

(application specific) data
(models)

• framing
– issues
– requirements

• what sort of models do we need to worry
about?

• RDF/OWL
• XML/XSD

Framing the issue

• Many RIF applications will involve rulesets
that process external data. How will they:
– identify the data set?
– identify the data model (schema, entailment

regime) associated with the data set?
– access the data?
– access the data model?
Not all of these may be required

• Some applications may transfer the data
as RIF and no external data support is
required

• Use cases say this is not enough

Requirements (to be
confirmed)

• RIF will support rulesets which access data
in non-RIF formats

• These include at least:
– XML constrained by an XML Schema
– RDF, augmented by RDFS/OWL-full ontology
– object data model (come back to this one)

• Note: some rulesets may access more
than one such model simultaneously (XML
embedded in RDF)

Non-requirements (to be
confirmed)

[May be side-effects but not explicit goals]
• exchange of rulesets between applications

that use different data models
• data model interchange

Object data models?

• Primary use case mentioned so far is:
– data model defined in XML Schema
– data is exchanged via XML
– schema mapped to object model (JAXB

etc)
– rules access the corresponding object

model

• Is that it for this phase?
– do we need support for MOF + XMI, ODM

..?
– my best guess is “no”

RDF/OWL

• know how RDF data (and thus RDFS, OWL)
can be accessed from RIF

• some open issues
– just access as data (MK, Hassan) or explicit

support for RDF semantics (Jos)
– if support semantics need metadata to identify

entailment regime
solution to this one has already been proposed

• basically under control
so let’s focus on XML Schema

Typical XML processing
model

Rule set
provider

Application
specific
schema
provider

Data
provider

Native rule
processor

RIF
translator

data
validator

XML to object
translator

object
data

RIF

XML

XSD

So how to answer the original
questions?

• data set identification
– ruleset metadata using URIs to label fixed datasets

• data model identification
– ruleset metadata (actually annotation on the data set

metadata) using URIs to identify schema and data model
class

• access the data
– see later

• access the data schema
– treat as data if necessary
– not clear this is a requirement in the first place

Typical XML processing
model

Rule set
provider

Application
specific
schema
provider

Data
provider

Native rule
processor

RIF
translator

data
validator

XML to object
translator

object
data

RIF

XML

XSD

data set
metadata

data model
metadata

Example metadata (Turtle
syntax)

[] a rif:RuleSet;
 rif:requiresDataSet [
 rdfs:label "order";
 rdfs:comment "The order to be processed" ;
 rif:dataModel <http://example.com/orderDataModel>] .

<http://example.com/orderDataModel>
 a rif:XMLSchemaDataModel ;
 rdfs:comment "The id for an order schema agreed by
 consortium";
 rif:schema <http://example.com/orderDataModel.xs> .

• Actual abstract, presentation and XML syntax for
metadata yet to be defined

Accessing the data according to
an external application specific

schema
• proposal: single generic XML -> RIF

mapping
based on existing XML to object map
(JAXB)
– XML instance data mapping to a set of nested

frames
– frame type derived from schema complex type
– slot name derived from schema

element/attribute name
– slot value is obvious mapping of primitive

types or nested frames
– frame id is URI (if element has an xml:id) or a

gensymed constant

Deriving slot and type URIs

• if schema element (complex type,
element, attribute) has
sawsdl:modelReference annotation then use
that

• otherwise form URI by concatenating
schema URI with type/attribute/element
name plus disambiguation for overlapping
name spaces
[details for how to do this exist (Gloze)]

• otherwise, if no schema, use rif:local
names based on element/attribute name
assuming striping?

Alternatives

• translate data (and data model) to RIF at
provider side
– consumer has an easy life
– provider can translate how they want to
– no commonality across users of related

schemas
– need data in native form anyway

• single metamodel (MOF, KM3)
– define RIF mapping for that once
– then each schema has to be mapped to this

common metamodel

Alternatives

• translate data model itself to RIF as
well

• …

