
Theory-driven Logical ScalingConceptual Information Systems meet Description LogicsSusanne Prediger, Gerd StummeTechnische Universit�at Darmstadt, Fachbereich Mathematik, Schlo�gartenstr. 7,D{64289 Darmstadt; fprediger, stummeg@mathematik.tu-darmstadt.deTo be published in:P. Lambrix et al.: Proceedings DL'99. CEUR Workshop Proceedings Vol. 22, 1999and in E. Franconi et al.: Proceedings KRDB'99. CEUR Workshop Proceedings Vol. 21, 1999(http://SunSITE.Informatik.RWTH-Aachen.DE/Publications/CEUR-WS/)1 IntroductionConceptual Information Systems ([8]) have been developed for conceptual dataanalysis and are based on the mathematical theory of Formal Concept Analysis([4]). A Conceptual Information System provides a front-end for a (relational)database. It uses conceptual hierarchies to unfold the conceptual structure of thedata and to support on-line navigation through the data. By so-called conceptualscales ([3]), the relevant information can be extracted from the database andstored in a table with an object-attribute-relation (called formal context) fromwhich one can derive a conceptual hierarchy (called concept lattice) for the actualpart of the data. As far as they are needed in this paper, the basics of ConceptualInformation Systems and conceptual scales are provided in Section 2.For a conceptual scale, there is always a trade-o� between its size and itssoundness with respect to future updates of the database. There are two ap-proaches of designing conceptual scales: data-driven design and theory-drivendesign.In theory-driven design, knowledge about the application domain is used toexclude impossible combinations of attributes. This keeps the conceptual scalessmall { and their concept lattices easier to interpret. Theory-driven design isonly applicable if there is enough knowledge about which types of objects mayoccur in the database. If this information is missing, the diagrams may becomeunnecessarily large.The second approach is called data-driven design. If there is no (or only few)knowledge available, the scales are designed to �t the actual data only, and notto conform to all possible updates of the database. If an update violates thestructure of the scale, the user is warned, and the scale has to be redesigned.Hence, data-driven design is not applicable if the database is frequently updated.1



A more general approach than conceptual scaling is presented in [5]: (data-driven) logical scaling. Instead of using conceptual scales, it uses the terminologyof a formal language like Description Logic for extracting information. Logicalscaling is shortly recalled in Section 2.While data-driven logical scaling has the advantage of a more powerful lan-guage for de�ning scales, it has the same drawbacks as data-driven design ofordinary conceptual scales. In Section 3, we introduce theory-driven logical scal-ing which combines both e�orts. It determines typical objects and excludes allcombinations of attributes which cannot occur because of the semantics of theapplied Description Logic.Theory-driven logical scaling combines three ideas: the use of a terminologyfor scaling ([5]), the application of Attribute Exploration ([2]) { a knowledgeacquisition tool { for bridging the gap between data-driven and theory-drivendesign of conceptual scales ([7]), and the utilization of a subsumption algorithmof Description Logics as an `expert' for Attribute Exploration ([1]). Theory-driven logical scaling can be used to set up a Conceptual Information Systemeven when the database is only partially given in the beginning.2 Conceptual Information Systemsand Data-Driven Logical ScalingDe�nition. A (formal) context is a triple K := (G;M; I) where G and M aresets and I is a relation between G and M . The elements of G and M are calledobjects and attributes, resp., and (g;m) 2 I is read \object g has attribute m".A (formal) concept is a pair (A;B) with A � G and B �M such that A andB are maximal with A�B � I . The set A is called the extent and the set B theintent of the concept. The concept lattice of K (denoted by B(K )) is the set ofall its concepts together with the hierarchical subconcept{superconcept{relation(A;B) � (C;D) :() A � C (() B � D) :Figure 1 shows a formal context. It has four persons as objects, which aredescribed by six attributes. In the line diagram of its concept lattice the nameof an object g is always attached to the circle representing the smallest conceptwith g in its extent; dually, the name of an attributem is always attached to thecircle representing the largest concept with m in its intent. This allows us toread the context relation from the diagram because an object g has an attributem if and only if there is an ascending path from the circle labeled by g to thecircle labeled by m. The extent of a concept consists of all objects whose labelsare below in the diagram, and the intent consists of all attributes attached toconcepts above in the hierarchy. 2
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Mrs. Miller

Miss Cooper

Mr. DavisFigure 1: A formal context about wine drinkers and a line diagram of its conceptlatticeFor example, the concept labeled by Mr. Smith and red wine drinker hasfMr. Smith, Miss Cooper, Mr. Davisg as extent, and fred wine drinker, winedrinker, persong as intent. In the diagram, one can for instance see that thetwo attributes Bordeaux drinker and red Bordeaux drinker generate the sameconcept. This indicates that among the four persons there is no-one drinkingwhite Bordeaux. (�)A Conceptual Information System consists of a many-valued context and aset of conceptual scales. A many-valued context may not only have crosses (i. e.,yes/no) as entries, but values of attributes pairs. It can be seen as a table ofa relational database with the column containing the objects being a primarykey.De�nition. A many-valued context is a tuple K := (G ;M ; (W m )m2M ; I) whereG is a set of objects, M a set of attributes, each Wm a set of possible valuesfor the attribute m 2 M , and I � G � f(m;w) j m 2 M;w 2 Wmg a relationwith (g;m;w1) 2; (g;m;w2) 2 I ) w1 = w2. (g;m;w) 2 I is read \object g hasvalue w for attribute m".A conceptual scale is a one-valued context which has as objects possiblevalues of the database attributes. It is used to extract the relevant informationfrom the many-valued context such that a concept lattice can be generated.The choice of the attributes of the scale is purpose-oriented and re
ects theunderstanding of an expert of the domain.De�nition. A conceptual scale for a subset B � M of attributes is a (one-valued) formal context SB := (G B ;M B ; IB) with GB ��m2BWm. The realizedscale SB(K ) is de�ned by SB(K ) := (G ;M B ; J) with (g; n) 2 J if and only if thereexists w = (wm)m2B 2 GB with (g;m;w) 2 I , for m 2 B, and (w; n) 2 IB .The idea is to replace the attribute values in Wm which are often too speci�c3



drinksPerson WineMr. Smith Casa SolarMrs. Miller StaehleMiss Cooper FigeacMr. Davis FigeacMr. Davis Casa Solar Winesredwine whitewine Bordeaux PriceFigeac � � 49,90Staehle � 14,90Casa Solar � 5,95Figure 2: Data Base Wines and Clientsby binary, more general attributes which are provided in MB . For an example,see below.In implemented Conceptual Information Systems, the many-valued contextis realized as a table in a relational database. The set GB of a conceptual scaleSB is then replaced by corresponding SQL statements. In the realized scale, theobjects of the conceptual scale (i. e. the values of the database attributes) arereplaced by the corresponding objects of the many-valued context.Figure 2 shows a small database of a (�ctive) wine retailer. For this in-troductory example, we consider only the table wines as many-valued contextK . The diagram in Figure 3 shows the realized scale SfPriceg(K ). The chosenattributes re
ect the view of the analyst about prices. It divides the price rangein four (non-disjoint!) categories: below 5 DM (by the attribute very cheap),below 10 DM (cheap), above 10 DM (expensive), above 20 DM (very expensive).The objects of the corresponding conceptual scale are all possible prices. In therealized scale, each price is replaced by those objects which have this price.The design of this scale is theory-driven. It re
ects the understanding thata wine is either cheap or expensive, that each very cheap wine is also cheap,and that each very expensive wine is also expensive. This understanding ex-cludes ten out of 16 possible combinations of the attributes as concept intents.With the current data, the concept labeled by very cheap is not realized. Thatmeans that, at the moment, there are no wines in the database which are verycheap. Data-driven design of the scale would have omitted this concept, butmight not be consistent with future updates of the database. Hence data-drivendesign corresponds to the Closed World Assumption, while theory-driven designcorresponds to the Open World Assumption.
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wine drinker := person u 9 drinks.(red wine t white wine)red wine drinker := person u 9 drinks.red winewhite wine drinker := person u 9 drinks.white wineBordeaux drinker := person u 9 drinks.Bordeauxred Bordeaux drinker := person u 9 drinks.(red wine u Bordeaux)Figure 4: Terminology Wine drinkersWith `traditional' conceptual scaling, the context shown in Figure 1 cannotbe obtained as a realized scale of the given database. In the sequel, we show howit can be obtained by data-driven logical scaling. Its theory-driven counterpartis introduced in Section 3.In [5], we presented (data-driven) logical scaling as an alternative methodthat allows a more explicit and more powerful description of the attributes whichare introduced for the scaling process. The basic idea of logical scaling consistsof using a formal language like Description Logic to de�ne a terminology withattributes (called concepts (!) in DL) out of the attributes and relations ofdi�erent tables of the database.In the terminology (TBox), a set of attributes is de�ned by terms of theDescription Logic like it is done in Figure 4. The formal context in Figure 1is the realized scale that we can derive from the database (ABox) in Figure 2with the terminology in Figure 4. Its objects are the persons, its attributesare the attributes de�ned in the terminology, and the relation I is given by thesemantics of the formal language: an object g is in relation with an attribute mif g satis�es the term de�ning m. (For a formal de�nition, refer to [5].)If the conceptual scale is supposed to conform to updates of the database,for example to the introduction of a white Bordeaux drinker (see (�)), a largerconceptual scale must be created. This is done by theory-driven scaling.3 Creating Conceptual Scalesby Theory-Driven Logical ScalingFor creating a conceptual scale that is large enough for all possible updates of thedatabase, we use Attribute Exploration ([2]), a knowledge acquisition algorithm.In order to exclude impossible combinations of the attributes, the algorithmgenerates questions of the form `Is a wine drinker who is also a Bordeaux drinkerand a red wine drinker always a red Bordeaux drinker?'. If the question is denied,then the user has to provide a counter-example. In [7], Attribute Explorationis used for extending data-driven to theory-driven conceptual scales with as fewinteraction of the domain expert as possible.In logical scaling, the necessary expert knowledge is already explicitly for-malized in the terminology. That is why Attribute Exploration can be combined5
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Mrs. MillerMr. Smith

Miss Cooper

Mr. DavisFigure 5: Concept lattice of the theory-driven scalewith a subsumption algorithm of Description Logic as `expert' ([1]). This canbe done with each logic that has a complete subsumption algorithm which gen-erates a counter-example for each non-valid subsumption. In this paper, we usethe language ALC ([6]).For answering the question mentioned above, the subsumption algorithmsolves the equivalent question ifP :� wine drinker u Bordeaux drinker u red wine drinker u: red Bordeaux drinkeris inconsistent with respect to the terminology in Figure 4. In order to showthat P is inconsistent, the subsumption algorithm tries to generate a counter-example. If this fails, P is consistent (and the question is a�rmed). Here thequestion is denied because the algorithm returns three new (dummy) objectsas counter-example: P7, W5, and W6 with W5 having only the attribute redwine, W6 having only the attributes Bordeaux and white wine, an the relationsdrinks(P7,W5) and drinks(P7,W6). The counter-example is added (temporarily,just for creating the conceptual scale) to the database in Figure 2 and to thecontext in Figure 1. Then Attribute Exploration generates the next open ques-tion and passes it to the subsumption algorithm. In total, Attribute Explorationgenerates eight questions. The subsumption algorithm denies four of them. Forthe others, it provides four counter-examples.The �nal result is a list of counter-examples which determines the structureof the conceptual scale. (Equivalently, the structure is determined by the list ofa�rmed questions.)The (theory-driven) conceptual scale is derived from the concept lattice ofthe extended context. For each concept, one clause consisting of the attributesof the terminology is introduced which describes the intent of the concept. Forinstance, P7 is replaced by red wine drinker u Bordeaux drinker u: red Bordeaux6



drinker. These objects are used for deriving the realized scale at runtime. Theline diagram of the concept lattice of the realized scale is shown in Figure 5.Here one can see which attribute combinations can principally exist accordingto the terminology, and which of them are realized by the actual data. Forinstance one can see that the observation made in Section 2 that there is nowhite Bordeaux drinker (see (�)) does not hold in general, but only for the fourlisted persons.If one starts the generation of the conceptual scale from an empty data-base, the same scale will arise, but in its realized scale there will be no realizedconcepts (beside the bottom concept). As the database grows, more and moreconcepts become realized. Hence, theory-driven logical scales can also be usedfor analyzing the degree of completeness of the database with regard to `typical'objects of the terminology.In contrast to the terminology in Figure 4, the concept lattice in Figure 5visualizes the subsumption hierarchy. It combines the intensional part of aDescription Logic (the TBox) with its extensional part (the ABox).We conclude with the observation that, in theory-driven logical scaling, De-scription Logics and Formal Concept Analysis enrich each other. From theviewpoint of Formal Concept Analysis, the use of a Description Logic allows toextend the scaling process in Conceptual Information Systems to more compli-cated data structures than just one many-valued context. From the viewpointof Description Logics, Conceptual Information Systems provide a graphical userinterface which supports the navigation through and exploration of the knowl-edge captured by a Description Logic.
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