for
x [X or p~x, y! is false for all y [x.path, then the pair (x,NULL)
appears in the output.

● nest, Gp/g
Q/e/f~ X !, resembles Dp

Q/e~ X !; it combines the functionality of the
nested relational operator, nest, with the functionality of reduce. In Eq.
(O7), the nest operator uses the group-by function f: If two values v and
w from a set X are dot-equal under f (i.e., f~v! 8 f~w!), their images
under e (i.e., e~v! and e~w!) are grouped together in the same group.
After a group is formed, it is reduced by the accumulator Q, and a pair of
the group-by value, along with the result of the reduction of this group, is
returned. Function g indicates which nulls to convert into zeros (i.e., into
ZQ). For example, the nest operation

Gl~d, e!.true/l~d, e!.e
ø/l~d, e!.e/l~d, e!.d ~X! 5 ø{ ~d9, ø{ e @# ~d, e! 4 X, e Þ NULL, d9 8 d }!

@# d9 4 Pl~d, e!.d~X ! }

groups the input (which consists of pairs ~d, e! of a department d and an
employee e) by d and converts the null e ’s into empty sets. Pl~d, e!.d~ X ! is
a generalized projection that retrieves the d component of each pair ~d, e!
in X and removes the duplicate d ’s.

7. QUERY UNNESTING

There are many recent proposals for OODB query optimization that focus
on unnesting nested queries (also known as query decorrelation) [Cluet and
Moerkotte 1995a; 1995b; Claussen et al. 1997; Steenhagen et al. 1994].
Nested queries appear more often in OODB queries than in relational
queries because OODB query languages allow complex expressions at any
point in a query. In addition, OODB types are allowed to have attributes
with collection values (i.e., nested collections), which lead naturally to
nested queries. Current OODB systems typically evaluate nested queries in
a nested-loop fashion, which does not leave many opportunities for optimi-
zation. Most unnesting techniques for OODB queries are actually based on
similar techniques for relational queries [Kim 1982; Ganski and Wong
1987; Muralikrishna 1992]. For all but the trivial nested queries, these
techniques require the use of outer-joins to prevent loss of data and
grouping to accumulate the data and to remove the null values introduced
by the outer-joins.

If considered in isolation, query unnesting itself does not result in
performance improvement. Instead, it makes possible other optimizations
that would not be possible otherwise. More specifically, without unnesting,

488 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

the only choice in evaluating nested queries is a naive nested-loop method:
For each step of the outer query, all the steps of the inner query need to be
executed. Query unnesting promotes all the operators of the inner query
into the operators of the outer query. This operator mixing allows other
optimization techniques to work, such as rearranging operators to mini-
mize cost and the free movement of selection predicates between inner and
outer operators, which enables operators to be more selective.

All early unnesting techniques were actually source-to-source transfor-
mations over SQL code, mostly due to the lack of a group-by operator to
express grouping in the relational algebra. The absence of a formal theory
in a form of an algebra to express these transformations resulted in a
number of bugs (such as the infamous count bug [Ganski and Wong 1987])
which were eventually detected and corrected. Since OODB queries are far
more complex than relational ones, it is even more crucial to express the
unnesting transformations in a formal algebra that will allow us to prove
the soundness and completeness of these transformations. The first work
with that goal in mind was by Cluet and Moerkotte [1995a; 1995b], which
covered many cases of nesting, including nested aggregate queries, and
validated all the transformations. Their work was extended by Claussen et
al. [1997] to include universal quantification. Cherniack and Zdonik
[1998a; 1998b] have used formal methods to validate query unnesting
transformations, but their work is a moderate generalization of Kim’s
query unnesting techniques for relational queries.

This section describes a query decorrelation algorithm that unnests all
possible forms of query nesting in our language. Our unnesting algorithm
extends previous work in two ways. First, it is not only sound, but it is also
complete. That is, our framework is capable of removing any form of
nesting. Second, our unnesting algorithm is more concise, more uniform,
and more general than earlier work, mostly due to the use of the monoid
comprehension calculus as an intermediate form for OODB queries. The
monoid comprehension calculus treats operations over multiple collection
types, aggregates, and quantifiers in a similar way, resulting in a uniform
way of unnesting queries, regardless of the type of nesting. In fact, many
forms of nested queries can be unnested by the normalization algorithm for
monoid comprehensions. The remaining forms require the introduction of
outer-joins and grouping. Our algorithm requires only two rewrite rules to
unnest the queries that cannot be handled by the normalization algorithm.

7.1 Examples of Unnesting

As an example of how OODB queries are unnested in our model, consider
the following nested comprehension calculus expression:

QUERY A:
ø{ ^ D5d, E5ø{ e [] e4 Employees, e.dno 5 d.dno } & [] d4 Departments },

which, for each department, returns the employees of the department. The
nesting inherent in this query can be avoided by using an outer-join
combined with grouping [Muralikrishna 1992], as shown in Figure 8.A. The

Optimizing Object Queries • 489

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

nest operator, Gd
ø/e, groups the input by the range variable d, constructing a

set of all e’s that are associated with the value of d. This set becomes the
value of the range variable m. That is, this nest operator reads a stream of
tuples of type set(^ d: Department, e: Employee &) and generates a stream of
tuples of type set(^ d: Department, m: set(^ e: Employee &) &). The join before
the nesting in Figure 8.A is a left outer-join: If there are no employees or
the predicate e.dno5d.dno is false for all employees in a department d,
then the result of the join is d associated with a null value, i.e., the value of
the range variable e becomes null. The nest operator converts this null
value into the empty set. That is, the outer-join introduces nulls and the
nest operator converts nulls into zeros.

Another interesting example is the expression A # B, which is equiva-
lent to @a [A : ?b [B : a 5 b. It can be expressed in our calculus as
follows:

QUERY B: ∧{ ∨{ true [] b4 B, a5b } [] a4 A }.

true
Transcripts

Students
Courses

t.id = s.id /\ t.cno = c.cno

Γ /\ / m

Γ \/ / true
(s,c)

m

n

s

t

σc.title = "DB"
c

s

∆ n = true
U / s

Students

t.cno = c.cno

Γ /\ / m

Γ \/ / true
(s,c)

m

n

s

s

∆ n = true
U / s

t.id = s.id

Transcripts

t
Courses

σc.title = "DB"
c

U / < D=d, E=m >

Γ

e.dno = d.dno

d

e

m

d

U / e

EmployeesDepartments

∆

D

A Γ

a = b

a

m

ba

\/ / true

BA

∆/\ / m

Γ

e.manager.childrenµ

µe.children

Γe

c

e

k

m

/\ / c.age > d.age

Employees

d

∆U / < E=e, M=m >

+ / 1
k = true

(e,c)
CB

E

Fig. 8. The algebraic form of some OODB queries.

490 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

The inner comprehension, which captures the existential quantification,
checks if there is at least one b [B with a 5 b (it can also be written as
∨{ a5b [] b 4 B }). The algebraic form of QUERY B after unnesting is
shown in Figure 8.B. During the outer-join, if there is no a with b5a, then
a will be matched with a null value. In that case, the nest operator will
convert the null value into a false value, which is the zero element of ∨ .
The reduction at the root tests whether all m’s are true. If there is at least
one false m, then there is at least one a in A that has no equal in B.

A more challenging example is the following double-nested comprehen-
sion:

QUERY C:
ø{ ^ E5e, M51{ 1 [] c4 e.children,

∧{ c.age . d.age [] d4 e.manager.children } } &
[] e4 Employees },

which, for each employee, computes the number of the employee’s children
who are older than the oldest child of the employee’s manager. The
algebraic form of QUERY C is shown in Figure 8.C. Here, instead of an
outer-join, we use an outer-unnesting: the 5me.children operator, which intro-
duces a new range variable, c, whose value is the unnesting of the set
e.children. If this set is empty, then c becomes null, i.e., the employee e is
padded with a null value. Since we have a double-nested query, we need to
use two nested unnest-nest pairs. The top nest operator groups the input
stream by each employee e, generating the number of children of e. Note
that every operator in our algebra can be assigned a predicate (such as the
predicate k5true in the top nest operation) to restrict the input data. The
second nest operator groups the input stream by both e and c (i.e., by the
tuple ~e, c!) and, for each group, evaluates the predicate c.age . d.age and
extends the output stream with an attribute k bound to the conjunction of
all the predicates (indicated by the ∧ accumulator).

The following comprehension finds the students who have taken all
database courses. It uses a predicate that has the same pattern as A # B:

QUERY D:
ø{ s [] s4 Students, ∧{ ∨{ true [] t4 Transcript, t.id5s.id, t.cno5c.cno }

[] c4 Courses, c.title 5 “DB” } }.

The algebraic form of this query is shown in Figure 8.D. This query can
be evaluated more efficiently if we switch Courses with Transcripts, as
shown in Figure 8.E. In that case, the resulting outer-joins are both
assigned equality predicates, thus making them more efficient. Optimiza-
tions such as this justify query unnesting.

7.2 Our Query Unnesting Method

Figure 9 shows how our unnesting algorithm unnests QUERY D. Every
comprehension is first normalized and then translated into an algebraic
form consisting of regular joins, selections, unnests, and reductions—the
last being the root of the algebraic form. This translation is straightfor-
ward. The outermost comprehension has one output (the result of the

Optimizing Object Queries • 491

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

reduction) and no input streams. For example, the dashed box A in Figure 9
represents the outer comprehension in QUERY D. The shaded box on the
reduction represents a nested query. The algebraic form of an inner
comprehension (i.e., a comprehension inside another comprehension) has
one input stream and one output value: The input stream is the same
stream of tuples as that of the operation in which this form is embedded
and the output is the result of this form. For example, the dashed box B in
Figure 9 represents the universally quantified comprehension (with accu-
mulator ∧): the input of this box is the same input stream as that of the
reduction in box A (namely, the stream of employees), since box B is
embedded in the predicate of the reduction. The output value of box B, n, is
used in the predicate of the reduction in box A. Similarly, the existential
quantification (with accumulator ∨) is translated into box C.

Our unnesting algorithm is simple: For each box that corresponds to a
nested query (i.e., Boxes B and C in the current example), it converts
reductions into nests (group-bys), and the joins and unnests that lay on the
input-output path of the box into outer-joins and outer-unnests, respec-
tively. At the same time, it embeds the resulting boxes at the points
immediately before they are used. For example, box C will be embedded
before the reduction in box B and the output value of box C will be used as
the result of the innermost form. Similarly, box B will be embedded
immediately before its output value is used in box A.

There is a very simple explanation why this algorithm is correct (a formal
proof is given in Appendix A): A nested query is represented as a box, say
box C, that consumes the same input stream as that of the embedding
operation and computes a value m that is used in the embedding query (box
B). If we want to splice this box onto the stream of the embedding query, we
need to guarantee two things. First, box C should not block the input
stream by removing tuples from the stream. This condition is achieved by
converting the blocking joins into outer-joins and the blocking unnests into
outer-unnests. Second, we need to extend the stream with the new value m
of box C before it is used in the reduction of box B. This manipulation can
be done by converting the reduction of box C into a nest, since the main
difference between nest and reduce is that, while the reduce returns a

true

Courses

σc.title = "DB"
c

Students

∆U / s

s

= true

Transcripts

t.id = s.id /\ t.cno = c.cno

t

∆/\ /
n

A

B C

∆\/ / true
m

true
Transcripts

Students
Courses

t.id = s.id /\ t.cno = c.cno

Γ /\ / m

Γ \/ / true
(s,c)

s

t

σc.title = "DB"
c

∆ n = true
U / s

s

n

m

A
B

C

Fig. 9. Unnesting QUERY D.

492 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

value (a reduction of a stream of values), nest embeds this value in the
input stream. At the same time, the nest operator will convert null values
to zeros so that the stream that comes from the output of the spliced box C
will be exactly the same as it was before the splice. There are some
important elements that we omitted here, but we will present them later
when we describe the unnesting algorithm in detail. The most important
factor is which nulls to convert to zeros each time: If we convert the null c’s
(i.e., the courses) to false in the second nest operation G~s, c!

∨/true in the final
unnested form in Figure 9, it will be too soon. This nest should convert null
t’s to false and the first nest should convert null c’s to true. This difference
is indicated by an extra parameter to the nest operator, which is not shown
here.

7.3 The Query Unnesting Algorithm

The query unnesting algorithm is expressed in Figure 10 in terms of a set
of rewrite rules. We assume that all comprehensions in a query have been
put into the canonical form Q{ e @# v1 4 path1, . . . , vn 4 pathn, pred }
before this algorithm is applied. That is, all generator domains have been
reduced to paths and all predicates have been collected to the right of the
comprehension into pred by anding them together (pred is set to true if no
predicate exists). The translation of a monoid comprehension Q{ e @# r } is
accomplished by using vQ{ e @# r }bw

u E. The comprehension Q{ e @# r } is trans-
lated by compiling the qualifiers in r from left to right using the term E as
a seed that grows at each step. That is, the term E is the algebraic tree
derived at this point of compilation. The variables in w are all the variables
encountered so far during the translation, and u are the variables that
need to be converted to zeros during nesting if they are nulls. The situation
u 5 ~! (i.e., when we have no variables in u) indicates that we are
compiling an outermost comprehension (not a nested one). Rules (C4)
through (C7) compile outermost comprehensions, while Rules (C8) through
(C10) compile inner comprehensions. Rules (C11) and (C12) do the actual
unnesting (here u can be of any value, including (), and R is not necessarily
the same monoid as Q).

Rule (C4) is the first step of the unnesting algorithm: The comprehension
must be the outermost comprehension; thus, the first generator must be
over an extent X. In that case, the seed becomes a selection over X. The
notation p@v# specifies the part of the predicate p that refers to v exclu-
sively, and does not contain any embedded comprehensions. The rest of the
predicate is denoted by p@v# and satisfies p@v# ∧ p@v# 5 p. This decomposition
is used for pushing predicates to the appropriate operators. Rule (C5) is the
last rule to be performed, after all generators have been compiled. Rule
(C6) converts a generator over an extent (a variable) into a join. Here we
split the predicate p into three parts: p@v#, which refers to v exclusively;
p@~w, v!#, which refers to both w and v; and p@~w, v!# for the rest of the
predicate. Note that all predicates with embedded comprehensions should

Optimizing Object Queries • 493

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

be assigned to p@~w, v!#, since otherwise the embedded comprehensions
will not be unnested. Details of how predicates are split into parts will be
given later in this section when we present the unnesting algorithm in a
more operational form. Rule (C7) compiles generators with path domains
into unnests.

Rules (C8) through (C10) apply to inner comprehensions and are similar
to Rules (C5) through (C7), with the only difference that reductions become
nests, joins become left outer-joins, and unnests become outer-unnests. The
notation w8u indicates all the variables in w that do not appear in u. Those
variables are the attributes to group-by (u are the attributes to convert into
zeros when they are nulls). Rules (C11) and (C12) perform the actual
unnesting. They do exactly what we have done in Figure 9 when we
composed boxes: here the boxes are actually the results of the translation of
the outer and inner comprehensions. Rule (C11) unnests a nested compre-
hension in the predicate p. It is applied as early as possible, that is,
immediately, once the generators s do not affect the inner comprehension
(i.e., when the free variables of the inner comprehensions do not depend on
the generator variables in s). Rule (C12) unnests a nested comprehension
in the head of a comprehension. This unnesting is performed when all the
generators of the outer comprehension have been reduced.

For example, QUERY C, QC, is compiled as follows:

Fig. 10. Rules for translating and unnesting comprehensions (u Þ ~! in Rules C8–C10).

494 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

QC 5 vø{ ^E 5 e, M 5 1{ 1 @# c 4 e.children,

∧{ c.age . d.age @# d 4 e.manager.children.true } } @# e 4 Employees, true }~!
~!$~!%

5 vø{ ^E 5 e, M 5 1{ 1 @# c 4 e.children,

∧{ c.age . d.age @# d 4 e.manager.children, true } } @# true }e
~!Employees

from Rule (C4), if we ignore the selection over Employees (because it has a
true predicate). From Rule (C12) we have,

QC 5 vø{ ^E 5 e, M 5 m& @# true }b~e, m!
~!

~v1{ 1 @# c4 e.children, ∧{ c.age . d.age @#d4 e.manager.children, true } }be
eEmployees!

to handle the inner 1 comprehension. From Rule (C10) we have,

QC 5 vø{ ^E 5 e, M 5 m& @# true }b~e, m!
~!

~v1{ 1 @# ∧{ c.age . d.age @# d 4 e.manager.children, true } }b~e, c!
e

~5ml~e, c!.true
le.e.children~Employees!!!

to translate the e.children into an unnest:

QC 5 vø{ ^E 5 e, M 5 m& @# true }b~e, m!
~!

~v1{ 1 @# k }b~~e, c!, k!
e ~v∧{ c.age . d.age @# d 4 e.manager.children, true }b~e, c!

~e, c!

~5ml~e, c!.true
le.e.children~Employees!!!!

5 vø{ ^E 5 e, M 5 m& @# true }b~e, m!
~!

~v1 { 1 @# k }b~~e, c!, k!
e ~v∧{ c.age . d.age @# true }b~~e, c!, d!

~e, c! ~5ml~~e, c!, d!.true
l~e, c!.e.manager.children

~5ml~e, c!.true
le.e.children~Employees!!!!!

5 vø{ ^E 5 e, M 5 m& @# true }b~e, m!
~!

~v1{ 1 @# k }b~~e, c!, k!
e ~Gl~~e, c!, d!.true/l~~e, c!, d!.d

∧/l~~e, c!, d!.c.age.d.age/l~~e, c!, d!.~e, c!~5ml~~e, c!, d!.true
l~e, c!.e.manager.children

~5ml~e, c!.true
le.e.children~Employees!!!!!

5 vø{ ^E 5 e, M 5 m& @# true }b~e, m!
~!

~Gl~~e, c!, k!.k/l~~e, c!, k!.~c, k!
1/l~~e, c!, k!.1/l~~e, c!, k!.e ~Gl~~e, c!, d!.true/l~~e, c!, d!.d

∧/l~~e, c!, d!.c.age.d.age/l~~e, c!, d!.~e, c!~5ml~~e, c!, d!.true
l~e, c!.e.manager.children

~5ml~e, c!.true
le.e.children~Employees!!!!!

5 Dl~e, m!.true
ø/l~e, m!.~E5e, M5m!

~Gl~~e, c!, k!.k/l~~e, c!, k!.~c, k!
1/l~~e, c!, k!.1/l~~e, c!, k!.e ~Gl~~e, c!, d!.true/l~~e, c!, d!.d

∧/l~~e, c!, d!.c.age.d.age/l~~e, c!, d!.~e, c!

~5ml~~e, c!, d!.true
l~e, c!.e.manager.children~5ml~e, c!.true

le.e.children~Employees!!!!!

(using Rules (C11), (C10), (C8), and (C5)), which is the algebraic form
shown in Figure 8.C.

Figure 11 uses C-like pseudocode to present the unnesting rules in
Figure 10 in a more operational way. The function call T~e, u, w, E!
corresponds to vebw

u E. Thus, T~e, ~!, ~!, $~!%! translates the term e into an

Optimizing Object Queries • 495

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

algebraic form. Terms are tree-like data structures that represent both
calculus and algebraic terms. A pattern u is a binary tree structure that
represents an empty pattern (), a variable v, or a pair of patterns ~u1, u2!.
Central to this program is the function split_predicate(Term p, Pattern left,
Pattern right) that returns a triple ~ p1, p2, p3! of terms. Terms p, p1, p2,
and p3 are conjunctions of simple predicates with p 5 p1 ∧ p2 ∧ p3. In
particular, p1 holds all simple predicates in p that refer to the pattern
variables in right exclusively; p2 holds all predicates that refer to the
pattern variables in both left and right; and p3 holds the rest of the
predicates. Note that there are no predicates in p that refer to the pattern
variables in left exclusively, since these predicates were assigned to the
operators during previous steps. In addition, if a simple predicate is a
comprehension (i.e., an embedded query in the predicate), then it is always
assigned to p3 in order to be unnested later by T. Line (2) in Figure 11
checks whether Rule () can be applied. This case holds when the outermost
comprehension e9 5 R{ e2 @# r } of the predicate p does not depend on the
range variables of the generators r. This case always applies when r is
empty and there is an embedded comprehension in p. Lines (3) and (4)
implement the right side of Rule (C11). The notation p@e9 / v# indicates that
a copy of the term p is created, but with the subtree e9 in p substituted for
the variable v. Lines (5) through (7) check whether Rule (C12) can be
applied and Line (8) applies this rule. Otherwise, either Rule (C5) or Rule

Fig. 11. The query unnesting algorithm.

496 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

(C8) is applied, depending on whether u 5 ~! or not. Line (14) applies when
both u 5 ~! and w 5 ~! (Rule (C4)). Otherwise we have four cases: whether
u 5 ~! or not, whether the first generator X is over a path, or over a
variable. Lines (15), (16), (17), and (18) capture Rules (C6), (C7), (C9), and
(C10), respectively.

We can easily prove that the unnesting algorithm in Figure 10 is
complete:

THEOREM 5. The rules in Figure 10 unnest all nested comprehensions.

PROOF. After normalization, the only places where we can find nested
queries are the comprehension predicate and the head of the comprehen-
sion. These cases are handled by Rules (C11) and (C12), respectively. Even
though Rule (C11) has a precondition, it will eventually be applied to
unnest any nested query in a predicate. (In the worst case, it will be
applied when all generators of the outer comprehension have been compiled
by the other rules.) e

The soundness of our unnesting algorithm is a consequence of the
following theorem:

THEOREM 6. The rules in Figure 10 are meaning-preserving. That is,

vQ{ e @# r }b~!
~!$~!% 5 Q{ e @# r }.

The proof of this theorem is given in Appendix A (as Corollary 1 based on
Theorem 8). Here we illustrate the validity of this theorem using an
example. When we apply the rules in Figure 10, QUERY A becomes

vø{ ^D 5 d, M 5 ø{ e @# e 4 Employees, e.dno 5 d.dno }& @# d 4 Department }b~!
~!$~!%

5 Dl~d, m!.true
ø/l~d, m!.~D5d, M5m!~Gl~d, e!.true/l~d, e!.e

ø/l~d, e!.e/l~d, e!.d ~Department 5”“l~d, e!.e.dno5d.dno Employees!!

We prove that the algebraic form above is equivalent to the original
comprehension. The tools that we use for this proof are the operator
definitions in Figures 5 and 7 and the normalization algorithm. According
to Rule (O4) in Figure 7, the above algebraic form is equal to

ø{ ^D 5 d, M 5 m& @# ~d, m!4 ~Gl~d,e!.true/l~d,e!.e
ø/l~d,e!.e/l~d,e!.d ~Department5”“l~d,e!.e.dno5d.dnoEmployees!! }

5 ø{ ^D 5 d, M 5 m& @# ~d, m! 4 ø{ ~d, ø{ e9 @# ~d9, e9!

4 ~Department 5”“l~d, e!.e.dno5d.dno Employees!, e9 Þ NULL, d 8 d9 }!

@# d 4 Pl~d, e!.d~Department 5”“l~d, e!.e.dno5d.dno Employees! } }

5 ø{ ^D 5 d, M 5 ø{ e9 @# ~d9, e9! 4 ~Department 5”“l~d, e!.e.dno5d.dno Employees!,

e9 Þ NULL, d 8 d9 }& @# d 4 Pl~d, e!.d~Department 5”“l~d, e!.e.dno5d.dnoEmployees! }

5 ø{ ^D 5 d, M 5 ø{ e9 @# ~d9, e9! 4 ø{ ~d, e! @# d 4 Department, e 4 F~d! },

Optimizing Object Queries • 497

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

e9 Þ NULL, d 8 d9 }& @# d 4 Pl~d, e!.d~ø{ ~d, e! @# d 4 Department, e 4 F~d! }! },

where F~d! is the right branch of the outer join in Rule (O5):

F~d! 5 if ∧{ e.dno Þ d.dno @# d Þ NULL, e 4 Employees } then @NULL#

else ø{ e @# e 4 Employees, e.dno 5 d.dno }.

But, according to Property (P2), Pl~d, e!.d~ø{ ~d, e! @# d 4 Department, e
4 F~d! }! is equal to Department. Therefore, after normalization, we get

5 ø{ ^D 5 d, M 5 ø{ e9 @# d9 4 Department, e9 4 F~d9!, e9 Þ NULL, d 8 d9}&

@# d 4 Department }

5 ø{ ^D 5 d, M 5 ø{ e9 @# d9 4 Department,

e9 4 ø{ e @# e 4 Employees, e.dno 5 d.dno }, d 8 d9 }& @# d 4 Department }

5 ø{ ^D 5 d, M 5 ø{ e @# d9 4 Department, e 4 Employees, e.dno 5 d.dno, d 8 d9 }&

@# d 4 Department }.

Finally, according to Property (P1), we can safely remove the generator d9
4 Department from the inner comprehension. The final form is

ø{ ^D 5 d, M 5 ø{ e @# e 4 Employees, e.dno 5 d.dno }& @# d 4 Department },

which is the original comprehension.

7.4 Simplifications

There is a large class of nested queries that can be further improved after
unnesting. Consider for example the following OQL query that, for each
department, finds the total salary of all the employees older than 30 in the
department:

select distinct e.dno, sum(e.salary)
from Employees e
where e.age.30
group by e.dno.

Even though at a first glance this query does not seem to be nested, its
translation to the monoid calculus in fact is nested:

ø{ ^E 5 e.dno, S 5 1{ u.salary @# u 4 Employees, u.age . 30, e.dno 5 u.dno }&

@# e 4 Employees, e.age . 30 }.

Our unnesting algorithm generates the algebraic form in Figure 12.A, but
we prefer the form in Figure 12.B, which is more efficient.

This simplification can be accomplished easily with the help of the
following transformation rule:

498 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Ga
f~b!~g~a! ”“a.M5b.M g~b!! 3 Ga.M

f~a! ~g~a!!,

where a and b are range variables in g~a! and g~b!, respectively. Hence it
does not make a difference whether this query is expressed as a group-by
query or a nested query; both forms are optimized to the same efficient
algebraic form.

As another simplification, we can use materialized views to handle some
forms of uncorrelated nested queries [Cluet and Moerkotte 1995b]. For
example, the following comprehension

ø{ ^C 2 c, D 5 ø{ a.X 1 b.Y @# a 4 A, b 4 B, a.N 5 b.M }& @# c 4 C }

can be translated as follows:

view :5 ø{ a.X 1 b.Y @# a 4 A, b 4 B, a.N 5 b.M }

ø{ ^C 5 c, D 5 view& @# c 4 C },

where the operator :5 creates a materialized view. All other cases of
uncorrelated nested queries that cannot be handled with global views do
not require any special treatment by our framework. For example, in the
query

ø{ ^A 5 a.X, B 5 ø{ ^A 5 a.X, B 5 1{ c.Z @# c 4 a.A }& @# b 4 B, a.N 5 b, M }&

@# a 4 A },

the 1 comprehension has the same value for every a in A. Our unnesting
algorithm will generate the algebraic form shown in Figure 12.C for this
query, but it is an easy task for an optimizer to transform this algebraic
form into the form shown in Figure 12.D (by pulling the outer-join up in the
operator tree).

σe.age>30

σe.age>30

A B

ba

Γ

e.dno = u.dno

e
+ / u.salary

σu.age>30

Employees Employees

e u

∆U / < E=d, S=m >

m

Γe.dno
+ / e.salary

∆U / < E=d, S=m >

m

Employees

e

∆U / < A=a.X, B=n >

Γ(a,b)
+ / c.Z

ΓU / < B=b.Y, C=m >

n

µ a.A

c

a

m

a.N = b.M

∆U / < A=a.X, B=n >

ΓU / < B=b.Y, C=m >

n

a

a.N = b.M

B

b

Γa
+ / c.Z

µ a.A

c

m

A

aA B

C

D

Fig. 12. Various simplifications.

Optimizing Object Queries • 499

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

8. IMPLEMENTATION

We have already built a prototype ODMG database management system,
called l-DB, based on our framework [Fegaras et al. 2000]. Our system can
handle most ODL declarations and process most OQL query forms. The
l-DB prototype is not ODMG-compliant. Instead it supports its own C11
binding, which provides a seamless integration between OQL and C11
with low impedance mismatch. It allows C11 variables to be used in
queries and the results of queries to be passed back to C11 programs.
Programs expressed in our C11 binding are compiled by a preprocessor
that performs query optimization at compile time rather than runtime, as
proposed by ODMG. In addition to compiled queries, l-DB provides an
interpreter that evaluates ad-hoc OQL queries at runtime.

The l-DB evaluation engine is written in SDL (the SHORE Data Lan-
guage) of the SHORE object management system [Carey et al. 1994],
developed at the University of Wisconsin. ODL schemas are translated into
SDL schemas in a straightforward way and are stored in the system
catalog. The l-DB OQL compiler is a C11 preprocessor that accepts a
language called l-OQL, which is C11 code with embedded DML com-
mands, to perform transactions, queries, updates, etc. The preprocessor
translates l-OQL programs into C11 code that contains calls to the l-DB
evaluation engine. We also provide a visual query formulation interface,
called VOODOO [Fegaras 1999b], and a translator from visual queries to
OQL text, which can be sent to the l-DB OQL interpreter for evaluation.

Our OQL optimizer is expressed in a very powerful optimizer specifica-
tion language, called OPTL, and is implemented in a flexible optimization
framework, called OPTGEN, which extends our earlier work on optimizer
generators [Fegaras et al. 1993]. OPTL is a language for specifying query
optimizers that captures a large portion of the optimizer specification
information in a declarative manner. It extends C11 with a number of
term-manipulation constructs and with a rule language for specifying
query transformations. OPTGEN is a C11 preprocessor that maps OPTL
specification into C11 code.

The l-DB OQL optimizer proceeds in eight phases: (1) parsing of OQL
queries and translation from OQL into calculus; (2) type checking; (3)
normalization; (4) translation into algebra and query unnesting; (5) join
permutation; (6) physical plan generation; (7) generation of intermediate
evaluation code; and (8) translation from intermediate code into C11 code,
or interpretation of the intermediate code.

Our unnesting algorithm, which is based on the framework described in
earlier sections, turned out to be very easy to implement (it is only 160
lines of C11 code). In addition to query unnesting, l-DB converts path
expressions into pointer joins between class extents (when possible) and
uses information about 1:N class relationships to convert unnests into
pointer joins between extents (by using the inverse relationship).

500 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Our query optimizer translates monoid comprehensions into algebraic
operators, which, in turn, are mapped into physical execution algorithms
like those found in relational database systems. This translation is done in
stages: queries in our framework are first translated into monoid compre-
hensions, which serve as an intermediate form, and then are translated
into a version of the nested relational algebra that supports aggregation,
quantification, outer-joins, and outer-unnests. At the end, the algebraic
terms are translated into execution plans.

A very important task of any query optimizer is finding a good order to
evaluate the query operations. In the context of relational databases, this
task is known as join-ordering. The l-DB system uses a polynomial-time
heuristic algorithm, called GOO [Fegaras 1998a], that generates a “good
quality” order of the monoid algebra operators in query algebraic form.
GOO is a bottom-up greedy algorithm that always performs the most
profitable operations first. The measure of profit is the size of the interme-
diate result, but it can be easily modified to use real cost functions. GOO is
based on query graphs and takes into account both the output sizes of the
results constructed in earlier steps and the predicate selectivities. It
generates bushy join trees that have very low intermediate results.

After the best evaluation order is derived, the algebraic form is mapped
into an evaluation plan by a rule-based rewriting system. Our system
considers the available access paths (indexes) and the available physical
algorithms to generate different plans. During this phase, all alternative
plans (for the derived order of operators) are generated and priced and the
best plan is selected. Finally, each evaluation plan is translated into an
intermediate evaluation code that reflects the signatures of the evaluation
algorithms used in l-DB. This code can then be translated straightfor-
wardly into C11 or interpreted by the l-DB interpreter.

The l-DB evaluation engine is built on top of SHORE [Carey et al. 1994].
We use the SDL layer of SHORE exclusively in our implementation,
because we believe it is more resilient to change and is easier to use than
the Shore Storage Manager. An alternative is to write our own value-added
server on top of the storage manager. Much of our effort has been devoted
to make the implementation of the evaluation engine as simple as possible
without sacrificing performance. This required a very careful design. For
example, one of our design requirements was to put all the evaluation
algorithms in a library, so that the query evaluation code would consist of
calls to these algorithms. This approach sounds obvious enough and simple
to implement, but it required some special techniques (described below)
borrowed from the area of functional programming.

Algebraic operators, such as R ”“R. A5S.B S, are intrinsically higher or-
der. That is, they are parameterized by pieces of code (i.e., functions) that
specify some of the operation details. For the previous join, the piece of code
is the predicate R. A 5 S.B. Most commercial DBMSs evaluate query
plans using a plan interpreter. Very few systems actually compile plans
into code, and when they do it is only for procedures written in a database

Optimizing Object Queries • 501

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

language. If it were to be implemented in C11, the join operator could be
specified as

Relation join (Relation x, Relation y, bool (pred) (tuple,tuple)),

where pred is the address of the predicate function. The same holds for any
evaluation plan operator, such as the nested-loop join operator. If a query is
to be compiled into execution code with no runtime interpretation of
predicates, it should make use of higher-order evaluation algorithms. The
alternative is to define the evaluation algorithms as kinds of macros to be
macroexpanded and individually tailored for each different instance of the
evaluation operator in the query plan. For example, the nested-loop join
would have to be a function with a “hole” in its body, to be filled with the
predicate code. Then the entire code, the evaluation function and the
predicate, would be generated and inserted inside the query code. This
approach is clumsy and makes the development and extension of the
evaluation algorithms very tedious and error-prone.

One very important issue when writing evaluation algorithms is stream-
based processing of data (sometimes called iterator-based processing or
pipelining). Whenever possible, it is highly desirable to avoid materializing
the intermediate data in a secondary storage. The l-DB system pipelines
all evaluation algorithms. Instead of using threads to implement pipelin-
ing, as traditionally done in most systems, we developed a special tech-
nique borrowed from the area of lazy functional languages. Each of our
evaluation algorithms is written in such a way that it returns a piece of
data (one tuple) as soon as it constructs one. To retrieve all the tuples, the
algorithm must be called multiple times. For example, the pipeline version
of the nested-loop join will have the signature

tuple nested_loop (Stream sx, Stream sy, bool (pred) (tuple,tuple)),

where Stream is a stream of tuples equipped with standard operations,
such as first and next. In contrast to the standard nested-loop algorithm,
this algorithm exits when it finds the first qualified tuple (that satisfies
pred). To pipeline an algorithm, we construct a suspended stream, which is
a structure with just one component: an embedded function, which, when
invoked, calls the evaluation algorithm to construct one tuple. For example, to
pipeline our nested-loop algorithm, we construct a suspended stream whose
embedded function, F, is defined as tuple F () return nested_loop(s1,s2,pred);
where s1 and s2 are the streams that correspond to the join inputs and
pred is the address of the predicate function. When a tuple is needed from a
suspended stream, its embedded function is called with no arguments to
return the next tuple. This approach is a clean and efficient way of
implementing pipelining. This type of evaluation resembles lazy evaluation
in functional programming languages. Here, though, we provide an explicit
control over the lazy execution, which gives a better handle on controlling
the data materialization in a secondary storage.

The intermediate evaluation code, which is generated from a query
evaluation plan, is a purely functional program that consists of calls to the

502 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

evaluation algorithms. The functional parameters of the calls (such as the
predicate function of the nested-loop join) are represented as anonymous
functions (lambda abstractions). If the intermediate code is compiled into
C11, the lambda abstractions are translated into named C11 functions by
a simple defunctionalization process. If the intermediate code is inter-
preted, each call to an evaluation algorithm is executed without much
overhead because function addresses are stored into a vector and calls to
functions are dispatched in constant time by retrieving the function di-
rectly from the vector. Lambda abstractions are interpreted by using the
address of the interpreter itself as a parameter and by pushing the body of
the lambda abstraction into a special stack. This form of dispatching makes
the interpreter very compact (400 lines of C11 code only) and very fast.

Currently, the l-DB evaluation engine supports table scan of a class
extent, index scan, external sorting, block nested-loop join, indexed nested-
loop join, sort-merge join, pointer join, unnesting, nesting (group-by), and
reduction (to evaluate aggregations and quantifications). The l-DB OODBMS
is available as open source software at

http://lambda.uta.edu/lambda-DB.html .

9. PERFORMANCE EVALUATION

To evaluate the performance of our query-unnesting algorithm, we used the
l-DB OODBMS to optimize and run 13 nested OQL queries against a
sample database. The database schema is given in Figure 1 and the OQL
queries are shown in Figure 13. The experiments were performed under the
following assumptions:

First, the queries not unnested by our decorrelation algorithm were
evaluated in a naive nested loop fashion: for each step of the outer query,
the entire inner query was evaluated. The query-unnesting algorithm
introduces outer-joins and outer-unnests to preserve the tuples of the outer
query that are not joined with any tuple from the inner query. The
outer-joins introduced by query unnesting are evaluated using outer-block-
nested-loop joins. An outer-block-nested-loop join uses a fixed-size memory
buffer to store a large number of tuples from the outer stream, thus
reducing the number of inner stream scans. Similarly, a left outer-join is
implemented by marking the joined tuples in the buffer and then by
checking for unmarked tuples before the buffer is replaced. We used a
buffer of 1,000 tuples in our tests, which means that the inner stream of a
join was scanned about 1,000 fewer times than the naive nested-loop
implementation.

Second, in contrast to joins, there are very few ways to evaluate the
unnest operator. In fact, l-DB provides only one implementation for the
unnest operator: a naive nested loop between each tuple and its collection
component being unnested. This case is also true for the outer-unnests.
Thus, if there are no joins in a query, then the only improvement intro-
duced by query unnesting would come from moving predicates between the
inner and outer queries, which may result in more selective unnest operations.

Optimizing Object Queries • 503

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Since “predicate move around” has already been shown to be effective by
others [Levy et al. 1994; Mumick et al. 1990], we decided to do benchmarks
over queries with joins by translating outer-joins into outer-block-nested
loops. This modification was mainly accomplished by mapping path expres-
sions such as e.dept.instructors in Query 2 into pointer joins between class
extents. This optimization, known as materialization of path expressions, is
very effective when there are multiple paths with the same prefix. It is also
very effective when combined with query unnesting, since query unnesting
promotes the pointer joins of the inner queries to the outer query, thus
allowing mixing the inner and outer operators.

Third, the group-by queries (queries 7, 8, 9, and 10) were optimized into
group-by operations only when the queries were unnested. This step was
necessary because the group-by queries in l-DB are first translated into
nested queries (as described in Section 3) and then these nested queries are
translated into group-by operators as described in Section 7.4 (using the
simplification transformations for query unnesting). We made this trans-
formation in two steps instead of one, since the original group-by query and

Fig. 13. The benchmark queries.

504 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

the translated nested query are semantically equivalent, and the resulting
evaluation plan should not depend on the way the user chooses to express
the query. Of course, other systems may choose to do this translation in one
step, in which case there would be no differences in measurement in the
nested and unnested versions of queries 7 through 10, since both result in
the same plan.

Finally, both nested and unnested queries were optimized extensively by
the l-DB optimizer, and the evaluation plans were evaluated in a stream-
based fashion.

The test database was created in four different sizes, as indicated by the
cardinalities of the class extents for Departments, Instructors, and Courses
in Table II. The benchmarks were run on a lightly loaded Linux worksta-
tion with a single 800MHz Pentium III, 256MB memory, and an ultra–
160/m scsi 10000rpm disk. The buffer pool size of the SHORE client was set
to 20MB. The numbers shown in Table II indicate processor time in
seconds, calculated using the unix function clock. Each entry in the table
has two values, n / m, to indicate the execution time of the query in seconds
with ~n! and without ~m! query unnesting. A star indicates incomplete
execution due to a SHORE server crash. From the measurements above, it
is clear that query unnesting offers a significant performance improvement
for the selected queries.

10. RELATED WORK

There are many proposals for object query algebras [Leung et al. 1993;
Danforth and Valduriez 1992; Cluet and Delobel 1992; Beeri and Kor-
natzky 1990; Pistor and Traunmueller 1986]. In contrast to our algebra,
these algebras support multiple bulk operators. But as we have demon-
strated in this article, we get enough expressive power with just one
operator, namely the monoid homomorphism. Supporting a small number
of operators is highly desirable, since the more bulk operations an algebra

Table II. Performance Evaluation of the Query Unnesting Algorithm

Departments/
Instructors/Courses 10/100/50 20/200/100 30/300/150 50/500/200

Query 1: 0.03 / 0.09 0.04 / 0.46 0.14 / 0.99 0.17 / 2.57
Query 2: 0.41 / 0.19 0.93 / 1.08 1.51 / 2.05 2.59 / 6.96
Query 3: 0.05 / 0.19 0.13 / 0.59 0.18 / 1.29 0.43 / 2.70
Query 4: 0.01 / 0.27 0.10 / 1.02 0.03 / 2.42 0.05 / 6.65
Query 5: 0.01 / 0.24 0.03 / 0.78 0.04 / 1.96 0.08 / 7.36
Query 6: 0.01 / 0.15 0.07 / 0.56 0.10 / 1.16 0.20 / 2.53
Query 7: 0.00 / 0.16 0.03 / 2.83 0.07 / 5.56 0.05 / 10.94
Query 8: 0.03 / 10.69 0.06 / 76.44 0.15 / 255.92 0.18 / 745.03
Query 9: 0.04 / 19.53 0.09 / 168.63 0.26 / 590.28 0.42 / *
Query 10: 0.07 / 11.94 0.16 / 92.09 0.24 / 301.30 0.39 / *
Query 11: 0.02 / 0.06 0.07 / 0.12 0.09 / 0.21 0.13 / 0.70
Query 12: 0.19 / 0.17 0.17 / 0.61 0.30 / 1.14 0.74 / 2.96
Query 13: 0.05 / 0.26 0.11 / 1.30 0.16 / 2.59 0.32 / 5.81

Optimizing Object Queries • 505

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

supports, the more transformation rules it needs and, therefore, the harder
the optimization task becomes.

Our framework is based on monoid homomorphisms, which were first
introduced by Breazu-Tannen et al. [1992a; 1992b] and Breazu-Tannen and
Subrahmanyam [1991] as an effective way to capture database queries.
Their form of monoid homomorphism (also called structural recursion over
the union presentation—SRU) is more expressive than ours. However,
operations of the SRU form require the validation of the associativity,
commutativity, and idempotence properties of the monoid associated with
the output of this operation. These properties are hard to check by compiler
[Breazu-Tannen and Subrahmanyam 1991], which makes the SRU opera-
tion impractical. Breazu-Tannen and Subrahmanyam first recognized that
there are some special cases where these conditions are automatically
satisfied, such as the ext~ f ! operation (equivalent to hom@Q, Q#~ f ! for a
collection monoid Q). In our view, SRU is too expressive, since inconsistent
programs cannot always be detected in that form. Moreover, the SRU
operator can capture nonpolynomial operations, such as the powerset,
which complicates query optimization. In fact, to our knowledge, there is no
normalization algorithm for SRU forms in general (i.e., SRU forms cannot
be put in canonical form). On the other hand, ext~ f ! is not expressive
enough, since it does not capture operations that involve different collection
types and cannot express predicates and aggregates. Our monoid compre-
hension is the most expressive subset of SRU proposed so far, in which
inconsistencies can always be detected at compile time and, more impor-
tantly, where all programs can be put in canonical form.

Monad comprehensions were first introduced by Wadler [1990] as a
generalization of list comprehensions. Monoid comprehensions are related
to monad comprehensions but are considerably more expressive. In partic-
ular, monoid comprehensions can mix inputs from different collection types
and may return output of a different type. This mixing is not possible for
monad comprehensions, since they restrict the inputs and the output of a
comprehension to be of the same type. Monad comprehensions were first
proposed as a convenient database language by Trinder and Wadler [1989];
Trinder [1991]; and Chan and Trinder [1994], who also presented many
algebraic transformations over these forms, as well as methods for convert-
ing comprehensions into joins. The monad comprehension syntax was also
adopted by Buneman et al. [1994] as an alternative syntax to monoid
homomorphisms. The comprehension syntax was used to capture operations
that involve collections of the same type, while structural recursion was
used for expressing the rest of the operations (such as converting one
collection type to another, predicates, and aggregates).

In a previous work [Fegaras 1993], we used an alternative representation
for lists, called insert-representation, to construct list values. This method
is commonly used in functional programming, mainly because it uses only
two constructors, cons and nil, to construct list values, instead of using
three: append, singleton, and nil. We found that the append-representation

506 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

is superior to the insert-representation when adding extra properties to the
append constructor, such as commutativity and idempotence, to define bags
and sets.

Our normalization algorithm is influenced by Wong’s work on normaliza-
tion of monad comprehensions [Wong 1993; 1994]. He presented some very
powerful rules for flattening nested comprehensions into canonical compre-
hension forms whose generators are over simple paths. These canonical
forms are equivalent to our canonical forms for monoid comprehensions.
His work, though, does not address query unnesting for complex queries (in
which the embedded query is part of the predicate or the comprehension
head), which cannot be unnested without using outer-joins and grouping.

There is an increasing number of proposals on OODB query optimization.
Some of them are focused on handling nested collections [Ozsoyoglu and
Wang 1992; Colby 1989], others on converting path expressions into joins
[Kemper and Moerkotte 1990; Cluet and Delobel 1992], others on unnesting
nested queries [Cluet and Moerkotte 1995b; 1995a], while still others are
focused on handling encapsulation and methods [Daniels et al. 1991].

Query decorrelation was first introduced in the context of relational
queries [Kim 1982; Ganski and Wong 1987; Muralikrishna 1992], mostly in
the form of source-to-source transformations. There are a number of
proposals lately that instead of rewriting correlated queries into more
efficient queries or algebraic forms, offer new evaluation algorithms that
perform better than the default nested loop evaluation of embedded que-
ries. Examples of such methods include magic decorrelation [Mumick et al.
1990], which promotes predicates in the inner loop of the nested loop
evaluation of correlated queries; and predicate move around [Levy et al.
1994], which moves predicates around the query graph. Our decorrelation
algorithm not only moves predicates to the right place, it also intermixes
operators between outer and inner queries, thus supporting more possibil-
ities for join permutations—which may lead to better plans.

Our query unnesting algorithm is influenced by the work of Cluet and
Moerkotte [1995a; 1995b], which covered many cases of nesting in OODBs,
including nested aggregate queries and, more importantly, validated all the
transformations. Their work was extended by Claussen et al. [1997] to
include universal quantification. Our work proposes a rewriting system for
complete unnesting, while their work considers algebraic equalities for
some forms of unnesting.

The work of Lin and Ozsoyoglu [1996] addresses nested queries in a
different way. Nested OQL queries are first translated into generalized
path expressions that have enough expressive power to capture outer-joins
and grouping. This translation may be very inefficient at the beginning due
to a large number of redundant joins, but an optimization phase exists
where path expressions are translated into joins and redundancies are
eliminated. But no proof was provided to show that their two-phase
unnesting method avoids redundancies in all forms and generates the same
quality of plans as those of other unnesting techniques. Furthermore, no
proof was given about the correctness and completeness of their method.

Optimizing Object Queries • 507

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

However, we believe that when these issues are addressed properly, their
technique may turn out to be very effective and practical.

Another approach to query unnesting—which has the same goals as
ours—is that of Cherniack and Zdonik [1998a; 1998b]. In contrast to our
approach, they used an automatic theorem prover to prove the soundness of
their unnesting rewrite rules, while we proved our transformations by
hand. Their work is a moderate generalization of Kim’s query unnesting
techniques for relational queries, while ours covers all forms of query
nesting for complex OODB queries. The use of a theorem prover is highly
desirable for extensible systems, since it makes the query optimizer very
flexible. In particular, with the help of a theorem prover, an optimizer does
not require validation in a form of a formal proof each time a new algebraic
operator or a new rewrite rule is introduced.

11. CURRENT AND FUTURE WORK

Even though the basic framework for query unnesting has already been
developed, there are some issues that we plan to address in future re-
search. The most important is query unnesting in the presence of methods.
The problem is not in handling a method invocation that contains a query
in one of its arguments; this case can be handled effectively by our
unnesting framework.The problem is when the method body itself contains
queries. There are a number of proposals for handling this case. One is
breaking the encapsulation and unfolding the method body in the place of
the call. This approach does not apply to recursive methods and does not
support separate compilation very well, since it requires query recompila-
tion when a method changes. Another approach is attaching user-defined
optimization rules to every class or method, which requires a substantial
effort from programmers. Yet another approach is considering a method as
a view and materializing it into a table (known as memoization in program-
ming languages). We are planning to investigate all these approaches more
thoroughly and to choose the one that fits our unnesting algorithm best.

We are currently developing a formal framework for optimizing object-
oriented queries in the presence of side effects [Fegaras 1999a]. These
queries may contain object updates at any place and in any form. We have
proposed a language extension to the monoid comprehension calculus to
express these object-oriented features and given a formal meaning to these
extensions. Our method is based on denotational semantics, which is often
used to give a formal meaning to imperative programming languages. The
semantics of our language extensions is expressed in terms of our monoid
calculus, without the need for any fundamental change to our basic
framework. Our initial results suggest that our method not only maintains
referential transparency, which allows us to do meaningful query optimiza-
tion, but it is also practical for optimizing OODB queries, since it allows the
same optimization techniques applied to regular queries to be used with
minimal changes for OODB queries.

508 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

12. CONCLUSION

We have presented a uniform calculus based on comprehensions that
captures many advanced features found in modern object-oriented and
object-relational query languages. We showed that this calculus is easy to
manipulate by presenting a normalization algorithm that unnests many
forms of nested comprehensions. The main contribution of this article is an
effective framework for optimizing OODB queries. Queries in our frame-
work are first translated into comprehensions and then into a lower-level
algebra that reflects many relational DBMS physical algorithms. The
algorithm that translates the calculus into the algebra performs query
decorrelation by unnesting any form of nested comprehensions. Finally, we
reported on an implementation of an ODMG-based DBMS that depends on
our optimization framework.

APPENDIX

A. PROOFS OF THEOREMS

THEOREM 3. The normalization rules in Figure 4 are meaning-preserving.

PROOF. We prove the correctness of Rule (N8) only, since it is the most
difficult to prove (there are similar proofs for the other rules). Even though
the proof of Rule (N8) assumes the correctness of the other rules, there is
no circularity because the other rules can be proved without a reference to
Rule (N8). We define FQvqbveb, where q is a sequence of qualifiers and e is
a term in the calculus, as follows:

FQvbveb 5 e (F1)

FQvx 4 u, qbveb 5 hom@R, Q#~lx.FQvqbveb!u (F2)

FQvpred, qbveb 5 if pred then FQvqbveb else ZQ (F3)

where R in Eq. (F2) is the collection monoid associated with u. Note that F

is not a function over values but a function over terms in the calculus. It
gets a sequence of qualifiers and a term as input and returns a term as
output. It can be easily proved using these equations and Definition 3:

Q{ e @# q, r } 5 FQvqbvQ{ e @# r }b (W1)

First, we prove that

Q{ e @# v 4 R{ e9 @# r }, s } 5 Q{ e @# r, v [e9, s } (W2)

using induction over the number of generators in r and using structural
induction over the domain of the first generator in r. If r does not contain
any generator (i.e., it contains only predicates), then the equation above is
true. If the first qualifier of r is a predicate, then we can move the predicate
at the end of r. Let r 5 w 4 u, t, where t has n generators. We assume

Optimizing Object Queries • 509

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

that Eq. (W2) is true for a n generators in r (induction hypothesis), and we
prove it for r (induction step). Let u be a collection associated with the
monoid J . Then u is ZJ, or it is UJ~a! for some a, or it is X J Y for some
X and Y. If u 5 ZJ, then both sides of the equation are equal to ZQ. If u
5 UJ~a!, then

Q{ e @# v 4 R{ e9 @# w 4 UJ~a!, t }, s } 5 Q{ e @# v 4 R{ e9 @# w [a, t }, s }

5 Q{ e @# v 4 R{ e9@a /w# @# t@a /w# }, s }

5 Q{ e @# t@a /w#, v [e9@a /w#, s }

5 Q{ e @# w 4 UJ~a!, t, v [e9, s }

from Rule (N6), Rule (N1), and from the induction hypothesis (assuming
that there are no name conflicts between variables). We assume that Eq.
(5) is true for X and Y and prove it for u 5 X J Y:

Q{ e @# v 4 R{ e9 @# w 4 ~X J Y!, t }, s }

5 Q { e @# v 4 ~R{ e9 @# w 4 X, t }! R ~R{ e9 @# w 4 X, t }!, s }

5 ~Q{ e@# v 4 R{ e9 @# w 4 X, t }, s }! Q ~Q{ e @# v 4 R{ e9 @# w 4 Y, t }, s }!

5 ~Q{ e @# w 4 X, t, v [e9, s }! Q ~Q{ e @# w 4 Y, t, v [e9, s }!

5 Q{ e @# w 4 ~X J Y!, t, v [e9, s }

from Rule (N7) and from induction hypothesis. Therefore, the left part of
Rule (N8) becomes

Q{ e @# q, v 4 R{ e9 @# r }, s } 5 FQvqbvQ{ e @# v 4 R{ e9 @# r }, s }b

5 FQvqbvQ{ e @# r, v [e9, s }b

5 Q{ e @# q, r, v [e9, s }

from Eq. (W2). e

THEOREM 7. The rules in Figure 10 satisfy the following equations:

vQ{ e @# r }bw
~!E 5 Q{ e @# w 4 E, r } (TH2)

vQ{ e@# r }bw
uE 5 { ~u9, Q{ e @# w 4 E, w8u Þ NULL, u9 5z u, r }!

@# u 4 Plw.u~E! } for u Þ ~! (TH3)

510 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

PROOF. Note that for u 5 w, we have w8u 5 ~! and Plw.w~E! 5 E, in
which case Eq. (TH3) becomes

vQ{ e @# r }bw
wE 5 { ~w, Q{ e @# r }! @# w 4 E } (TH4)

since w in the inner comprehension is restricted to be equal to u9 in the
outer comprehension, and according to Property (P1), the generator w 4 E
of the inner comprehension can be safely removed. We prove Eqs. (TH2)
through (TH4) using structural induction. That is, assuming that all the
subterms of a term satisfy the theorem (induction hypothesis), we prove
that a term itself satisfies the theorem (induction step). The induction basis
is for the terms that do not contain subterms. All rules in Figure 10 are
compositional, which means that the translation of a term is expressed in
terms of the translation of its subterms. Thus, the structural induction will
follow the recursion pattern of the rules in Figure 10. We prove the
theorems for Rules (C5), (C6), (C8), (C9), and (C11). The proofs for the other
rules are similar. Proof for Rule (C5):

vQ{ e @# p }bw
~!E 5 Dlw.p

Q/lw.e~E! from Rule ~C5!

5 Q{ e @# w 4 E, p } from Eq. ~O4!

which proves Theorem (TH2). Proof for Rule (C6):

vQ{ e @# v 4 X, r, p }bw
~!E

5 vQ{ e @# r, p@~w, v!# }b~w, v!
~! ~E ”“l~w, v!.p@~w, v!# ~slv.p@v#~X !!!

5 Q{ e @# ~w, v! 4 ~E ”“l~w, v!.p@~w, v!# ~slv.p@v#~X !!!, r, p@~w, v!# }

5 Q{ e @# ~w, v! 4 { ~w, v! @# w4E, v4 {v @# v4X, p@v#}, p@~w, v!#}, r, p@~w, v!#}

5 Q{ e @# w 4 E, v 4 X, p@v#, p@~w, v!#, r, p@~w, v!# }

5 Q{ w 4 E, v 4 X, r, p }

from Rule (C6), from induction hypothesis (TH2), from Eqs. (O2) and (O1),
and by using normalization. This proves Theorem (TH2). Proof for Rule (C8):

vQ{ e @# p }bw
uE 5 Glw.p/lw.w8u

Q/lw.e/lw.u ~E!

5 { ~u@v /w#, Q{ e @# w 4 E, w8u Þ NULL, u@v /w# 8 u, p }! @# v 4 Plw.u~E! }

5 { ~u9, Q{ e @# w 4 E, w8u Þ NULL, u9 8 u, p }! @# u9 4 Plw.u~E! }

(from Rule (C8) and from Eq. (O7), which proves Theorem (TH3). Proof for
Rule (C9):

vQ{ e @# v 4 X, r, p }bw
uE

5 vQ{ e @# r, p@~w, v!# }b~w, v!
u ~E 5”“l~w, v!.p@~w, v!# ~slv.p@v#~X !!!

5 { ~u9, Q{ e @# ~w, v! 4 ~E 5”“l~w, v!.p@~w, v!# ~slv.p@v#~X !!!, ~w, v!8u Þ NULL, u9 8 u,

r, p@~w.v!# }! @# u9 4 Pl~w, v!.u~E 5”“l~w, v!.p@~w, v!# ~slv.p@v#~X !!! }

Optimizing Object Queries • 511

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

from Rule (C9) and from induction hypothesis (TH3). From Eqs. (O5) and
(O2) and after normalization, we get

E 5”“l~w, v!.p@~w, v!# ~slv.p@v#~X !! 5 { ~w, v! @# w 4 E, v 4 F }

where F 5 if ∧{ ¬p@~w, v!# @# w Þ NULL, v 4 X, p@v# } then [NULL] else
{ v @# v 4 X, p@v#, p@~w, v!# }. Thus, Pl~w, v!.u~E 5”“l~w, v!.p@~w, v!# ~slv.p@v#~ X !!!
is equal to Pl~w, v!.u~{ ~w, v! @# w 4 E, v 4 F }!, which is equal to Plw.u~E!,
according to Property (P2). Therefore, we have

vQ{ e @# v 4 X, r, p }bw
uE

5 { ~u9, Q{ e @# ~w, v! 4 { ~w, v! @# w 4 E, v 4 F }, v Þ NULL, w8u Þ NULL,

u9 8 u, r, p@~w, v!# }! @# u9 4 Plw.u~E! }

5 { ~u9, Q{ e @# w 4 E, v 4 F, v Þ NULL, w8u Þ NULL, u9 8 u, r, p@~w, v!# }!

@# u9 4 Plw.u~E! }

5 { ~u9, Q{ e @# w 4 E, v 4 { v @# v 4 X, p@v#, p@~w, v!# }, w8u Þ NULL,

u9 8 u, r, p@~w, v!# }! @# u9 4 Plw.u~E! }

5 { ~u9, Q{ e @# w 4 E, v 4 X, p@v#, p@~w, v!#, w8u Þ NULL, u9 8 u, r,

p@~w, v!# }! @# u9 4 Plw.u~E! }

5 { ~u9, Q{ e @# w 4 E, v 4 X, w8u Þ NULL, u9 8 u, r, p }! @# u9 4 Plw.u~E! }

since v Þ NULL. Thus we have a proof of Rule (C9). For Rule (C11), we have
two cases; when u 5 ~!:

vQ{ e1 @# s, p~R$e2 @# r! }bw
~!E

5 vQ{ e1 @# s, p~v! }b~w, v!
~! ~vR{ e2 @# r }bw

wE!

5 Q{ e1 @# ~w, v! 4 ~vR{ e2 @# r }bw
wE!, s, p~v! }

5 Q{ e1 @# ~w, v! 4 { ~w, R{ e2 @# r }! @# w 4 E }, s, p~v! }

5 Q{ e1 @# w 4 E, s, p~R{ e2 @# r }! }

(from Rule (C11), from hypotheses (TH2) and (TH4), and by using normal-
ization); and when u Þ ~!:

vQ{ e1 @# s, p~R$e2 @# r! }bw
uE

5 vQ{ e1 @# s, p~v! }b~w, v!
u ~vR{ e2 @# r }bw

wE!

5 { ~u9, Q{ e1 @# ~w, v! 4 ~vR{ e2 @# r }bw
wE!, ~w, v!8u Þ NULL, u9 8 u, s, p~v! }!

@# u9 4 Pl~w, v!.u~vR{ e2 @# r }bw
wE! }

5 { ~u9, Q{ e1 @# ~w, v! 4 ~{ ~w, R{ e2 @# r }! @# w 4 E }!, ~w, v!8u Þ NULL,

512 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

u9 8 u, s, p~v! }! @# u9 4 Pl~w, v!.u~{ ~w, R{ e2 @# r }! @# w 4 E }! }

5 { ~u9, Q{ e1 @# ~w, v! 4 ~{ ~w, R{ e2 @# r }! @# w 4 E }!, ~w, v!8u Þ NULL,

u9 8 u, s, p~v! }! @# u9 4 Plw.u~E! }

5 { ~u9, Q{ e1 @# w 4 E, w8u Þ NULL, u9 8 u, s, p~R{ e2 @# r }! }! @# u9 4 Plw.u~E! }

from Rule (C11), from induction hypotheses (TH3) and (TH4), from Prop-
erty (P2), and by using normalization. e

Corollary 1. The rules in Figure 10 are meaning-preserving. That is,

vQ{ e @# r }b~!
~!$~!% 5 Q{ e @# r }.

PROOF. This corollary is a consequence of Eq. (TH2) of Theorem 7 (for
w 5 ~! and E 5 $~!%). e

REFERENCES

BEECH, D. 1993. Collections of objects in SQL3. In Proceedings of the Nineteenth Interna-
tional Conference on Very Large Data Bases (VLDB ’93, Dublin, Ireland, Aug.). Morgan
Kaufmann Publishers Inc., San Francisco, CA, 244–255.

BEERI, C. AND KORNATZKY, Y. 1990. Algebraic optimization of object-oriented query
languages. In Proceedings of the Third International Conference on Database Theory (ICDT
’90, Paris, France, Dec.), S. Abiteboul and P. C. Kanellakis, Eds. Springer Lecture Notes in
Computer Science. Springer-Verlag, New York, NY, 72–88.

BELLANTONI, S. AND COOK, S. 1992. A new recursion-theoretic characterization of the polytime
functions (extended abstract). In Proceedings of the 24th Annual ACM Symposium on
Theory of Computing (STOC ’92, Victoria, B. C., Canada, May 4–6), R. Kosaraju, M.
Fellows, A. Wigderson, and J. Ellis, Chairs. ACM Press, New York, NY, 283–293.

BREAZU-TANNEN, V., BUNEMAN, P., AND NAQVI, S. 1992a. Structural recursion as a query
language. In Proceedings of the Third International Workshop on Database Programming
Languages: Bulk Types & Persistent Data (DBPL3, Nafplion, Greece, Aug. 27–30), P.
Kanellakis and J. W. Schmidt, Eds. Morgan Kaufmann Publishers Inc., San Francisco, CA,
9–19.

BREAZU-TANNEN, V., BUNEMAN, P., AND WONG, L. 1992b. Naturally embedded query
languages. In Proceedings of the 4th International Conference on Database Theory (LNCS
646, Berlin). Springer-Verlag, New York, NY.

BREAZU-TANNEN, V. AND SUBRAHMANYAM, R. 1991. Logical and computational aspects of
programming with sets/bags/lists. In Proceedings of the 18th International Colloquium on
Automata, Languages and Programming (Madrid, July 8–12), J. L. Albert, B. R. Artalejo,
and B. Monien, Eds. Springer Lecture Notes in Computer Science. Springer-Verlag, New
York, NY, 60–75.

BUNEMAN, P., LIBKIN, L., SUCIU, D., TANNEN, V., AND WONG, L. 1994. Comprehension syntax.
SIGMOD Rec. 23, 1 (Mar.), 87–96.

BUNEMAN, P., NAQVI, S., TANNEN, V., AND WONG, L. 1995. Principles of programming with
complex objects and collection types. Theor. Comput. Sci. 149, 1 (Sept. 18), 3–48.

CAREY, M. AND DEWITT, D. 1996. Of objects and databases: A decade of turmoil. In
Proceedings of the 22nd International Conference on Very Large Data Bases (VLDB ’96,
Bombay, Sept.). Morgan Kaufmann Publishers Inc., San Francisco, CA, 3–14.

CAREY, M. J., DEWITT, D. J., FRANKLIN, M. J., HALL, N. E., MCAULIFFE, M. L., NAUGHTON, J. F.,
SCHUH, D. T., SOLOMON, M. H., TAN, C. K., TSATALOS, O. G., WHITE, S. J., AND ZWILLING, M. J.
1994. Shoring up persistent applications. SIGMOD Rec. 23, 2 (June), 383–394.

Optimizing Object Queries • 513

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

CATTELL, R., ED. 2000. The Object Data Standard: ODMG 3.0. Morgan Kaufmann, San
Mateo, CA.

CHAN, D. AND TRINDER, P. 1994. Object comprehensions: A query notation for object-oriented
databases. In Proceedings of the 12th British Conference on Databases (Guildford, UK,
July). Morgan Kaufmann Publishers Inc., San Francisco, CA, 55–72.

CHERNIACK, M. AND ZDONIK, S. 1998a. Changing the rules: Transformations for rule-based
optimizers. SIGMOD Rec. 27, 2, 61–72.

CHERNIACK, M. AND ZDONIK, S. 1998b. Inferring function semantics to optimize queries. In
Proceedings of the 24th International Conference on Very Large Data Bases. 239–250.

CLAUSSEN, J., KEMPER, A., MOERKOTTE, G., AND PEITHNER, K. 1997. Optimizing queries with
universal quantification in object-oriented and object-relational databases. In Proceedings
of the 23rd International Conference on Very Large Data Bases (VLDB ’97, Athens, Greece,
Aug.). 286–295.

CLUET, S. AND DELOBEL, C. 1992. A general framework for the optimization of object-oriented
queries. SIGMOD Rec. 21, 2 (June 1), 383–392.

CLUET, S. AND MOERKOTTE, G. 1995a. Efficient evaluation of aggregates on bulk types. Tech.
Rep. 95-05. Aachen University of Technology, Aachen, Germany.

CLUET, S. AND MOERKOTTE, G. 1995b. Nested queries in object bases. In Proceedings of the
Fifth International Workshop on Database Programming Languages (Gubbio, Italy, Sept.).

COLBY, L. S. 1989. A recursive algebra and query optimization for nested relations. SIGMOD
Rec. 18, 2 (June), 273–283.

DANFORTH, S. AND VALDURIEZ, P. 1992. A FAD for data intensive applications. IEEE Trans.
Knowl. Data Eng. 4, 1 (Feb.), 34–51.

DANIELS, S., GRAEFE, G., KELLER, T., MAIER, D., SCHMIDT, D., AND VANCE, B. 1991. Query
optimization in revelation, an overview. Data Eng. 14, 2 (June), 58–62.

DEUX, O. 1990. The story of O2. IEEE Trans. Knowl. Data Eng. 2, 1, 91–108.
EISENBERG, A. AND MELTON, J. 1999. SQL1999, formerly known as SQL3. SIGMOD Rec. 28, 1

(Mar.), 131–138.
FEGARAS, L. 1993. Efficient optimization of iterative queries. In Proceedings of the

International Workshop on Database Programming Languages (New York, NY). Morgan
Kaufmann Publishers Inc., San Francisco, CA, 200–225.

FEGARAS, L. 1998a. A new heuristic for optimizing large queries. In Proceedings of the Ninth
International Conference on DEXA (Vienna, Aug.). Springer-Verlag, Heidelberg, Germany,
726–735.

FEGARAS, L. 1998b. Query unnesting in object-oriented databases. SIGMOD Rec. 27, 2,
49–60.

FEGARAS, L. 1999a. Optimizing queries with object updates. J. Intell. Inf. Syst. 12, 219–242.
FEGARAS, L. 1999b. VOODOO: A visual object-oriented database language for ODMG

OQL. In Proceedings of the First ECOOP Workshop on Object-Oriented Databases (Lisbon,
Portugal, June). 61–72.

FEGARAS, L. AND MAIER, D. 1995. Towards an effective calculus for object query languages. In
Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data
(SIGMOD ’95, San Jose, CA, May 23–25), M. Carey and D. Schneider, Eds. ACM Press, New
York, NY, 47–58.

FEGARAS, L., MAIER, D., AND SHEARD, T. 1993. Specifying rule-based query optimizers in a
reflective framework. In Proceedings of the Conference on Deductive and Object-Oriented
Databases (Phoenix, AZ, Dec.). Springer-Verlag, Vienna, Austria, 146–168.

FEGARAS, L., SRINIVASAN, C., RAJENDRAN, A., AND MAIER, D. 2000. l-db: An odmg-based
object-oriented dbms. In Proceedings of the ACM SIGMOD Conference on Management of
Data (SIGMOD ’2000, Dallas, TX, May). ACM Press, New York, NY.

GANSKI, R. A. AND WONG, H. K. T. 1987. Optimization of nested SQL queries revisited.
SIGMOD Rec. 16, 3 (Dec.), 23–33.

KEMPER, A. AND MOERKOTTE, G. 1990. Advanced query processing in object bases using access
support relations. In Proceedings of the 16th International Conference on Very Large Data
Bases (VLDB, Brisbane, Australia, Aug. 13-16), D. McLeod, R. Sacks-Davis, and H. Schek,
Eds. Morgan Kaufmann Publishers Inc., San Francisco, CA, 290–301.

514 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

KIM, W. 1982. On optimizing an SQL-like nested query. ACM Trans. Database Syst. 7, 3
(Sept.), 443–469.

LEIVANT, D. 1993. Stratified functional programs and computational complexity. In
Proceedings of the 20th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’93, Charleston, SC, Jan. 10–13), S. L. Graham, Ed. ACM
Press, New York, NY, 325–333.

LEUNG, T., MITCHELL, G., SUBRAMANIAN, B., VANCE, B., VANDENBERG, S., AND ZDONIK, S. 1993.
The AQUA data model and algebra. In Proceedings of the International Workshop on
Database Programming Languages (New York, NY). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, 157–175.

LEVY, A. Y., MUMICK, I. S., AND SAGIV, Y. 1994. Query optimization by predicate
move-around. In Proceedings of the 20th International Conference on Very Large Data Bases
(VLDB’94, Santiago, Chile, Sept.). VLDB Endowment, Berkeley, CA, 96–107.

LIBKIN, L., MACHLIN, R., AND WONG, L. 1996. A query language for multidimensional arrays:
design, implementation, and optimization techniques. SIGMOD Rec. 25, 2, 228–239.

LIN, J. AND OZSOYOGLU, Z. M. 1996. Processing OODB queries by O-algebra. In Proceedings of
the Fifth International Conference on Information and Knowledge Management (CIKM ’96,
Rockville, MD, Nov. 12–16), M. T. Özsu and K. Barker, Eds. ACM Press, New York, NY,
134–142.

MAIER, D. AND VANCE, B. 1993. A call to order. In Proceedings of the Twelfth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS, Wash-
ington, DC, May 25–28), C. Beeri, Chair. ACM Press, New York, NY, 1–16.

MEIJER, E., FOKKINGA, M., AND PATERSON, R. 1991. Functional programming with bananas,
lenses, envelopes and barbed wire. In Proceedings of the Fifth ACM Conference on
Functional Programming Languages and Computer Architecture (Cambridge, MA, Aug.
26–30), J. Hughes, Ed. Springer Lecture Notes in Computer Science. Springer-Verlag, New
York, NY, 124–144.

MUMICK, I. S., FINKELSTEIN, S. J., PIRAHESH, H., AND RAMAKRISHNAN, R. 1990. Magic is
relevant. SIGMOD Rec. 19, 2 (June), 247–258.

MURALIKRISHNA, M. 1992. Improved unnesting algorithms for join aggregate SQL queries. In
Proceedings of the 18th International Conference on Very Large Data Bases (Vancouver,
B.C., Aug.). VLDB Endowment, Berkeley, CA, 91–102.

OZSOYOGLU, Z. AND WANG, J. 1992. A keying method for a nested relational database
management system. In Proceedings of the Eighth International Conference on Data
Engineering (Tempe, AZ, Feb.).

PEYTON JONES, S. L. 1987. The Implementation of Functional Programming Languages.
Prentice-Hall, New York, NY.

PIERCE, B. C. 1991. Basic Category Theory for Computer Scientists. Foundations of
Computing. MIT Press, Cambridge, MA.

PISTOR, P AND TRAUNMUELLER, R. 1986. A database language for sets, lists and tables. Inf.
Syst. 11, 4 (Oct.), 323–336.

SELINGER, P. G., ASTRAHAN, M. M., LORIE, R. A., AND PRICE, T. G. 1979. Access path selection
in a relational database management system. In Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD ’79, Boston, MA, May 30–June
1). ACM Press, New York, NY, 23–34.

STEENHAGEN, H. J., APERS, P. M. G., AND BLANKEN, H. M. 1994. Optimization of nested queries
in a complex object model. In Proceedings of the Fourth International Conference on
Extending Database Technology: Advances in Database Technology (EDBT ’94, Cambridge,
UK, Mar. 28–31), M. Jarke, J. Bubenko, and K. Jeffery, Eds. Springer Lecture Notes in
Computer Science. Springer-Verlag, New York, NY, 337–350.

THOMPSON, S. 1998. Haskell: The Craft of Functional Programming. Addison-Wesley,
Reading, MA.

TRINDER, P. 1992. Comprehensions, a query notation for DBPLs. In Proceedings of the Third
International Workshop on Database Programming Languages: Bulk Types & Persistent
Data (DBPL3, Nafplion, Greece, Aug. 27–30), P. Kanellakis and J. W. Schmidt,
Eds. Morgan Kaufmann Publishers Inc., San Francisco, CA, 55–68.

Optimizing Object Queries • 515

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

TRINDER, P. AND WADLER, P. 1989. Improving list comprehension database queries. In
Proceedings of on TENCON’89 (Bombay, Nov.). 186–192.

WADLER, P. 1990. Comprehending monads. In Proceedings of the 1990 ACM Symposium on
LISP and Functional Programming (Nice, France, June 27–29), G. Kahn, Chair. ACM
Press, New York, NY, 61–78.

WONG, L. 1993. Normal forms and conservative properties for query languages over collection
types. In Proceedings of the Twelfth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS, Washington, DC, May 25–28), C. Beeri, Chair. ACM
Press, New York, NY, 26–36.

WONG, L. 1994. Querying nested collections. Ph.D. Dissertation. University of Pennsylvania,
Philadelphia, PA.

Received: November 1998; revised: July 2000; accepted: October 2000

516 • L. Fegaras and D. Maier

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

