VANILLA FIRST-ORDER LOGIC
Presented below is a definition of a standard first-order logic having both predicates and functions, with equality defined as a logical symbol. It says nothing about whether arithmetic is included. Unlike Common Logic, it does not allow quantification over predicates, and thus does not exhibit behavior associated with higher-order logics.

Source: Ernest Davis, Representations of Commonsense Knowledge, Morgan Kaufmann, 1990, Chapter 2.  This largely follows the treatment by Benson Mates in Elementary Logic, with changes and additions for functions, etc. Note that minor changes in notation have been made to ease dissemination on the web. In particular, Roman letters are often substituted for Greek letters; quantifiers are represented by unreversed, right-side up letters;  standard keyboard symbols are used for Boolean operators; the  Boolean operator exclusive or is not used . Also, the = term is used in both an in-language and meta-language sense; context is used to disambiguate. 
(Reasons for choosing this source:

· Syntax familiar and readable to people in Computer Science and AI (unlike, say, Mates); close to Peter Patel-Schneider’s document on vanilla FOL, based on the Wikipedia entry, but has a well-known book as a reference.

· Well written, easy to understand

· Accessibility and familiarity

SYNTAX
The symbols of a language L of  First-Order Logic consist of the logical symbols and the nonlogical symbols.

Logical symbols are: 

Boolean operators (~, v, &, (, (>)
The universal quantifier A

The existential quantifier E

The equal sign =

The open parenthesis ( , the close parenthesis ), and the comma ,

An infinite collection of variable symbols

Nonlogical symbols can be divided into three sorts: constant symbols, predicate symbols, and function symbols. (In this twiki, they will be differentiated by context; this may change in a later draft.)  Each predicate and function symbol is associated with a positive integer, denoting the number of arguments that the symbol takes. 
A string T is a term of L if one of the following holds:

1.  T is a constant symbol

2. T is a variable symbol

3. T has the form f(t1,t2, …, tk) where f is a k-place function symbol and each of the ti is a term.

A string W is a well-formed formula of  of L if one of the following holds:

1. W has the form P(t1,t2, …, tk) where P is a k-place relation and each of the ti isa term. (These are the atomic formulas.)

2. W has one of the following forms: ~X, X & Y, X v Y, X ( Y, X<-> Y, where X and Y are well-formed formulas.

3. W has the form (E v) X or (A x) V where v is a variable symbol and X is a formula.

An occurrence of a variable v within a wff W is  bound if it is within an occurrence in W of a formula of the form (E v) X or (A x) V. An occurrence that is not bound is free.

A formula W is closed if every occurrence of a variable in W is bound. Otherwise it is open in the variables that appear free. A sentence is a closed formula.
SEMANTICS
A domain D for a first-order language L is a set of entities or individuals. A constant symbol denotes an individual in D.  A k-place predicate symbol P denotes an extensional relation PP, which is a set of k-tuples of elements of D. (We can also say that PP is a set of elements of D-k, where D-k denotes those elements of D that are k-tuples.) A k-place function symbol f denotes an extensional total function ff from D-k to D; a set of k+1 tuples, whose last element depends functionally on the first k elements. 
An interpretation I for L associates 

· each of the constant symbols with an element of D

· each of the k-place function symbols with a function from D-k to D

· each of the k-[place predicate symbols with a k-place relation on D, a subset of D-k

To define the semantics, one first defines the meaning of atomic formulas with no variables or quantifiers, and second defines the meaning of complex sentences. The truth of quantified sentences is defined in terms of substitutions, as developed below.

 A ground term is a term containing no variables. A ground formula is a formula containing no variables, free or bound.

If t is a ground term in L and I is an interpretation of L, then there is an individual u in D that is denoted by t under I. We write u = (t,I). Denotation is thus determined as follows:
a. If t is a constant symbol a, then T denotes the individual that A associates with the symbol. (t,I) = (a,I).

b. Otherwise, t has the form B(t1, …, tk). The denotation of t is the result of applying the extensional function that I associates with B to the denotations of t1,…,tk.  Thus, <(t1,I),…,(tk,i),(t,i)> is a member of (B,I)

Let W = P(t1, …, tk) be an atomic ground sentence. I |= W  (or, in  notation closer to that of the book, (W,I) = True) just if the relation (P,I) holds on the objects (t1,I), …, (tk,I);that is if the tuple <(t1,I),…,(tk,I)> is an element of (P,I). Otherwise I ~ |= W ;  (W,I) = False.

Further, let W be of the form t1 = t2, where t1 and t2 are ground terms. Then W is True if (t1,I) = (t2,I).

Let I be an interpretation of L, and let X and Y be closed formulas in L. Then:

a. Let W = ~ W. Then (W,I) = True just if (X,I) is False; otherwise, (W,I) is False.

b. Let W = X v Y. Then (W,I) is True just if either (X,I) is True or (Y,I) is True; otherwise, (W,I) is False.
c. Let W = X & Y. Then (W,I) is True just if both (X,I) and (Y,I) are True; otherwise, it is False.

d. Let W = (X ( Y). Then (W,I) is True just if either (X,I) is False or (Y,I) is True; otherwise it is False.

e. Let W = (X <-> Y). Then (W,I) is True just if both (X,I) and (Y,I) are True or if both (X,I) and (Y,I) are False; otherwise it is False.

The semantics for quantified terms and formulas are given using the following notion of substitution.

Let I be an interpretation of L with domain D. Let u be any member of D, and let d be a symbol not in L. Define a language L’ = L union d = the first-order language containing all the symbols in L and also containing d, used as a constant symbol. Then I union (d -> u) is an interpretation of L union d with domain D with the following properties:

· For each symbol a in L, (a, I union (d -> u)) = (a,I)

· (d, I union (d -> u)) = u.

Let I be an interpretation of L with domain D. Let d be a symbol not in L. For any formula W, let W(m/d) be the formula that is just like W except that d has been substituted for every free occurrence of  m. Then:

a. Let the closed formula X have the form (E m) W. Then (X,I) = True just if there is some element u in D such that (W(m/d), I union (d -> u)) = True.

b. Let the closed formula X have the form (A m) W. Then (X,I) = True just if for every element u in D (W(m/d), I union (d -> u)) = True.

Inference

Can be specified using a natural deduction system (see. e.g, Mates’s system for L1, his first-order language with equality), or using a set of axioms, as in Davis, p. 39 (need to type this in here) plus the rule of inference Modus Ponens. Note that Davis’s axiom FOL.6 permits generalization, which is usually realized by an inference rule.)
VANILLA COMMON LOGIC (still to be done; sketch follows below)
We can define a subset of Common Logic that is similar in terms of expressivity and inferential power to the vanilla logic defined above, that is, a first-order logic with equality.
That is, we would choose to use the segregated version/dialect of Common Logic in which there is a distinction between functions, predicates, and constants. Thus, we would not get the ability to effectively quantify over functions and predicates “for free”; thus, this version of CL would remain first-order. 

What we would keep from Common Logic is the ability to embed in sentences of CL “irregular sentences” that are not themselves sentences of CL. Sentences of modal logic are examples of irregular sentences. This could provide the RIF with the ability to permit partial reasoning on theories, some of whose sentences were not written in first-order logic.
Common Logic has an abstract syntax that allows various concrete realizations. In practice, however, it would be necessary to specify this vanilla Common Logic in some particular concrete syntax.  It would seem advisable to use CLIF, the Common Logic version of KIF syntax.

A serious issue to consider with regard to using Common Logic is the fact that the (ISO) standard for Common Logic will not be made public. Although corporations, academic institutions, research labs, and other organizations could presumably gain access to the standard without much difficulty, there is still --- in my opinion --- something inherently troublesome about using a first-order logic which is not made publicly available in the manner which has been accepted as standard throughout the world for several millennia. Perhaps, rather than use the ISO Common Logic standard, RIF could use a version that has already been published and is accessible on the web by all, such as the draft at http://cl.tamu.edu/docs/cl/32N1377T-FCD24707.pdf. Certainly, the concern felt by some, when Peter Patel-Schneider presented his version of first-order logic based on information found at Wikipedia, that it would be better to use a more standard, traditionally published source, would seem to be magnified if the source cannot even be accessed by all on the web, as is the case with ISO standards.
