Theory-driven Logical Scaling

Conceptual Information Systems meet Description Logics

Susanne Prediger, Gerd Stumme
Technische Universitdt Darmstadt, Fachbereich Mathematik, SchloBgartenstr. 7,

D-64289 Darmstadt; {prediger, stumme}@mathematik.tu-darmstadt.de

To be published in:
P. Lambrix et al.: Proceedings DL’99. CEUR Workshop Proceedings Vol. 22, 1999

and in E. Franconi et al.: Proceedings KRDB’99. CEUR Workshop Proceedings Vol. 21, 1999

(http://SunSITE.Informatik. RWTH-Aachen.DE /Publications/ CEUR-WS/)

1 Introduction

Conceptual Information Systems ([8]) have been developed for conceptual data
analysis and are based on the mathematical theory of Formal Concept Analysis
([4])- A Conceptual Information System provides a front-end for a (relational)
database. It uses conceptual hierarchies to unfold the conceptual structure of the
data and to support on-line navigation through the data. By so-called conceptual
scales ([3]), the relevant information can be extracted from the database and
stored in a table with an object-attribute-relation (called formal context) from
which one can derive a conceptual hierarchy (called concept lattice) for the actual
part of the data. As far as they are needed in this paper, the basics of Conceptual
Information Systems and conceptual scales are provided in Section 2.

For a conceptual scale, there is always a trade-off between its size and its
soundness with respect to future updates of the database. There are two ap-
proaches of designing conceptual scales: data-driven design and theory-driven
design.

In theory-driven design, knowledge about the application domain is used to
exclude impossible combinations of attributes. This keeps the conceptual scales
small — and their concept lattices easier to interpret. Theory-driven design is
only applicable if there is enough knowledge about which types of objects may
occur in the database. If this information is missing, the diagrams may become
unnecessarily large.

The second approach is called data-driven design. If there is no (or only few)
knowledge available, the scales are designed to fit the actual data only, and not
to conform to all possible updates of the database. If an update violates the
structure of the scale, the user is warned, and the scale has to be redesigned.
Hence, data-driven design is not applicable if the database is frequently updated.

A more general approach than conceptual scaling is presented in [5]: (data-
driven) logical scaling. Instead of using conceptual scales, it uses the terminology
of a formal language like Description Logic for extracting information. Logical
scaling is shortly recalled in Section 2.

While data-driven logical scaling has the advantage of a more powerful lan-
guage for defining scales, it has the same drawbacks as data-driven design of
ordinary conceptual scales. In Section 3, we introduce theory-driven logical scal-
ing which combines both efforts. It determines typical objects and excludes all
combinations of attributes which cannot occur because of the semantics of the
applied Description Logic.

Theory-driven logical scaling combines three ideas: the use of a terminology
for scaling ([5]), the application of Attribute Exploration ([2]) — a knowledge
acquisition tool — for bridging the gap between data-driven and theory-driven
design of conceptual scales ([7]), and the utilization of a subsumption algorithm
of Description Logics as an ‘expert’ for Attribute Exploration ([1]). Theory-
driven logical scaling can be used to set up a Conceptual Information System
even when the database is only partially given in the beginning.

2 Conceptual Information Systems
and Data-Driven Logical Scaling

Definition. A (formal) context is a triple K := (G, M, I) where G and M are
sets and [is a relation between G and M. The elements of G and M are called
objects and attributes, resp., and (g,m) € I is read “object g has attribute m”.

A (formal) concept is a pair (A4, B) with A C G and B C M such that A and
B are maximal with A x B C I. The set A is called the extent and the set B the
intent of the concept. The concept lattice of K (denoted by B(K)) is the set of
all its concepts together with the hierarchical subconcept—superconcept—relation

(A,B) < (C,D):+> ACC (= BD2D).

Figure 1 shows a formal context. It has four persons as objects, which are
described by six attributes. In the line diagram of its concept lattice the name
of an object g is always attached to the circle representing the smallest concept
with g in its extent; dually, the name of an attribute m is always attached to the
circle representing the largest concept with m in its intent. This allows us to
read the context relation from the diagram because an object g has an attribute
m if and only if there is an ascending path from the circle labeled by g to the
circle labeled by m. The extent of a concept consists of all objects whose labels
are below in the diagram, and the intent consists of all attributes attached to
concepts above in the hierarchy.

wine drinker

red wine drinker

Bordeaux drinker
red Bordeaux drinker

white wine drinker
Mrs. Miller

red Bordeaux drinker

white wine drinker
Bordeaux drinker

Mr. Smith
Mrs. Miller
Miss Cooper
Mr. Davis

X

XXX X ||person

XXX [X|wine drinker
XIX| [X|[red wine drinker
XX

Figure 1: A formal context about wine drinkers and a line diagram of its concept
lattice

For example, the concept labeled by Mr. Smith and red wine drinker has
{Mr. Smith, Miss Cooper, Mr. Davis} as extent, and {red wine drinker, wine
drinker, person} as intent. In the diagram, one can for instance see that the
two attributes Bordeaux drinker and red Bordeaux drinker generate the same
concept. This indicates that among the four persons there is no-one drinking
white Bordeaux. (x)

A Conceptual Information System consists of a many-valued context and a
set of conceptual scales. A many-valued context may not only have crosses (i. e.,
yes/no) as entries, but values of attributes pairs. It can be seen as a table of
a relational database with the column containing the objects being a primary
key.

Definition. A many-valued contezt is a tuple K := (G, M, (W)5 em,) where
G is a set of objects, M a set of attributes, each W,,, a set of possible values
for the attribute m € M, and I C G x {(m,w) | m € M,w € W,,} a relation
with (g, m,w1) €, (g, m,ws) € [= wy = wa. (g, m,w) € I is read “object g has
value w for attribute m”.

A conceptual scale is a one-valued context which has as objects possible
values of the database attributes. It is used to extract the relevant information
from the many-valued context such that a concept lattice can be generated.
The choice of the attributes of the scale is purpose-oriented and reflects the
understanding of an expert of the domain.

Definition. A conceptual scale for a subset B C M of attributes is a (one-

valued) formal context Sp := (Gp, Mg, Ip) with Gg C X meBWm. The realized
scale Sp(K) is defined by Sg(K) := (G, Mg, J) with (g,n) € J if and only if there
exists w = (Wy)mep € Gp with (g,m,w) € I, for m € B, and (w,n) € Ip.

The idea is to replace the attribute values in W,,, which are often too specific

drinks | Wines

Person [Wine | B

Mr. Smith Casa Solar R g

Mrs. Miller Staehle Tl 2|3 0

Miss Cooper | Figeac 9 | g 3 &

Mr. Davis Figeac 2 B A ~

Mr. Davis Casa Solar Figeac X X | 49,90
Staehle X 14,90
Casa Solar X 5,95

Figure 2: Data Base Wines and Clients

by binary, more general attributes which are provided in Mp. For an example,
see below.

In implemented Conceptual Information Systems, the many-valued context
is realized as a table in a relational database. The set GGp of a conceptual scale
Sp is then replaced by corresponding SQL statements. In the realized scale, the
objects of the conceptual scale (i.e. the values of the database attributes) are
replaced by the corresponding objects of the many-valued context.

Figure 2 shows a small database of a (fictive) wine retailer. For this in-
troductory example, we consider only the table wines as many-valued context
K. The diagram in Figure 3 shows the realized scale S pyice;(K). The chosen
attributes reflect the view of the analyst about prices. It divides the price range
in four (non-disjoint!) categories: below 5 DM (by the attribute very cheap),
below 10 DM (cheap), above 10 DM (expensive), above 20 DM (very expensive).
The objects of the corresponding conceptual scale are all possible prices. In the
realized scale, each price is replaced by those objects which have this price.

The design of this scale is theory-driven. It reflects the understanding that
a wine is either cheap or expensive, that each very cheap wine is also cheap,
and that each very expensive wine is also expensive. This understanding ex-
cludes ten out of 16 possible combinations of the attributes as concept intents.
With the current data, the concept labeled by very cheap is not realized. That
means that, at the moment, there are no wines in the database which are very
cheap. Data-driven design of the scale would have omitted this concept, but
might not be consistent with future updates of the database. Hence data-driven
design corresponds to the Closed World Assumption, while theory-driven design
corresponds to the Open World Assumption.

Figure 3: The realized scale for the price

wine drinker := person I Jdrinks.(red wine LI white wine)

red wine drinker := person I Jdrinks.red wine

white wine drinker := person 1 Jddrinks.white wine

Bordeaux drinker := person M Jddrinks.Bordeaux

red Bordeaux drinker := person M 3drinks.(red wine M Bordeaux)

Figure 4: Terminology Wine drinkers

With ‘traditional’ conceptual scaling, the context shown in Figure 1 cannot
be obtained as a realized scale of the given database. In the sequel, we show how
it can be obtained by data-driven logical scaling. Its theory-driven counterpart
is introduced in Section 3.

In [5], we presented (data-driven) logical scaling as an alternative method
that allows a more explicit and more powerful description of the attributes which
are introduced for the scaling process. The basic idea of logical scaling consists
of using a formal language like Description Logic to define a terminology with
attributes (called concepts (!) in DL) out of the attributes and relations of
different tables of the database.

In the terminology (TBox), a set of attributes is defined by terms of the
Description Logic like it is done in Figure 4. The formal context in Figure 1
is the realized scale that we can derive from the database (ABox) in Figure 2
with the terminology in Figure 4. Its objects are the persons, its attributes
are the attributes defined in the terminology, and the relation I is given by the
semantics of the formal language: an object g is in relation with an attribute m
if g satisfies the term defining m. (For a formal definition, refer to [5].)

If the conceptual scale is supposed to conform to updates of the database,
for example to the introduction of a white Bordeaux drinker (see (%)), a larger
conceptual scale must be created. This is done by theory-driven scaling.

3 Creating Conceptual Scales
by Theory-Driven Logical Scaling

For creating a conceptual scale that is large enough for all possible updates of the
database, we use Attribute Exploration ([2]), a knowledge acquisition algorithm.
In order to exclude impossible combinations of the attributes, the algorithm
generates questions of the form ‘Is a wine drinker who is also a Bordeaux drinker
and a red wine drinker always a red Bordeaux drinker?’. If the question is denied,
then the user has to provide a counter-example. In [7], Attribute Exploration
is used for extending data-driven to theory-driven conceptual scales with as few
interaction of the domain expert as possible.

In logical scaling, the necessary expert knowledge is already explicitly for-
malized in the terminology. That is why Attribute Exploration can be combined

Bordeaux drinker
white wine drinker

Mrs. Miller

red wine drinker

Mr. Smith

I

red Bordeaux drinker

Miss Cooper
Mr. Davis

Figure 5: Concept lattice of the theory-driven scale

with a subsumption algorithm of Description Logic as ‘expert’ ([1]). This can
be done with each logic that has a complete subsumption algorithm which gen-
erates a counter-example for each non-valid subsumption. In this paper, we use
the language ALC ([6]).

For answering the question mentioned above, the subsumption algorithm
solves the equivalent question if

P := wine drinker M Bordeaux drinker M red wine drinker M- red Bordeaux drinker

is inconsistent with respect to the terminology in Figure 4. In order to show
that P is inconsistent, the subsumption algorithm tries to generate a counter-
example. If this fails, P is consistent (and the question is affirmed). Here the
question is denied because the algorithm returns three new (dummy) objects
as counter-example: P7, W5, and W6 with W5 having only the attribute red
wine, W6 having only the attributes Bordeaux and white wine, an the relations
drinks(P7,W5) and drinks(P7,W6). The counter-example is added (temporarily,
just for creating the conceptual scale) to the database in Figure 2 and to the
context in Figure 1. Then Attribute Exploration generates the next open ques-
tion and passes it to the subsumption algorithm. In total, Attribute Exploration
generates eight questions. The subsumption algorithm denies four of them. For
the others, it provides four counter-examples.

The final result is a list of counter-examples which determines the structure
of the conceptual scale. (Equivalently, the structure is determined by the list of
affirmed questions.)

The (theory-driven) conceptual scale is derived from the concept lattice of
the extended context. For each concept, one clause consisting of the attributes
of the terminology is introduced which describes the intent of the concept. For
instance, P7 is replaced by red wine drinker 1M Bordeaux drinker M- red Bordeaux

drinker. These objects are used for deriving the realized scale at runtime. The
line diagram of the concept lattice of the realized scale is shown in Figure 5.
Here one can see which attribute combinations can principally exist according
to the terminology, and which of them are realized by the actual data. For
instance one can see that the observation made in Section 2 that there is no
white Bordeaux drinker (see (%)) does not hold in general, but only for the four
listed persons.

If one starts the generation of the conceptual scale from an empty data-
base, the same scale will arise, but in its realized scale there will be no realized
concepts (beside the bottom concept). As the database grows, more and more
concepts become realized. Hence, theory-driven logical scales can also be used
for analyzing the degree of completeness of the database with regard to ‘typical’
objects of the terminology.

In contrast to the terminology in Figure 4, the concept lattice in Figure 5
visualizes the subsumption hierarchy. It combines the intensional part of a
Description Logic (the TBox) with its extensional part (the ABox).

We conclude with the observation that, in theory-driven logical scaling, De-
scription Logics and Formal Concept Analysis enrich each other. From the
viewpoint of Formal Concept Analysis, the use of a Description Logic allows to
extend the scaling process in Conceptual Information Systems to more compli-
cated data structures than just one many-valued context. From the viewpoint
of Description Logics, Conceptual Information Systems provide a graphical user
interface which supports the navigation through and exploration of the knowl-
edge captured by a Description Logic.

References

[1]

[5]

[6]

F. Baader: Computing a minimal representation of the subsumption lat-
tice of all conjunctions of concept defined in a terminology. In: G. Ellis,
R. A. Levinson, A. Fall, V. Dahl (eds.): Proc. Intl. KRUSE Symposium,
August 11-13, 1995, UCSC, Santa Cruz 1995, 168—178.

B. Ganter: Two basic algorithms in concept analysis. FB4-Preprint 831,
TH Darmstadt 1984.

B. Ganter, R. Wille: Conceptual scaling. In: F. Roberts (ed.): Applications
of combinatorics and graph theory to the biological and social sciences,
Springer, New York 1989, 139-167.

B. Ganter, R. Wille: Formal Concept Analysis: Mathematical Founda-
tions. Springer, Berlin 1999.

S. Prediger: Logical Scaling in Formal Concept Analysis. In: D. Lukose
et.al. (eds.): Conceptual Structures: Fulfilling Peirce’s Dream, LNAI 1257,
Springer, Berlin 1997, 332-341.

M. Schmidt—Schau}, G. Smolka: Attributive concept descriptions with
complements. In: Artificial Intelligence 48, 1991.

G. Stumme: Acquiring Expert Knowledge for the Design of Conceptual
Scales. In: D. Fensel, R. Studer (Hrsg.): Knowledge Acquisition, Modeling,
and Management. Proc. EKAW ’99, LNAI 1621, Springer, Heidelberg 1999,
271-286

F. Vogt, R. Wille: TOSCANA - A graphical tool for analyzing and ex-
ploring data. In: R. Tamassia, I. G. Tollis (eds.): Graph Drawing ’94, In:
LNCS 894, Springer, Heidelberg 1995, 226-233.

