
  

(application specific) data 
(models)

• framing
– issues
– requirements

• what sort of models do we need to worry 
about?

• RDF/OWL 
• XML/XSD



  

Framing the issue

• Many RIF applications will involve rulesets 
that process external data. How will they:
– identify the data set?
– identify the data model (schema, entailment 

regime) associated with the data set?
– access the data?
– access the data model?
Not all of these may be required

• Some applications may transfer the data 
as RIF and no external data support is 
required

• Use cases say this is not enough



  

Requirements (to be 
confirmed)

• RIF will support rulesets which access data 
in non-RIF formats

• These include at least:
– XML constrained by an XML Schema
– RDF, augmented by RDFS/OWL-full ontology
– object data model  (come back to this one)

• Note: some rulesets may access more 
than one such model simultaneously (XML 
embedded in RDF)



  

Non-requirements (to be 
confirmed)

[May be  side-effects but not explicit goals]
• exchange of rulesets between applications 

that use different data models
• data model interchange



  

Object data models?

• Primary use case mentioned so far is:
– data model defined in XML Schema
– data is exchanged via XML
– schema mapped to object model (JAXB 

etc)
– rules access the corresponding object 

model

• Is that it for this phase?
– do we need support for MOF + XMI, ODM 

..?
– my best guess is “no”



  

RDF/OWL

• know how RDF data (and thus RDFS, OWL) 
can be accessed from RIF

• some open issues
– just access as data (MK, Hassan) or explicit 

support for RDF semantics (Jos)
– if support semantics need metadata to identify 

entailment regime
solution to this one has already been proposed

• basically under control
so let’s focus on XML Schema 
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So how to answer the original 
questions?

• data set identification
– ruleset metadata using URIs to label fixed datasets

• data model identification
– ruleset metadata (actually annotation on the data set 

metadata) using URIs to identify schema and data model 
class

• access the data
– see later

• access the data schema
– treat as data if necessary
– not clear this is a requirement in the first place
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Example metadata (Turtle 
syntax)

[] a rif:RuleSet; 
  rif:requiresDataSet [ 
     rdfs:label "order"; 
     rdfs:comment "The order to be processed" ; 
     rif:dataModel <http://example.com/orderDataModel> ] . 

<http://example.com/orderDataModel> 
  a rif:XMLSchemaDataModel ;
  rdfs:comment "The id for an order schema agreed by 
                 consortium";
  rif:schema <http://example.com/orderDataModel.xs> . 

• Actual abstract, presentation and XML syntax for 
metadata yet to be defined



  

Accessing the data according to 
an external application specific 

schema
• proposal: single generic XML -> RIF 

mapping
based on existing XML to object map 
(JAXB)
– XML instance data mapping to a set of nested 

frames
– frame type derived from schema complex type
– slot name derived from schema 

element/attribute name
– slot value is obvious mapping of primitive 

types or nested frames
– frame id is URI (if element has an xml:id) or a 

gensymed constant



  

Deriving slot and type URIs

• if schema element (complex type, 
element, attribute) has 
sawsdl:modelReference annotation then use 
that

• otherwise form URI by concatenating 
schema URI with type/attribute/element 
name plus disambiguation for overlapping 
name spaces
[details for how to do this exist (Gloze)]

• otherwise, if no schema, use rif:local 
names based on element/attribute name 
assuming striping?



  

Alternatives

• translate data (and data model) to RIF at 
provider side
– consumer has an easy life
– provider can translate how they want to
– no commonality across users of related 

schemas
– need data in native form anyway

• single metamodel (MOF, KM3)
– define RIF mapping for that once
– then each schema has to be mapped to this 

common metamodel



  

Alternatives

• translate data model itself to RIF as 
well

• …


