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Abstract

In this paper, we explore embeddings of the various kinds
of RDF entailment in F-Logic. We show that the embed-
dings of simple, RDF, and RDFS entailment, as well as a
large fragment of extensional RDFS entailment, fall in the
Datalog fragment of F-Logic, allowing the use of optimiza-
tion techniques from the area of deductive databases for
reasoning with RDF. Using earlier results on the relation-
ship between F-Logic and Description Logics (DLs), we de-
fine an embedding of a large fragment of extensional RDFS
in a tractable description logic, namely DL-Lite, allowing
efficient reasoning over the ontology vocabulary. We show
how, using these embeddings, RDFS can be extended with
rules and/or general axioms.

1. Introduction

The Resource Description Framework RDF [8], together
with RDFS, is the basic language for the semantic Web. The
RDF semantics specification [8] describes four increasingly
expressive types of entailment, namely simple, RDF, RDFS,
and extensional RDFS (eRDFS) entailment1. We refer to
these kinds of entailment as entailment regimes.

The standard knowledge representation and reasoning
paradigms of Description Logics (DL) [1] and Logic Pro-
gramming (LP) [12], which are both based on classical first-
order logic, are being used for the Semantic Web (e.g. [9, 6].
However, so far, little research has been done into the for-
mal relationships2 between RDF and the logical languages
which are being considered for the Semantic Web. In this
paper we try to bridge the gap between these formalisms
by demonstrating several embeddings of the RDF(S) entail-
ment regimes in logic, and showing how RDF(S) can be
extended with (LP) rules and (DL) logical axioms.

1Notice that the definition of the extensional RDFS entailment regime
is not a normative one.

2A notable exception is [4].

We use F-Logic [11], a syntactical extension of standard
first-order logic, for our embeddings. It turns out that the
attribute value construct in F-Logic is exactly equivalent to
the triple construct in RDF, and the typing and subclass-
ing constructs in F-Logic are very close to those in RDF.
Additionally, F-Logic, like RDFS, has the possibility of us-
ing the same identifier as a class, an instance, or a property
identifier.

The contributions of this paper can be summarized as
follows.
– In Section 3 we define embeddings of the simple, RDF,
RDFS, and eRDFS entailment regimes in F-Logic, and
show that these embeddings preserve entailment. It turns
out that deductive database technology can be immedi-
ately applied for reasoning with the simple, RDF, RDFS,
and a subset of the extensional RDFS semantics. Using
earlier results about the relationship between F-Logic and
DL/FOL [5], we demonstrate the embedding of a very ex-
pressive subset of eRDFS in DL-LiteR [2], enabling the
use of DL reasoning techniques for eRDFS.
– In Section 4 we use these embeddings in logic, and ex-
isting results about the complexity of reasoning in subsets
of logic, to establish several novel complexity results for
RDF(S). Table 2 on page 4 summarizes the existing and
novel complexity results for RDF.
– Finally, in Section 5 we show how RDF graphs can be ex-
tended with F-Logic rules or FOL axioms using the notions
of F-Logic and FOL extended RDF graphs, and demonstrate
several complexity results about such extended graphs.

Note that we do not consider RDF literals and datatypes in
this paper. We consider that future work.

2. Frame Logic

We follow the treatment of F-Logic in [5]. For the full
definition of the F-Logic semantics, we refer the reader
to [11, 5].

The signature of an F-language L is of the form Σ =
〈F ,P〉 with F and P disjoint sets of function and predicate



symbols, each with an associated arity n ≥ 0. Terms and
atomic formulas are defined in the usual way. A molecule
in F-Logic is one of the following statements: (i) an is-a
assertion of the form C :D, (ii) a subclass-of assertion of
the form C ::D, or (iii) a data molecule of the form C[D �
E], with C,D,E terms. An F-Logic molecule is ground if
it does not contain variables.

Formulas of an F-language L are either atomic formulas,
molecules, or compound formulas which are constructed in
the usual way from atomic formulas, molecules, and the
logical connectives ¬,∧,∨,⊃, the quantifiers ∃,∀ and the
auxiliary symbols ), (.

F-Logic Horn formulas are of the form (∀)B1∧...∧Bn ⊃
H , with B1, ..., Bn,H atomic formulas or molecules. F-
Logic Datalog formulas are F-Logic Horn formulas with no
function symbols of arity higher than 0 such that every vari-
able in H occurs in some equality-free B1, ..., Bn.

An F-structure is a tuple I = 〈U,≺U ,∈U , IF , IP , I→→〉.
Here, ≺U is an irreflexive partial order on the domain U
and ∈U is a binary relation over U . We write a �U b when
a ≺U b or a = b, for a, b ∈ U . For each F-structure must
hold that if a ∈U b and b �U c then a ∈U c. An n-ary
function symbol f ∈ F is interpreted as a function over
the domain U : IF (f) : Un → U . An n-ary predicate
symbol p ∈ P is interpreted as a relation over the domain
U : IP (p) ⊆ Un. I� associates a binary relation over U
with each k ∈ U : I�(k) ⊆ U × U . Variable assignments
are defined as usual.

Given an F-structure I, a variable assignment B, and a
term t of L, tI,B is defined as: xI,B = xB for variable
symbol x and tI,B = IF (f)(tI,B1 , . . . , tI,Bn ) for t of the form
f(t1, . . . , tn).

Satisfaction of atomic formulas and molecules φ in I,
given the variable assignment B, denoted (I, B) |=f φ, is
defined as: (I, B) |=f p(t1, . . . , tn) iff (tI,B1 , . . . , tI,Bn ) ∈
IP (p), (I, B) |=f t1 : t2 iff tI,B1 ∈U tI,B2 , (I, B) |=f t1 :: t2
iff tI,B1 �U tI,B2 , (I, B) |=f t1[t2→→t3] iff 〈tI,B1 , tI,B3 〉 ∈
I→→(tI,B2 ), and (I, B) |=f t1 = t2 iff tI,B1 = tI,B2 . This ex-
tends to arbitrary formulas in the usual way.

The notions of a model and of validity are defined as
usual. A theory Φ ⊆ L F-entails a formula φ ∈ L, denoted
Φ |=f φ, iff for all F-structures I such that I |=f Φ, I |=f φ.

Classical first-order logic (classical FOL) is F-Logic
without molecules. Contextual first-order logic (contextual
FOL) is classical FOL where F and P are not required to
be disjoint, function and predicate symbols do not have an
associated arity, and for every structure I = 〈U,≺U ,∈U

, IF , IP , I→→〉, IF assigns a function IF (f) : Un → U to
every f ∈ F for every nonnegative integer n and IP assigns
a relation IP (p) ⊆ Un to every p ∈ P for every nonneg-
ative integer n. We denote satisfaction and entailment in
classical and contextual FOL using the symbols |= and |=c,
respectively.

3. RDF Embeddings and Extensions

In this section we consider an embedding of the RDF
entailment regimes in F-Logic, and then consider embed-
dings of the eRDFS entailment regime in FOL and DL. For
the definition of the of the different entailment regimes we
refer the reader to [8].

Let S, E be RDF graphs, x ∈ {s, rdf, rdfs, erdfs} be
the simple (resp., RDF, RDFS, eRDFS) entailment regime,
we denote entailment, i.e. S x-entails E, as S |=x E.

3.1. Embedding RDF in F-Logic

We first define the embedding of RDF graphs in F-
Logic, without taking into account the specific entailment
regime. The RDF graph is translated to a conjunction of
data molecules, where URIs are constants, and blank nodes
are existentially quantified variables. In the remainder, we
assume that every RDF graph is finite.

Definition 1. Let S be an RDF graph, and 〈s, p, o〉 ∈ S a
triple in S.

tr(〈s, p, o〉) = s[p � o]

tr(S) = ∃ bl(S)(
∧
{tr(〈s, p, o〉) | 〈s, p, o〉 ∈ S})

Depending on the entailment regime, we add a set of for-
mulas Ψx to the embedding of the graph. Ψx, defined in Ta-
ble 1, axiomatizes the semantics of the entailment regime.3

If φ is an F-Logic formula in prenex normal form with
only existential quantifiers, then φsk denotes the Skolem-
ization of φ, i.e. every existentially quantified variable is
replaced by a new constant not occurring in the formula or
its context (the theory in which it occurs, or any of the sur-
rounding theories, e.g. those participating in an entailment
relation). If Φ is an F-Logic theory, then Φsk denotes a
skolemization of Φ.

The following Proposition follows immediately from the
definition of the translations.

Proposition 1. Let S be an RDF graph. Then, tr(S)sk ∪
Ψx, with x ∈ {s, rdf, rdfs}, can be equivalently rewritten
to sets of F-Logic Datalog formulas.

Note that Ψerdfs cannot be equivalently rewritten to a set
of Datalog formulas, due to the universal quantification in
the antecedents of the implications in Ψerdfs.

We now demonstrate the correspondence between entail-
ment in the original RDF semantics and entailment in the
F-Logic embedding.

3For brevity, we leave out the namespace of the RDF vocabulary; for
example, type is short for rdf:type.
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Ψs = ∅
Ψrdf = Ψs ∪ {tr(〈s, p, o〉) | 〈s, p, o〉 is an RDF axiomatic triple}∪
{∀x(∃y, z(y[x � z]) ⊃ x[type � Property])}

Ψrdfs = Ψrdf ∪ {tr(〈s, p, o〉) | 〈s, p, o〉 is an RDFS axiomatic triple}∪
{∀x, y, z(x[y � z] ⊃ x[type � Resource] ∧ z[type � Resource]),
∀u, v, x, y(x[domain � y] ∧ u[x � v] ⊃ u[type � y]),
∀u, v, x, y(x[range � y] ∧ u[x � v] ⊃ v[type � y]),
∀x(x[type � Property] ⊃ x[subPropertyOf � x]),
∀x, y, z(x[subPropertyOf � y] ∧ y[subPropertyOf � z] ⊃

x[subPropertyOf � z]),
∀x, y(x[subPropertyOf � y] ⊃ x[type � Property]∧

y[type � Property] ∧ ∀z1, z2(z1[x � z2] ⊃ z1[y � z2])),
∀x(x[type � Class] ⊃ x[subClassOf � Resource]),
∀x, y(x[subClassOf � y] ⊃ x[type � Class]∧

y[type � Class] ∧ ∀z(z[type � x] ⊃ z[type � y])),
∀x(x[type � Class] ⊃ x[subClassOf � x]),
∀x, y, z(x[subClassOf � y] ∧ y[subClassOf � z] ⊃

x[subClassOf � z]),
∀x(x[type � ContainerMembershipProperty] ⊃

x[subPropertyOf � member])}
Ψerdfs = Ψrdfs ∪ {∀x, y(∀u, v(u[x � v] ⊃ u[type � y]) ⊃

x[domain � y]),
∀x, y(∀u, v(u[x � v] ⊃ v[type � y]) ⊃ x[range � y]),
∀x, y(x[type � Property] ∧ y[type � Property]∧
∀u, v(u[x � v] ⊃ u[y � v]) ⊃ x[subPropertyOf � y]),

∀x, y(x[type � Class] ∧ y[type � Class]∧
∀u(u[type � x] ⊃ u[type � y]) ⊃ x[subClassOf � y])}

Table 1. Axiomatization of the RDF semantics

Theorem 1. Let S, E be RDF graphs and x ∈
{s, rdf, rdfs, erdfs} be an entailment regime. Then,

S |=x E if and only if tr(S) ∪Ψerdf |=f tr(E).

The following corollary follows immediately from The-
orem 1 and the classical results about Skolemization.

Corollary 1. Let S, E be RDF graphs and x ∈
{s, rdf, rdfs, erdfs} be an entailment regime. Then,

S |=x E if and only if tr(S)sk ∪Ψx |=f tr(E).

Since, by Proposition 1, tr(S)sk, tr(S)sk ∪ Ψrdf and
tr(S)sk ∪ Ψrdfs are equivalent to sets of Horn formulas,
this result implies that simple entailment, RDF entailment,
and RDFS entailment can be computed using existing F-
Logic rule reasoners such as FLORA-2, and Ontobroker,
as well as other rule reasoners4. Notice that, in the corol-
lary, tr(E) can be seen as a boolean conjunctive query
(i.e. a yes/no query) and the existentially quantified vari-
ables (blank nodes) in tr(E) are the non-distinguished vari-
ables.

4Note that the attribute value construct a[b � c] is the only construct
specific to F-Logic which is used in the embeddings. Since it does not
carry any specific semantics, it may be straightforwardly embedded using
a ternary predicate attval(a, b, c). Notice also that all rules are safe, and
thus Datalog engines may be used.

The final embedding in F-Logic we consider is a direct
embedding of the extensional RDFS semantics which elim-
inates part of the RDFS vocabulary, yielding a set of Horn
formulas. We first define the notion of nonstandard use
of the RDFS vocabulary. Nonstandard use of the RDFS
vocabulary intuitively corresponds to using the vocabulary
in locations where it has not been intended, for example
〈type, subPropertyOf, a〉.

We say that a term t occurs in a property position if it oc-
curs as the predicate of a triple, as the subject or object of a
subPropertyOf triple, as the subject of a domain or range
triple, or as the subject in a triple 〈t, type, Property〉 or
〈t, type, ContainerMembershipProperty〉. A term t oc-
curs in a class position if it occurs as the subject or object
of a subClassOf triple, as the object of a domain, range,
or type triple, or as the subject of a triple 〈t, type, Class〉.

Definition 2. Let S be an RDF graph. Then
S has nonstandard use of the RDFS vocabu-
lary if type, subClassOf, domain, range, or
subPropertyOf occurs in a non-property position in
S, or ContainerMembershipProperty, Resource,
Class, or Property occurs in S.

Definition 3. Let 〈s, p, o〉 be an RDF triple, then
trerdfs(〈s, type, o〉)=s : o,

trerdfs(〈s, subClassOf, o〉)=∀x(x : s ⊃ x : o),
trerdfs(〈s, subPropertyOf, o〉)=∀x, y(x[s � y] ⊃ x[o � y]),

trerdfs(〈s, domain, o〉)=∀x, y(x[s � y] ⊃ x : o),
trerdfs(〈s, range, o〉)=∀x, y(x[s � y] ⊃ y : o), and

trerdfs(〈s, p, o〉)=s[p � o], otherwise.
Let S be an RDF graph. Then,

trerdfs(S) = ∃ bl(S)
∧
{trerdfs(〈s, p, o〉) | 〈s, p, o〉 ∈ S}∪

{trerdfs(〈s, p, o〉) | 〈s, p, o〉 is an RDFS axiomatic triple
with no nonstandard use of the RDFS vocabulary}

Theorem 2. Let S, E be RDF graphs with no nonstandard
use of the RDFS vocabulary. Then,

S |=erdfs E iff trerdfs(S) |=f trerdfs(E).
Furthermore, (trerdfs(S))sk is a conjunction of F-Logic
Datalog formulas. If, additionally, E does not contain
subClassOf, domain, range, or subPropertyOf, then
trerdfs(E) is an existentially quantified conjunction of
atomic molecules, and

S |=erdfs E iff (trerdfs(S))sk |=f trerdfs(E).

Since (trerdfs(S))sk is a set of Datalog formulas, we
have that, if the RDF graphs fulfills certain (natural) condi-
tions, query answering techniques from the area of deduc-
tive databases can be used for checking eRDFS entailment.

3.2. Embedding Extensional RDFS in First-
Order Logic

An F-Logic theory Φ is translatable to contextual FOL
if it has no :: molecules and for molecules of the forms
t1[t2 � t3], t1 : t2 holds that t2 is a constant symbol.
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Let Φ be an F-Logic theory which is translatable to con-
textual FOL, then (Φ)FO is the contextual FOL theory ob-
tained from Φ by:
– replacing every t1[t2 � t3] with t2(t1, t3), and
– replacing every t1 : t2 with t2(t1).

The following is a straightforward generalization of a re-
sult in [5].

Proposition 2. Let Φ and φ be an equality-free F-Logic the-
ory (resp., formula), translatable to contextual FOL. Then,

Φ |=f φ iff (Φ)FO |=c (φ)FO.

An RDF graph S is a non-higher-order RDF graph if S
does not contain blank nodes in class or property positions
and does not contain nonstandard use of the RDFS vocab-
ulary. A non-higher order RDF graph S is a classical RDF
graph if the sets of URIs occurring in class and property po-
sitions in S (and its context, e.g. entailing or entailed graph)
are mutually disjoint, and disjoint with the sets of all URIs
not occurring in class or property positions in S (and its
context).

Theorem 3. Let S, E be non-higher-order (resp., classi-
cal) RDF graphs. Then, (trerdfs(S))FO, (trerdfs(E))FO

are theories of contextual (resp., classical) FOL and
S |=erdfs E iff (trerdfs(S))FO |=c (trerdfs(E))FO (resp.,
(trerdfs(S))FO |= (trerdfs(E))FO.

4. Complexity of RDF

The complexity of simple entailment and RDFS entail-
ment is well known, and the complexity of RDF and exten-
sional RDFS entailment follow immediately:

Proposition 3 ([7, 10, 4]). Let S, E be RDF graphs, then
the problems S |=s E, S |=rdf E, and S |=rdfs E are
NP-complete in the size of the graphs, and polynomial in
the size of S. If E is ground, then the respective problems
are in P. Additionally, the problem S |=erdfs E is NP-hard.

From the embedding in F-Logic, together with the com-
plexity of nonrecursive Datalog, we obtained the following
novel characterization of complexity of simple and RDF en-
tailment.

Proposition 4. Let S, E be RDF graphs. Then, the prob-
lems S |=s E and S |=rdf E are in LogSpace with respect
to the size of S, and with respect to the size of the graphs if
E is ground.

By the correspondence between FOL and description
Logics and earlier results on complexity of Description
Logics [2] we obtain the following results.

Theorem 4. Let S, E be RDF graphs with no nonstandard
use of the RDFS vocabulary. Then, the problem of deciding
S |=erdfs E is NP-complete in the size of the graphs, and
polynomial if E is ground.

Entailment Restrictions
on S

Restrictions
on E

Complexity

x ∈ {s, rdf, rdfs} none none NP-complete
x ∈ {s, rdf} none ground LogSpace
x ∈ {rdfs} none ground P
x ∈ {erdfs} none none NP-hard
x ∈ {erdfs} no nonst.

RDFS
no nonst.
RDFS

NP-complete

x ∈ {erdfs} no nonst.
RDFS

ground, no
nonst. RDFS

P

Table 2. Complexity of Entailment S |=x E,
measured in the size of S, E

Table 2 summarizes the complexity of the different forms
of entailment in RDF; “No nonst. RDFS” stands for “no
nonstandard use of the RDFS vocabulary”. The results in
the first and third line of the Table were obtained in [7, 4,
10]. To the best of our knowledge, the other results in the
table are novel.

5. RDF Extensions

In this section we consider extensions of RDF graphs
with logical rules or theories.

Definition 4. An F-Logic extended RDF graph is a tuple
eS = 〈S, Φ, x〉, with S an RDF graph, Φ an F-Logic theory,
and x ∈ {s, rdf, rdfs, erdfs} an entailment regime.

eS is satisfiable (resp., valid) if tr(S) ∪ Ψx ∪ Φ is sat-
isfiable (resp., valid), and eS entails an F-Logic formula φ
(resp., RDF graph E), denoted eS |= φ (resp., eS |= E) if
tr(S) ∪Ψx ∪ Φ |=f φ (resp., tr(S) ∪Ψx ∪ Φ |=f tr(E)).

The following proposition follows immediately from
Theorem 1.

Proposition 5. Let S, E be RDF graphs, and x ∈
{s, rdf, rdfs, erdfs} an entailment regime. Then,
〈S, ∅, x〉 |= E iff S |=x E.

Considering such F-Logic extended RDF graphs,
there is a discrepancy between the RDF and F-
Logic constructs used for asserting class membership
(a[type � C] vs. a :C) and asserting the subclass relation
(A[subClassOf � B] vs. A ::B). Therefore, the interac-
tion between the RDF graph and the F-Logic theory might
not be as expected.

Consider, for example, the RDF graph S =
{〈A, subClassOf, B〉} and the F-Logic theory Φ =
{a :A}. Consider now the F-Logic extended RDF graph
T = 〈S, Φ, rdfs〉. One might intuitively expect T |= a :B.
This is, however, not the case, because of the lack of inter-
action between the RDFS vocabulary and the F-Logic lan-
guage constructs.
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We overcome this limitation by using the so-called RDF
interaction axioms:

ΨRIA = { ∀x, y(x[type � y] ⊃ x :y),
∀x, y(x[subClassOf � y] ⊃ x ::y)}.

Definition 5. An F-Logic extended RDF graph eS is RIA-
satisfiable (resp., valid) if tr(S) ∪ Ψx ∪ Φ ∪ ΨRIA is sat-
isfiable (resp., valid), and eS RIA-entails an F-Logic for-
mula φ (resp., RDF graph E), denoted eS |=RIA φ (resp.,
eS |=RIA E) if tr(S) ∪ Ψx ∪ Φ ∪ ΨRIA |=f φ (resp.,
tr(S) ∪Ψx ∪ Φ ∪ΨRIA |=f tr(E)).

The following proposition follows from Proposition 5
and the structure of the RIA axioms.

Proposition 6. Let S, E be RDF graphs, and x ∈
{s, rdf, rdfs, erdfs} an entailment regime. Then,
〈S, ∅, x〉 |=RIA E iff S |=x E.

Theorem 3 sanctions the extension of a subset of eRDFS
with DL or FOL axioms:

Definition 6. A contextual (resp., classical) FOL-extended
RDF graph is a tuple 〈S, Φ〉 where S is a non-higher-order
(resp., classical) RDF graph, and Φ is a contextual (resp.,
classical) FOL theory.
〈S, Φ〉 is satisfiable (resp., valid) if (trerdfs(S))FO ∪ Φ

is satisfiable (resp., valid).
A contextual FOL extended RDF graph 〈S, Φ〉 en-

tails a contextual FOL formula φ (resp., non-higher-order
RDF graph E) if (trerdfs(S))FO ∪ Φ |=c φ (resp.,
(trerdfs(S))FO ∪ Φ |=c (trerdfs(E))FO).

A classical FOL extended RDF graph 〈S, Φ〉 entails a
classical FOL formula φ (resp., classical RDF graph E) if
(trerdfs(S))FO ∪ Φ |= φ (resp., (trerdfs(S))FO ∪ Φ |=
(trerdfs(E))FO).

Proposition 7. Let S, E be non-higher-order (resp., clas-
sical) RDF graphs. Then, 〈S, ∅〉 |=c E (resp., 〈S, ∅〉 |=
E) iff S |=erdfs E.

The following results about the complexity of reasoning
with RDF graphs, extended with rules/axioms, follow im-
mediately from the complexity results obtained in the pre-
vious sections, and the complexity of the considered exten-
sions.

We first consider RDF graphs extended with F-Logic
Datalog rules.

Theorem 5 (F-Logic Extensions). Given an F-Logic ex-
tended RDF graph eS = 〈S, Φ, x〉, with Φ a set of F-Logic
Datalog rules, and a ground atom or molecule α, then

• if x ∈ {s, rdf, rdfs}, the problem of deciding
eS |=RIA α is polynomial, and

• if x = erdfs and S has no nonstandard use of the
RDFS vocabulary, the problem of deciding eS |= α is
polynomial.

We know consider RDF graphs, under the eRDFS
entailment regime, extended with DL-LiteR axioms.
DL-LiteR [2] is a Description Logic which largely sub-
sumes the expressiveness of extensional RDFS, and for
which most of the reasoning tasks are tractable (i.e. polyno-
mial). We consider DL-LiteR as defined in [2], and refer
to this as classical DL-LiteR. We also consider a variant
of DL-LiteR in which the sets of class, rule, and individual
identifiers are not disjoint, and refer to this has contextual
DL-LiteR (cf. contextual FOL).

Theorem 6 (DL/FOL Extensions). Let eS = 〈S, Φ〉 be
a contextual (resp., classical) FOL extended RDF graph,
such that S is ground, and Φ is the FOL equivalent of a
contextual DL-LiteR knowledge base K, and let Φ′ be the
FOL equivalent of a contextual (resp., classical) DL-LiteR
knowledge base K′, then the problem eS |=c Φ′ (resp.,
eS |=c Φ′) is polynomial.

References

[1] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and
P. F. Patel-Schneider, editors. The Description Logic Hand-
book. 2003.

[2] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and
R. Rosati. Data complexity of query answering in descrip-
tion logics. In KR 2006.

[3] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Com-
plexity and expressive power of logic programming. ACM
Comp. Surv., 33(3):374–425, September 2001.

[4] J. de Bruijn, E. Franconi, and S. Tessaris. Logical recon-
struction of normative RDF. In OWLED-2005.

[5] J. de Bruijn and S. Heymans. Translating ontologies from
predicate-based to frame-based languages. In RuleML-2006.

[6] J. de Bruijn, H. Lausen, A. Polleres, and D. Fensel. The web
service modeling language: An overview. In ESWC2006.

[7] C. Gutierrez, C. Hurtado, and A. O. Mendelzon. Founda-
tions of semantic web databases. In PODS2004.

[8] P. Hayes. RDF semantics. W3C Recommendation, 10
February 2004.

[9] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen.
From SHIQ and RDF to OWL: The making of a web ontol-
ogy language. Journal of Web Semantics, 1(1):7–26, 2003.

[10] H. J. ter Horst. Completeness, decidability and complexity
of entailment for rdf schema and a semantic extension in-
volving the owl vocabulary. J. Web Sem., 3(2–3):79–115,
2005.

[11] M. Kifer, G. Lausen, and J. Wu. Logical foundations
of object-oriented and frame-based languages. JACM,
42(4):741–843, 1995.

[12] J. W. Lloyd. Foundations of Logic Programming (2nd edi-
tion). Springer-Verlag, 1987.

5


