
The Essence of Contraint Logic Programming

Hassan At-Kaci

October 17, 2006

In 1987, at the height of research interest in Logic Programming (LP), Jaffar
and Lassez, proposed a novel Logic ProgrammingschemecalledConstrant Logic
Programming(CLP) [2]. The idea was to generalize the operational and denota-
tional semantics of LP by dissociating the relational level—pertaining to resolving
definite clauses made up of relational atoms—and the data level pertaining to the
nature of the arguments of these relational atoms (e.g., for Prolog, first-order Her-
brand terms). Thus, for example, in Prolog seen as a CLP language, clauses such
as:

append([],L,L).
append([H|T],L,[H|R]) :- append(T,L,R).

are construed as:

append(X1,X2,X3) :- true
| X1 = [], X2 = L, X3 = L.

append(X1,X2,X3) :- append(X4,X5,X6)
| X1 = [H|T], X2 = L, X3 = [H|R],
X4 = T, X5 = L, X6 = R.

The Höhfeld-Smolka Scheme Höhfeld and Smolka [1] proposed a refinement of
the Jaffar-Lassez’s scheme [2] both more general and simpler than what was orig-
inally proposed in that it abstracts away the syntax of constraint formulae and re-
laxes some technical demands on the constraint language—inparticular, the some-
what baffling “solution-compactness” requirement1 [2].

The Höhfeld-Smolka constraint logic programming scheme requires a setR of
relational symbols(or, predicate symbols) and aconstraint languageL. It needs
very few assumptions about the languageL, which must only be characterized by:

1“Compactness” in logic is the property stating that if a formula is provable, then it is provable in
finitely many steps.

1

• V, a countably infinite set ofvariables(denoted as capitalizedX,Y, . . .);

• Φ, a set offormulae(denotedφ, φ′, . . .) calledconstraints;

• a functionVar: Φ 7→ V, which assigns to every constraintφ the setVar(φ) of
variables constrained byφ;

• a family of “admissible”interpretationsA over some domainDA;

• the setVal(A) of (A-)valuations, i.e., total functions,α : V 7→ DA.

Thus,L is not restricted to any specific syntax,a priori. Furthermore, nothing
is presumed about any specific method for proving whether a constraint holds in
a given interpretationA under a given valuationα. Instead, we simply assume
given, for each admissible interpretationA, a function [[]]A : Φ 7→ 2

(Val(A))

which assigns to a constraintφ ∈ Φ the set[[φ]]A of valuations which we call the
solutionsof φ underA.

Generally, and in our specific case, the constrained variables of a constraintφ
will correspond to its free variables, andα is a solution ofφ under the interpretation
A if and only if φ holds true inA once its free variables are given valuesα. As
usual, we shall denote this as “A, α |= φ.”

Then, givenR, the set of relational symbols (denotedr, r1, . . .), andL as
above, the languageR(L) of relational clausesextends the constraint language
L as follows. The syntax ofR(L) is defined by:

• the same countably infinite setV of variables;

• the setR(Φ) of formulaeρ from R(L) which includes:

– all L-constraints,i.e., all formulaeφ in Φ;

– all relational atomsr(X1, . . . ,Xn), whereX1, . . . ,Xn ∈ V, mutually
distinct;

and is closed under the logical connectives& (conjunction) and→ (implica-
tion); i.e.,

– ρ1ρ2 ∈ R(Φ) if ρ1, ρ2 ∈ R(Φ);

– ρ1 → ρ2 ∈ R(Φ) if ρ1, ρ2 ∈ R(Φ);

• the functionVar : R(Φ) 7→ V extending the one onΦ in order to assign to
every formulaρ the setVar(ρ) of thevariables constrained byρ:

– Var(r(X1, . . . ,Xn)) = {X1, . . . ,Xn};

2

– Var(ρ1ρ2) = Var(ρ1) ∪ Var (ρ2);

– Var(ρ1 → ρ2) = Var(ρ1) ∪ Var(ρ2);

• the family of “admissible”interpretationsA over some domainDA such that
A extends an admissible interpretationA0 of L, over the domainDA = DA0

by adding relationsrA ⊆ DA× . . .×DA for eachr ∈ R;

• the same setVal(A) of valuationsα : V 7→ DA.

Again, for each interpretationA admissible forR(L), the function[[]]A :
R(Φ) 7→ 2

(Val(A)) assigns to a formulaρ ∈ R(Φ) the set[[φ]]A of valuations which
we call thesolutionsof ρ underA. It is defined to extend the interpretation of
constraint formulae inΦ ⊆ R(Φ) inductively as follows:

• [[r(X1, . . . ,Xn)]]A = {α | 〈α(X1), . . . , α(Xn)〉 ∈ rA};

• [[φ1φ2]]
A = [[φ1]]

A ∩ [[φ2]]
A;

• [[φ1 → φ2]]
A = (Val(A)− [[φ1]]

A) ∪ [[φ2]]
A.

Note that anL-interpretationA0 corresponds to anR(L)-interpretationA, namely
whererA0 = ∅ for everyr ∈ R.

As in Prolog, we shall limit ourselves todefinite relational clausesin R(L)
that we shall write in the form:

r(~X) ← r1(~X1) & . . . & rm(~Xm) & φ,

(0 ≤ m), making its constituents more conspicuous and also to be closer to ‘stan-
dard’ Logic Programming notation, where:

• r(~X), r1(~X1), . . . , rm(~Xm) are relational atoms inR(L); and,

• φ is a constraint formula inL.

Given a setC of definiteR(L)-clauses, amodelof C is anR(L)-interpretation
such that every valuationα : V 7→ DM is a solution of every formulaρ in C, i.e.,
[[ρ]]M = Val(M). It is a fact established in [1] that anyL-interpretationA can
be extended to aminimal modelM of C. Here, minimality means that the added
relational structure extendingA is minimal in the sense that ifM′ is another model
of C, thenrM ⊆ rM′

(⊆ DA× . . .×DA) for all r ∈ R.
Also established in [1], is a fixed-point construction. The minimal modelM of

C extending theL-interpretationA can be constructed as the limitM =
⋃

i≥0 Ai

of a sequence ofR(L)-interpretationsAi as follows. For allr ∈ R we set:

3

rA0 = ∅;

rAi+1 = {〈α(x1), . . . , α(xn)〉 | α ∈ [[ρ]]Ai ; r(x1, . . . , xn)← ρ ∈ C};

rM =
⋃

i≥0 rA
i
.

A resolventis a formula of the formρ [] φ, whereρ is a possibly empty con-
junction of relational atomsr(X1, . . . ,Xn) (its relational part) andφ is a possibly
empty conjunction ofL-constraints (itsconstraint part). The symbol [] is in fact
just the symbol& in disguise. It is simply used to emphasize which part is which.
(As usual, an empty conjunction is assimilated totrue, the formula which takes all
arbitrary valuations as solution.)

Finally, the Höhfeld-Smolka scheme defines constrainedresolutionas a reduc-
tion rule on resolvents which gives a sound and complete interpreter forprograms
consisting of a setC of definiteR(L)-clauses. The reduction of aresolventR of
the form:

• B1 . . . r(X1, . . . ,Xn) . . . Bk [] φ

by the (renamed) program clause:

• r(X1, . . . ,Xn)← A1 . . . Amφ′

is the new resolventR′ of the form:

• B1 . . . A1 . . . Am . . . Bk [] φφ′.

The soundness of this rule is clear: under every interpretation A and every
valuation such thatR holds, then so doesR′, i.e., [[R′]]A ⊆ [[R]]A. It is also not
difficult to prove its completeness: ifM is a minimal model ofC, andα ∈ [[R]]M

is a solution of the formulaR in M, then there exists a sequence of reductions of
(theR(L)-formula)R to anL-constraintφ such thatα ∈ [[φ]]M.

References

[1] Markus Höhfeld and Gert Smolka. Definite relations overconstraint lan-
guages. LILOG Report 53, IWBS, IBM Deutschland, Stuttgart,Germany,
October 1988.

[2] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. InPro-
ceedings of the 14th ACM Symposium on Principles of Programming Lan-
guages, Munich, W. Germany, January 1987.

4

