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In 1987, at the height of research interest in Logic ProgrargniLP), Jaffar
and Lassez, proposed a novel Logic Programmsicitemecalled Constrant Logic
Programming(CLP) [2]. The idea was to generalize the operational anaiden
tional semantics of LP by dissociating the relational levpkrtaining to resolving
definite clauses made up of relational atoms—and the dagh pevtaining to the
nature of the arguments of these relational atoeng, for Prolog, first-order Her-
brand terms). Thus, for example, in Prolog seen as a CLP aggiclauses such
as:

append([],L,L).
append([H T],L,[HR) :- append(T,L,R).

are construed as:

append( X1, X2, X3) :- true
| X1 =[], X2 =1, X3 = L.
append( X1, X2, X3) :- append( X4, X5, X6)
| X1 =[HT], X2 =L, X3 =[HR],
X4 =T, X5 =1, X6 =R

The Hohfeld-Smolka Scheme Hohfeld and Smolka [1] proposed a refinement of
the Jaffar-Lassez’s scheme [2] both more general and sirtifda what was orig-
inally proposed in that it abstracts away the syntax of gairdtformulae and re-
laxes some technical demands on the constraint languageastinular, the some-
what baffling “solution-compactness” requirenefa].

The Hohfeld-Smolka constraint logic programming scheeatglires a seR of
relational symbolqor, predicate symbols) andcanstraint languageC. It needs
very few assumptions about the languafevhich must only be characterized by:

l“Compactness” in logic is the property stating that if a fatenis provable, then it is provable in
finitely many steps.



), a countably infinite set ofariables(denoted as capitalized, Y’ .. .);

®, a set offormulae(denotedp, ¢', . ..) calledconstraints

a functionVar: ® — V), which assigns to every constraifithe setar(¢) of
variables constrained by;

a family of “admissible”interpretations2l over some domaim?;

the setVal(2() of (A-)valuations i.e., total functionsq : V +— D2,

Thus, L is not restricted to any specific syntaxpriori. Furthermore, nothing
is presumed about any specific method for proving whethemataint holds in
a given interpretatior®l under a given valuatioa. Instead, we simply assume
given, for each admissible interpretatioh a function[__]* : & s 2(Vel(%)
which assigns to a constraintc @ the set[¢]* of valuations which we call the
solutionsof ¢ under.

Generally, and in our specific case, the constrained vasadi a constrainp
will correspond to its free variables, ands a solution oty under the interpretation
2 if and only if ¢ holds true in2l once its free variables are given values As
usual, we shall denote this &'« = ¢.”

Then, givenfR, the set of relational symbols (denotedr,...), and £ as
above, the languag® (L) of relational clausesextends the constraint language
L as follows. The syntax dR(L) is defined by:

e the same countably infinite sitof variables
o the seth(®) of formulaep from R (L) which includes:

— all £-constraintsj.e., all formulaeg in ;

— all relational atoms' (X1, ..., X, ), whereX;,..., X,, € V, mutually
distinct;

and is closed under the logical connectidegconjunction) and— (implica-
tion); i.e,

— p1p2 € R(P) if p1,p2 € R(P);
= p1— p2 €R(P) if p1,p2 € R(P);

e the functionVar : :R(®) — V extending the one of® in order to assign to
every formulap the setar(p) of the variables constrained by:

= Var(r(Xy,..., X)) ={X1,..., Xn}



— Var(pip2) = Var(pr) U Var(p2);
= Var(p1 — p2) = Var(p1) U Var(pa);

o the family of “admissible’interpretations2l over some domaii* such that
2 extends an admissible interpretati®ip of £, over the domaiD® = D%
by adding relations® C D% x ... x D% for eachr € fR;

e the same seVal(2) of valuationsa : V +— D%,

Again, for each interpretatioRl admissible forR(£), the function] ]* :
R(P) — 2(Val(W) assigns to a formula € R(P) the seff¢] of valuations which
we call thesolutionsof p under®. It is defined to extend the interpretation of
constraint formulae i@ C PR(®) inductively as follows:

o [r(Xy,....X)]*={a| (a(X1),...,a(X,)) € 72,
o [pr1¢2]® = [#1]* N [p2]
o [p1 — do]* = (Val(A) — [¢1]*) U [¢2]™.

Note that anC-interpretatiorl, corresponds to afi(L)-interpretatior(, namely
wherer? = () for everyr € R.

As in Prolog, we shall limit ourselves tefinite relational clauses (L)
that we shall write in the form:

r(X) —r(X1) & ... &rm(Xm) & 6,

(0 < m), making its constituents more conspicuous and also to Isercto ‘stan-
dard’ Logic Programming notation, where:

o 7(X),ri(X1),...,rm(Xy) are relational atoms ifR(£); and,
e ¢ is a constraint formula if.

Given a set® of definite?R(L)-clauses, anodelof € is anfR(L)-interpretation
such that every valuation : V — D™ is a solution of every formula in ¢, i.e,,
[p]™ = Val(9). Itis a fact established in [1] that an§-interpretation?( can
be extended to eninimal modebt of €. Here, minimality means that the added
relational structure extendiritjis minimal in the sense that9t’ is another model
of ¢, thenr™ C +™ (C D% x ... x D¥) forall r € .

Also established in [1], is a fixed-point construction. Thiaimal modelt of
¢ extending theC-interpretation?l can be constructed as the limit = (J,~., 2
of a sequence dR(L)-interpretations; as follows. For all- € R we set:



ro = 0

P = {{a(ay).... o)) | a € (] 5 r(en. .. za) — p € €}

m 2A
r = Uz‘zo T
A resolventis a formula of the fornp | ¢, wherep is a possibly empty con-
junction of relational atoms( X1, ..., X,,) (itsrelational parf) and¢ is a possibly

empty conjunction ofZ-constraints (itconstraint parj. The symbol | is in fact
just the symbok: in disguise. It is simply used to emphasize which part is Whic
(As usual, an empty conjunction is assimilatedrtee, the formula which takes all
arbitrary valuations as solution.)

Finally, the Hohfeld-Smolka scheme defines constramedlutionas a reduc-
tion rule on resolvents which gives a sound and completegreter forprograms
consisting of a se€ of definite?R(L)-clauses. The reduction ofrasolventR of
the form:

e Bi..r(X1,....,X,)...By | ¢
by the (renamed) program clause:

o r(Xy,..., X)) — Ar... Apnd
is the new resolvenk’ of the form:

e Bi...Al... Ap... By | ¢¢.

The soundness of this rule is clear: under every interpost&d and every
valuation such thaR holds, then so doe®/, i.e, [R']* C [R]*. Itis also not
difficult to prove its completeness: M is a minimal model off, anda € [R]™
is a solution of the formula in 91, then there exists a sequence of reductions of
(theR(L)-formula) R to anL-constrainty such thatr € [¢]™.
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