
1

Abstract
Syntax and Semantics:
Slots & Constraints

Hassan Aït-Kaci
Harold Boley
Michael Kifer
Peter Patel-Schneider
Chris Welty

W3C RIF WG Breakout, F2F4, Athens, GA, 5 Nov 2006

2

Motivation for
Slots and Constraints

Slots:
� Integration with RDF (properties) and Java (fields)

Constraints:
� Integration with Description Logics

(e.g., OWL1.1 DL)

� Interfacing Built-ins (e.g., Functions & Operators)

� Interfacing Java Types

3

Herbrand plus Slotted Terms

� Currently: Herbrand terms (positional arguments):
f(a1, …, an) ──── viewed as shorthand for f{1->a1, …, n->an}

� Equational Constraint abstraction (dot notation):
f.1=a1, …, f.n=an (argument positions as keys)

� Charter: Add slotted terms (keyed arguments):
(user keys k1, …, kn, not necessarily distinct):
f{k1->a1, …, kn->an}

� Equational Constraint abstraction (dot notation):
f.k1=a1, …, f.kn=an

4

Generalized Syntax:
From Rulebases to Slots

Rulebase

Rule
clause

HerbrandAtom |

head body constraint
Formula

quantifer

annotation (e.g., in RDF)
- name mapping

Relation

Variable |
HerbrandExpression

annotation

Constant |

(HerbrandTerm)*

(HerbrandTerm)*Function
Key->SlottedExpression

Function {SlottedTerm}*

SlottedAtom

Relation

Key->Constant |

Key->Variable |

{SlottedTerm}*

Atom | And
Atom*

Atom

HerbrandAtom SlottedAtom

Forall

5

Generalized Syntax: Clauses

� Currently: Unconstrained Horn Clauses
∀∀∀∀ H :- B1, …, Bm

� Generalization: Constrained Horn Clauses
(variables are shared across Bi’s and optional C):
∀∀∀∀ H :- B1, …, Bm [& C]

� In Core: Constraint C is conjunction of equations
with ground dot-notation terms on left-hand side

� In dialects: Constraint C can be any formula
(abstract ‘oracle’ point of view: don’t care how
constraint solver can solve C)

6

Semantic Hierarchy

RIF Core: Based on current model theory,
with suitable extensions

RIF Standard Dialects:
� If a dialect has a model theory , then this is normative

� Any proof theory and operational semantics
must respect the model theory

� If a dialect does not have a model theory but has an
explicit proof theory , then this is normative
� Any operational semantics must respect the proof theory

� If a dialect does not have a proof theory but has an
operational semantics , then this is normative
(e.g., expressed as a pseudo-coded algorithm)

